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Abstract: The method of air-launching a rocket using a launcher suspended from a balloon, referred
to as a rockoon, can improve the flight performance of small rockets. However, there have been
safety issues and flight trajectory errors due to uncertainty with respect to the launch direction.
Air-launch experiments were performed to demonstrate a rail launcher equipped with a control
moment gyroscope to actively control the azimuth angle. As a preliminary study, it was suspended
via a crane instead of a balloon. The rockets successfully flew along the target azimuth line and
impacted the predicted safe area. The elevation angle of the launcher rail exhibited a fluctuation
composed of two frequency components. A double-pendulum model with a rigid rod suspended
by a wire was proposed to predict this behavior. Significant design parameters and error sources
were investigated using this model, revealing the constraining effect of a large mass above the wire
and elevation angle fluctuation, which caused trajectory errors due to the friction force on the rail
guide and thrust misalignment. Finally, tradeoffs in designing the rail length were found between
the launcher clear velocity and elevation fluctuations.

Keywords: rockoon; balloon; launcher; attitude dynamics; elevation angle; double pendulum

1. Introduction

There is an increasing demand for low-cost and small launch vehicles for scientific
suborbital missions and dedicated orbital launches of small satellites. A large rocket is
suitable for launching many satellites into a single orbital plane to form a constellation.
However, small rockets are required for the dedicated launching of a small number of
payloads into various orbits, including scientific missions. The world’s smallest orbital
launch vehicle is the Japanese SS-520-5, with a mass of 2.6 t [1,2]. It comprises three solid-
propellant stages. However, the payload ratios of small rockets are lower than those of large
rockets. The ratios can be significantly increased by performing air launches, where the
rocket is launched into the air from an airplane or balloon [3,4]. Airplane-type air launches
have been used throughout the history of rocket launches. The idea originated from an
air-launched ballistic missile, Bold Orion and High Virgo, developed in the 1950s [5].
The Pegasus rocket is the first orbital rocket that was air-launched from an airplane and
many commercial flights have been performed. Recently, Virgin Orbit performed the first
successful air-launch of a liquid-propellant orbital rocket. Thus, theories and technologies
for airplane-type air launches have been established at a practical level.

A method of launching a rocket using a launcher suspended from a balloon is referred
to as rockoon. It presents the advantage of launching from a high altitude exceeding 20 km,
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which is not possible by using civil aircraft. Because of the limitation of the balloon’s
volume, rockoon only applies to very small satellites and suborbital missions [6]. The
problems associated with rockoon have been addressed in previous studies. The first
experiment of rockoon was performed by a group under Van Allen in the 1950s with the
aim of performing suborbital science missions for studying high-altitude atmospheres.
The launcher was not equipped with a device to control the azimuth angle during launch.
Hence, the balloon had to be launched from a vast desert or a ship that was isolated to
the maximum extent from inhabited islands. Sigma rocket [7] was a Japanese rockoon
that reached an altitude of 105 km in 1961. However, the program ended because of cost
issues. In the USA, JP Aerospace [8] and California Maritime Academy [9] used tube-
shaped launchers that were lifted by multiple balloons. The former rockoon performed
successful launches while the latter exhibited problems related to limited helium supply. In
Australia, HARP performed some rockoon launches [10]; however, the uncertain winds in
Woomera posed problems in releasing a balloon and they concluded that the location was
unsuitable for rockoon launches. Single- and two-stage rockets were successfully launched
from a rail launcher lifted by balloons (developed at the University of Washington [11]),
allowing the entire launcher system to be recovered, undamaged, to the ground in the
single-stage mission. Although rockoon technologies have been gradually improved, major
problems still exist in the attitude control of the launcher in the air and the high costs of
solid propellant rockets and helium gas [12].

With respect to attitude control, the aforementioned rockoon systems used a sus-
pended launcher without an attitude controller. In the HIMES project in Japan [13], the
gondola suspended by a balloon was equipped with a reaction control system that used
gas jet thrusters to control the azimuth angle. The rocket was ignited during free fall, soon
after release. Because it is difficult to accurately predict the attitude of a falling rocket at
ignition, the application of a rail launcher is preferable. However, the issue of the attitude
disturbance of a suspended launcher still exists, especially in the azimuth angle. Wind
gusts have small effects on the attitude disturbances because the gusts in the stratosphere
are weak and the relative speed of a balloon to the air is small; however, the azimuth angle
is easily affected by a small perturbation and pendulum motion of the balloon because
it does not have an equilibrium angle. Nevertheless, the azimuth angle has never been
controlled in previous rockoon projects. Attitude control technologies of gondolas on
balloons have been researched in the balloon-borne telescope system [14,15]. A suspended
telescope was oriented to the target direction with an accuracy of one arcminute using a
control moment gyroscope (CMG) as the attitude control device. There exists a coupling
of pendulum and azimuth dynamics through the azimuth control loop and a complete
dynamic model of balloon-borne systems was proposed [16].

There are two differences between a balloon-borne telescope and a rockoon launcher.
First, the center of gravity (CG) of the rockoon launcher moves as the rocket slides on
the launcher rail and the mass suspended on the balloon decreases after the rocket leaves
the launcher, causing dynamic behavior with respect to the elevation angle. Second, a
friction force at the sliding point between the rocket and launcher leads to fluctuations
in the attitude of the launcher. Even in ground launches, the nose-down movement of a
rocket leaving from the end of an inclined rail launcher significantly affects the trajectory
parameters, such as apogee altitude, impact point downrange, and maximum dynamic
pressure. This becomes more significant for a suspended rockoon launcher because the
attitude of the rail is not constrained to the ground. Thus, the dynamics and attitude control
of a suspended launcher at launch is a major problem associated with rockoon; however,
these problems have never been investigated.

In our rockoon project, we aim to launch a hybrid rocket from a stratospheric balloon
for suborbital science missions and future satellite launch missions. A single-stage rocket
with a mass of 190 kg will be ground-launched in 2022. It has been converted to an
air-launch configuration to be launched from a balloon. They are finally extended to a
three-stage orbital rocket with a mass of 771 kg. As reported in our previous study [17], a
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hybrid rocket using N2O propellant is suitable for a high-altitude rockoon, because N2O
can be stored in liquid state at the temperature of the atmosphere, preventing the heat
conduction through the tank wall. The tank pressure decreases as the propellant is cooled
by the atmosphere. The lower limit is 0.7 MPa, that is, the saturation pressure at the air
temperature at 20 km of altitude. It is too low for self-pressurized feeding; therefore, a small
battery-powered turbopump is also under development at CIT. The recent progress in
low-cost hybrid rocket propulsion will accelerate the long-lasting development of rockoon
systems because the non-combustible nature of hybrid rockets provides a significant
advantage in terms of safety, with respect to the balloon or launcher accidentally falling.
However, the aforementioned issues related to the attitude of the launcher have never
been addressed.

This study has two goals. The first is to demonstrate the concept of a CMG-controlled
rail launcher using air-launch experiments. The attitude was controlled by an operator
and the experiment focused on the feasibility of applying the attitude controller to the
suspended launcher system. The second goal is to clarify the fluctuation behaviors of
the launcher’s attitude at the launcher-clear, especially the elevation angle, which have
significant effects on the flight trajectories. A simple dynamical model is proposed that
reproduces the fluctuations observed before and after launch. Significant design parameters
and error sources were discussed using the model.

2. Experiment

A rail launcher was used to maintain the attitude of the rocket during launch. It was
equipped with a CMG device to control the azimuth angle. The launcher was lifted via a
crane instead of a balloon because it is easy to control the launch point and altitude. Fur-
thermore, its dynamic behavior can be observed closely from the ground. The drawbacks
of using a crane is that the vertical motion is restricted, although an oscillation along the
vertical axis is an issue in a high-altitude balloon [18]. A genuine balloon experiment is
necessary in the future study; however, the goals of this study can be achieved even in the
crane experiment.

The attitude controller of the launcher is necessary to maintain the target direction of
the rail against disturbances caused by wind and balloon motion. With respect to elevation
angle, there exists an equilibrium point at which the CG of the launcher, combined with the
rocket, is on the extension line of the suspending wire. However, the azimuth angle should
be actively controlled until the rocket clears the launcher because there is no equilibrium
point in the azimuthal direction. Even if the launcher attitude is accurately controlled
before ignition, as the rocket moves on the rail after ignition, the launcher attitude changes
due to the frictional force at the sliding point and movement of the position of the CG. It is
difficult to actively control the launcher attitude during this period because it is as short
as 0.5 s. Such behavior should be predicted and considered when the target angles are
determined before launch.

A small rail launcher, shown in Figure 1, was constructed to study the dynamic
behavior during an actual launch. It was equipped with a CMG to control the azimuth angle
of the launcher. The attitude of the launcher was recorded using an accelerometer mounted
on top of the attitude controller. Figure 2 shows the details of the attitude controller
structure. It comprises a pair of momentum wheels driven at the same angular velocity ω
by electric motors located on both sides of the horizontal arms. The rotating axis is tilted by
θ around the horizontal arm. A hobby servo motor and radio controller were used to enable
remote-controlled operation. They were powered by a lithium polymer battery. Because
the wheels were rotating in opposite directions to each other, the tilting direction was
opposite to produce an azimuthal torque, as shown in Figure 2. If the rotational direction of
the wheels is the same, the tilting angle should be the same. However, this type of motion
generates a repulsive torque with respect to the horizontal arm, thereby leading to an
unstable oscillation in the elevation angle. As the rotational speed of the wheels increases
with angular momentum, the reaction torque obtained by tilting the rotation axes increases.
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The dimensions and rotational speed of CMG were determined as follows. To calculate
the generated torque, the initial state depicted in Figure 2 is considered. Suppose that both
wheel axes are horizontal and rotated in opposite directions at the same angular velocity
ω. The angular momentum of the wheel is Idω, where Id denotes the moment of inertia
of the rotor assembly. When the rotor axes are tilted by θ, the angular momentum of each
wheel changes by L = Idω sin θ in the vertical upward direction and by Idω cos θ in the
horizontal direction. Thus, the total momentum in the vertical direction increases by 2L
while the change in the horizontal direction cancels out with each wheel. As a reaction, the
launcher obtains the vertical downward angular momentum as follows:

2L = 2Idω sin θ (1)



Aerospace 2021, 8, 289 5 of 17

When the launcher has a moment of inertia IL about the vertical axis, it starts clockwise
rotation, when viewed from the above, at an angular velocity of

Ω = 2
Id
IL

ω sin θ (2)

If it rotates before tilting, the rotation speed changes by Ω. When the launcher is
oriented toward the target azimuth, the tilted angle should revert to the original state
to stop the rotation. Supplemental Video S1 shows this behavior. When it receives a
unidirectional disturbance torque from the wind, it is necessary to continuously produce a
canceling torque M. When the tilting angle rate is

.
θ, the azimuthal torque generated by the

CMG is obtained by differentiating Equation (1), as follows:

M = 2
.
L = 2Idω cos θ

.
θ (3)

The tilting angle rate
.
θ must be applied continuously to cancel the steady azimuthal

disturbance torque. When the tilting angle reaches θ = 90◦, the azimuthal torque M
vanishes and the rotational speed of the launcher cannot be changed further; this is
CMG saturation. In this study, the specifications were determined as IL = 1.223 kg·m2,
Id = 3.286× 10−3 kg·m2, and ω = 135 rad/s. Then, the maximum rotational speed at
saturation is Ω = 0.725 rad/s = 41.6◦/s, which seems sufficient for attitude control. To
increase the torque M, the wheel should be rotated as quickly as possible. The generation
of the azimuthal torque is possible even when θ = 90◦ by changing the wheel speed ω at
a rate

.
ω. However, the generated torque Id

.
ω was quite low and the duration required to

maintain the torque was short because Id � IL holds.
The launcher was not equipped with an active control function for the elevation

angle. The launcher rail was fixed to an azimuthal attitude controller. The elevation angle
fluctuates around the equilibrium point. After the launch, the CG changes with the attitude
in equilibrium and oscillates about the equilibrium, similar to a pendulum. This behavior
is discussed in detail later in this paper.

3. Experimental Results
3.1. Attitude Controller Unit Test

An operational test of the CMG attitude controller was performed without a launcher
rail. Supplemental Video S1 shows that attitude control was accurately performed, thereby
realizing controlled azimuthal rotation. To estimate the moment of inertia of the motor
shaft that drives each momentum wheel, the same experiment was performed without the
momentum wheels. As a result, no effective rotational torque is generated. Hence, most
of the angular momentum of the CMG is generated by the momentum wheels and the
contributions of the motor and shaft are negligible.

3.2. Air-Launch Trajectory

The attitude controller is fixed to the rail launcher. The launch experiments were
performed at a quarry at Ube Kyouritsu Sangyou, Inc., in Yamaguchi, Japan. There is an
ellipse-shaped depression, which is 400 m long, 200 m wide, and surrounded by hard
bedrock. As depicted in Figure 1, the launcher is suspended 0.5 m above the ground using
a crane, which is placed 13 m above the launch point. Considering the possibility of the
malfunction of the attitude controller, in which the rocket could fly in an arbitrary direction,
this type of environment was selected as a safe launch point. The length of the crane wire
was l = 20 m; the frequency of the simple pendulum was 2π

√
l/g = 9 s, which is much

longer than the time scale of the launching motion.
The launcher assembly, which comprised a CMG attitude controller and rail launcher

of 3 m length, was suspended by a wire of length l1 = 0.357 m on a crane hook having
a mass of 60 kg. The elevation angle was fixed at 60◦. The model rocket was a Spitfire
PML 30,385 (diameter: 76 mm, height: 1288 mm, and mass: 1.16 kg). A three-axis angular
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velocity sensor was attached to the top of the attitude controller. The rocket was installed
on a suspended launcher after preparation. After an evacuation procedure, the CMG
started to control the attitude of the launcher. As soon as the launcher was oriented toward
the target azimuth, the rocket was ignited remotely. The target azimuth was set along the
major axis of the depression. Three launches were performed with solid motors with a
nominal total impulse of 137 Ns. For the first and second launches, the propellant mass was
reduced by half for safety purposes. Supplemental Video S2 shows the second air-launch
experiment. The locations of the launch and impact points are shown in Figure 3. The
flight distances ranged from 45 to 147 m and the azimuth angles of the impact points were
included in the range of 8◦; i.e., 1.5◦ southward error and 6.5◦ northward error. The impact
points are located northward of the target azimuth line because of the weak southern wind.
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3.3. Launcher Attitude

Figure 4 shows the attitude histories of the launcher measured by the attitude sensor.
The measured angular velocities were integrated to obtain the attitude angles. Hereafter, the
ignition time is referred as X. In the first launch, attitude control was started at X − 45 s and
the azimuth maneuver ended at X− 17 s. In the second launch, the attitude was maintained
from X − 30 s. The azimuth angle was controlled by an operator and maintained in the
85± 8◦ range in the first launch. The azimuth control accuracy was improved to 84± 4◦

in the second launch, owning to the improvement of the operator’s skill. The azimuthal
error in the first launch was the largest in the other launches. For a full-scale rockoon
system, such an error will have a significant effect on enlarging the impact area or the orbit
insertion error; therefore, it should be reduced by installing an autonomous controller in
the future. After the launch, the attitude control was stopped at X + 5 s. No azimuthal
perturbation was observed at ignition in both launches.

The elevation angle oscillated with a peak-to-peak amplitude of 2◦ about the equilib-
rium until ignition. After ignition, the equilibrium elevation angle decreased by 4.4◦ and a
non-sinusoidal oscillation with a peak-to-peak amplitude of 10◦ was excited with respect
to the new equilibrium elevation angle. This type of behavior is characteristic of suspended
launchers. The decrease in the equilibrium angle was in good agreement with an angle of
5.4◦, which was predicted based on the movement of the CG of the launcher assembly after
the removal of the rocket. The largest elevation was observed at X + 0.8 s after the ignition;
this was due to an upward moment owing to the friction force on the rail and the thrust
misalignment force. This effect increased the actual elevation angle by 0.8◦. Approximately
the same increase in the elevation angle was observed in the other launches.
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4. Discussion

The experimental results exhibited an increase in the actual elevation angle when
the rocket reached the end of the launcher rail. This behavior changes the actual eleva-
tion angle and significantly affects the trajectory accuracy and range safety; therefore,
detailed discussions on these pendulum dynamics are necessary to predict the change
in elevation angle. Although a complete dynamic model of balloon-borne systems was
proposed by Kassarian [16], relative motions and separations of an internal object cannot
be considered. In this section, a pendulum model is proposed for a suspended launcher
with a launch object. The dynamics after the rocket has left the launcher seems to be of
little importance because it does not affect the launch trajectory. However, the detailed
discussion is necessary to validate the model and to show the reader how to identify the
model parameters.

4.1. Double Pendulum Model

To obtain a dynamical model of the suspended launcher, we focused on the non-
sinusoidal oscillation of the elevation angle, which was observed after ignition. Because
these behaviors were similar in both launches in Figure 4, only the first launch is con-
sidered in the following discussions. Figure 5 shows the results of the fast Fourier trans-
formation (FFT) of the elevation angle for the two 14-second time series before ignition
(X − 15.3 s–X − 1.3 s) and after ignition (X + 0.5 s–X + 14.5 s). In both cases, two com-
ponents of frequency f1 and f2 were observed. The frequency of the lower component,
f1, increased after the ignition because the CG moved upward owing to the absence of
the rocket, reducing the length of the pendulum. However, the frequency of the other
component, f2, decreased.
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To present a quantitative explanation of this behavior, the suspended launcher is
represented as a double pendulum model, as shown in Figure 6. A rigid rod was suspended
using a weightless wire with a rigid support. The mass, CG, and moment of inertia of the
rod were the same as those of the launcher assembly. The wire connecting the launcher and
hook has length l1. The hook moves slightly in the horizontal direction; however, the hook
is assumed to be a rigid support because of its significantly higher mass (60 kg) compared
to the launcher assembly. This was further confirmed by the fact that the hook was almost
stationary for several seconds after ignition (see Supplemental Video S2).

The eigenfrequencies of this model are obtained by solving Euler–Lagrange equations
for the attitude angles.

d
dt

∂L

∂
.
θi

− ∂L
∂θi

= 0 (i = 1, 2) (4)

The Lagrangian is defined as L = T−V. The total kinetic energy comprises two terms
of the translational motion of CG and the rotational motion around CG.

T = m
2

( .
x2

+
.
y2
)
+ I

2

.
θ2

2

= m
2

{(
l1

.
θ1 sin θ1 + l2

.
θ2 sin θ2

)2
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(
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.
θ1 cos θ1 + l2

.
θ2 cos θ2

)2
}
+ I

2

.
θ2

2

∼= m
2

(
l12

.
θ1

2 + l22
.
θ2

2 + 2l1l2
.
θ1

.
θ2

)
+ I

2

.
θ2

2

(5)

Here the following approximations for small amplitudes of angles were used.

sin θ ∼= θ; cos θ ∼= 1− 1
2

θ2 (6)

The potential energy of CG is expressed as follows.

V = −mg(l1 cos θ1 + l2 cos θ2)
∼= mg

2
(
l12θ1

2 + l22θ2
2) (7)

Here the approximations of Equation (6) were used again, and a constant term was
eliminated because the origin of potential energy is arbitral. Thus, Lagrangian is expressed
as a function of angles and angular velocities.

L =
m
2

(
l12

.
θ1

2 + l22
.
θ2

2 + 2l1l2
.
θ1

.
θ2

)
+

I
2

.
θ2

2 − mg
2

(
l12θ1

2 + l22θ2
2
)

(8)
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Substituting Equation (8) to Equation (4), we obtain two motion equations.

l1
..
θ1 + l2

..
θ2 + gθ1 = 0 (9)

l1l2
..
θ1 +

(
l22 + I/m

) ..
θ2 + l1gθ1 = 0 (10)

Now periodic solutions for the angles are assumed.

θ1 = Θ1eiωt, θ2 = Θ2eiωt (11)

Substituting Equation (11) to Equations (9) and (10), we have a matrix equation.(
−l1ω2 + g −l2ω2

−l1l2ω2 −
(
l22 + I/m

)
+ l1g

)(
Θ1
Θ2

)
= 0 (12)

There is a non-trivial solution if and only if the determinant of the matrix is zero.

I
m

l1ω4 −
(

l1l2 + l22 +
I
m

)
gω2 + l2g2 = 0 (13)

There are two solutions for ω2. We take only positive roots for ω.

ω =

√√√√√ mg
2Il1

(l1 + l2)l2 +
I
m
±

√{
(l1 + l2)l2 +

I
m

}2
− 4l1l2

I
m

 (14)

The solutions ω1, ω2 are the 1st and 2nd mode frequencies (ω1 < ω2). The mode
shape parameter is obtained by substituting Equation (14) to Equation (12).

Θ1

Θ2
=

l2ω2

g− l1ω2 (15)
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The eigenfrequencies and mode shape parameter are calculated by using the actual
values of structural properties as listed in Table 1. The mode shape parameters are positive
for 1st mode and negative for 2nd mode. Hence, the mode shapes are as depicted in
Figure 7. Theoretical 1st mode frequencies agreed with the experimental values presented
in Figure 5, whereas those of 2nd mode frequencies are higher than the experimental values
with 40% errors. However, they exhibit the same tendency that the 1st mode frequency
increases and the 2nd mode frequency decreases after ignition. The eigenfrequencies were
better matched with the experimental values by changing the parameters l1 as presented in
Table 1. The adjusted l1 are larger than the actual values; this is because this model neglects
the lateral motion of the crane hook suspended by the long wire. Actually, the crane hook
moves slightly in the horizontal direction. The presence of a large mass above the launcher
has a constraining effect on the pendulum motion.
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Table 1. Structural properties and mode parameters.

Before Ignition After Ignition

Mass (launcher + rocket) m kg 14.0 12.8
Moment of inertia I kg m2 4.67 2.96

Actual Adjusted Actual Adjusted
Length of the wire l1 m 0.357 0.950 0.357 0.950
Distance of the CG l2 m 0.483 ← 0.378 ←
1st mode frequency ω1 Hz 0.43 0.38 0.46 0.40

Mode shape Θ1/Θ2 - 0.49 0.60 0.47 0.61
2nd mode frequency ω2 Hz 1.16 0.81 1.15 0.82

Mode shape Θ1/Θ2 - −2.78 −0.84 −2.25 −0.65

The pendulum model can be improved without changing the parameters l1 by adding
another degree of freedom, i.e., crane hook and wire; however, a double pendulum model
is used below because it is sufficient to represent the launcher’s behavior in the experiment
that only two frequency components are observed.
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4.2. Elevation Angle Dynamics

The dynamics of the elevation angle were studied by considering a moving rocket
with the pendulum model obtained above. First, the rocket was located at the bottom end
of the launcher. After ignition, the CG and inertia moment change as the rocket moves on
the rail. Considering the motion of the CG and the contact forces between the rocket and
launcher, the equations of motion were solved.

As shown in Figure 8, a rail is fixed on a rigid rod with a target elevation angle ε.
Fluctuation angle θ2 is defined as θ2 = 0 at the equilibrium state with the rocket on the
launcher. When the rod is tilted with θ2, the actual elevation angle is ε + θ2 from the
horizontal. The inertia properties of the rail are included in the rigid rod. Gravitational
forces are considered for each CG of the launcher and rocket. A thrust force was applied
at the tail of the rocket with a misalignment angle δ. While the rocket with mass mr and
inertia moment Ir moves on the rail, two contact forces are considered between the rail
guides and the rail, a tangential friction force F and a normal force T sin δ. The rocket has
front and rear rail guides. Because CG of the rocket is located nearby the front rail guide,
the friction force was assumed to act only on this guide. The rocket is assumed to move on
the rail at a uniform acceleration ar as follows:
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mrar = T cos δ− F−mrg sin(ε + θ2) (16)

The vertical motion of the CG of the launcher was neglected. The horizontal motion
follows the equation of motion:

m
..
x = F cos(ε + θ2) + T sin δ sin(ε + θ2) + L sin θ1 (17)

The last term is the contribution of the tension force L of the wire, expressed as:

L = mg− F sin(ε + θ2) + T sin δ cos(ε + θ2) (18)
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The friction force is calculated if a friction coefficient µ was given:

F = µ{mrg cos(ε + θ2) + T sin δ} (19)

The launcher and rocket rotate around their combined center of gravity (CCG), which
varies as the rocket moves on the rail. The combined moment of inertia Ic around the CCG
also varies over time. The external forces are tension L, gravitational forces acting on the
launcher and rocket, and thrust T, which has a misalignment δ. The friction forces are
internal forces that cancel out in the rotational motion of the combined body. Additionally,
D’Alembert’s inertial force D is considered at the CG of the rocket with the magnitude
expressed by Equation (16). The aerodynamic drag force was neglected because the velocity
was low during rocket sliding on the rail. The rotational equation of motion is expressed
with the external torque terms generated by these forces as follows:

Ic
..
θ2 + Ll2 sin(θ1 + θ2) = mg(x− xc) + mrg(xr − xc) + (rT × T + rR ×D)z (20)

where x, xr, and xc are the horizontal locations of the CG of the launcher, rocket, and
their combination, respectively. rF, rT, and rR are the relative location vectors from CCG,
of the front rail guide, engine nozzle, and CG of the rocket, respectively. All of these
location parameters vary with time. θ1 in Equation (20) is obtained from the following
geometrical relation:

x = l1 sin θ1 + l2 sin θ2 (21)

The horizontal location of the CG of the launcher x is obtained by solving Equation (17).
The friction coefficient µ was obtained using the launcher and rocket used in the

launch experiments. The launcher was prepared with the rocket on it in the same manner
as in the launch experiments. The sliding surface of the rail was cleaned with a solvent
before the silicone lubricant was sprayed on it. The launcher rail was tilted down to a
negative elevation angle –θ, until the rocket started sliding on the rail due to gravity. Then,
the static friction coefficient was obtained as µ = tan θ. The kinetic friction coefficient was
obtained using the same equation, where θ is the smallest value at which the sliding rocket
continues to slide without stopping. As a result, we obtained static µ = 0.18 and kinematic
µ = 0.12. The latter value was used in Equation (19) because the rocket is sliding on the rail.

The thrust force was assumed to have a constant value of 60 N, which was obtained
from the ascending motion of the rocket recorded in supplemental Video S1. The unknown
thrust misalignment angle was varied to investigate its effect on the launcher dynamics.
Figure 9 shows the calculated fluctuation angle of the launcher θ2 and its rate

.
θ2 compared

with the experimental results, where the misalignment angle δ = 1.5◦ was selected for the
best agreement. They are almost identical from the ignition time X to X + 1.3 s, that is, 1.0 s
after the rocket has left the launcher tip. Furthermore, the following double pendulum
motions also have the same frequency and phase, demonstrating the accuracy of the
proposed model. Although the possible variation of the misalignment angle δ is unknown,
the assumed value δ = 1.5◦ is reasonable.
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Figure 9. Double pendulum model of the suspended launcher.

4.3. Parameter Study

This model allows us to study the parameters that have a significant effect on the
actual elevation angle behavior at launch. Among others, thrust misalignment, length of
the launcher rail, and friction coefficient are considered here.

The thrust misalignment angle was assumed to be downward on the vertical plane,
whereas the actual direction was arbitrary around the vehicle axis. A misalignment force
in a horizontal plane causes a fluctuation in the azimuth angle, by which the trajectory and
impact point turn around a vertical axis. A fluctuation in the elevation angle significantly
changes the trajectory, apogee altitude, and downrange of the impact point. Figure 10
shows the fluctuation of the elevation angle for different angles of thrust misalignment,
δ = ±1.5◦. The differences when the rocket leaves the rail are ∆θ2 = 2.8◦ and ∆

.
θ2 = 7.1 ◦/s.

These variations significantly affect the launch trajectory. For example, a 5 ◦ difference in
elevation angle results in a 26 km difference in the apogee altitude and a 100 km difference
in the downrange of the impact points in the case of a single-stage suborbital mission with
an apogee altitude of 100 km [17]. Although the effects of elevation angle rate

.
θ2 have not

been investigated, they are not negligible.
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These variations depend on the time when the rocket leaves the rail, which can be
delayed by extending the launcher rail. However, it also has a nose-down effect because the
downward torque due to the gravitational force of the rocket increases with the distance
between the rocket and CCG. The relation between the rail length and the conditions when
the rocket leaves the rail is shown in Figure 11. The launcher rail has to be long enough
to obtain a sufficient velocity when the rocket leaves the rail, which is necessary for the
aerodynamic stability of the rocket; however, an excessively long rail results in a large
nose-down fluctuation, as shown in this figure. There is another tradeoff between the
fluctuations of θ2 and

.
θ2: for the rail length with θ2 = 0,

.
θ2 has a large fluctuation, and vice

versa. The optimum length that minimizes the trajectory error should be obtained through
trajectory analyses with various combinations.
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The friction coefficient was obtained in the experiments mentioned above. However,
it depends on the tribological conditions between the rail and rail guides on the rocket,
such as surface roughness, cleanliness, and lubricant conditions. They could have a large
variation depending on the preparation of the launcher and the meteorological conditions.
When the silicone lubricant was not applied, the kinetic friction coefficient µ increased
to 0.17. Figure 12 shows the elevation fluctuations with the thrust misalignment δ = 0
comparing the friction coefficients. Considering a possible large value, µ = 0.50 for
unlubricated steels [19] was assumed. The increase in µ induces a larger nose-up torque
during rocket sliding on the rail. The maximum elevation angle was delayed, and the peak
value increased by 0.5◦. As a large value of µ causes these increasing variations in the
elevation angle, it is necessary to minimize the variation of µ by cleaning and lubricating
the rail. Although the friction torque can be eliminated by locating the CCG on the rail, the
issue of thrust misalignment is more significant.
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 Figure 12. Elevation variations due to the friction coefficient without misalignment.

5. Conclusions

Small rockets were air-launched to demonstrate a suspended rail launcher equipped
with a CMG, for application to a rockoon launcher. The attitude control of the azimuthal
angle and dynamics in the elevation angle of the launcher were studied. The azimuthal
control of the launcher was possible using the CMG. The following are concluded from
the experiments:

• The azimuth angles of the impact points were within the range of 8◦ with respect to
the target azimuth angle.

• The fluctuation of the elevation angle was observed due to the thrust misalignment
and friction force between the rocket and rail. The launcher elevation angle should be
determined considering these effects for accurate trajectory predictions.

The fluctuation behavior was explained using a double-pendulum model with a rigid
rod. If a large mass exists between a launcher and balloon, such as an equipment box, then
it has a constraining effect on the motion of the launcher, increasing the frequency of the
pendulum motion. The error in the 2nd mode frequencies can be corrected by changing
the wire length of the model without increasing the degrees of freedom. The following are
concluded from the discussions:

• Rail lubrication is necessary to minimize variation in the friction coefficient.
• Thrust misalignment is the most significant cause of elevation fluctuation and also

causes azimuthal error.
• There is a tradeoff between the leaving velocity and variations in the elevation angle

and its rate when the rocket leaves the rail. The optimum length should be selected to
minimize the trajectory error.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/aerospace8100289/s1, Video S1: Attitude controller unit test, Video S2: Air-launch experiment.
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Nomenclature

ω angular velocity of gyroscope wheels
θ tilted angle of gyroscope wheel axis
Id moment of inertia of the gyroscope rotor assembly
IL moment of inertia of the launcher
L vertical component of the change in angular momentum of each gyroscope wheel
Ω increase in the rotation speed of gyroscope
M torque generated by CMG
l length of crane wire above the hook
l1 length of wire under the hook
l2 distance between the top and the center of gravity of the rod
f1, f2 eigenfrequencies of the 1st and 2nd modes
ω1, ω2 angular eigenfrequencies of the 1st and 2nd modes
θ1, θ2 fluctuation angles from the equilibrium attitude
m mass of rod
I moment of inertia of rod
ε target elevation angle
δ thrust misalignment angle
mr mass of rocket
Ir moment of inertia of rocket
F, F friction force vector, and its magnitude
T, T thrust force vector, and its magnitude
D D’Alembert’s inertial force vector
ar acceleration of rocket
µ friction coefficient
Ic combined moment of inertia
x, y horizontal and vertical locations of center of gravity (CG)
rT location vectors of the engine nozzle from combined center of gravity (CCG).
rR location vectors CG of the rocket from CCG.
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