# Aerodynamic Characteristics of Re-Entry Capsules with Hyperbolic Contours

## Abstract

**:**

## 1. Introduction

## 2. Design of Re-Entry Capsule Shape Using Hyperbolic Contours

## 3. Numerical Methods and Computational Grid

## 4. Results and Discussions

#### 4.1. Grid Study

#### 4.2. Pressure Distribution

#### 4.3. Aerodynamic Characteristics

#### 4.4. Comparison of Volume and Stagnation Point Heat Flux

## 5. Conclusions

- The drag and lift coefficients can be increased when compared to the Hayabusa capsule.
- The static longitudinal stability was not affected significantly.

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Detra, R.W.; Kemp, N.H.; Riddell, F.R. Addendum to Heat Transfer to Satellite Vehicles Reentering the Atmosphere. Jet Propuls.
**1957**, 27, 1256–1257. [Google Scholar] - Anderson, J.D., Jr. Hypersonic and High-Temperature Gas Dynamics, 3rd ed.; AIAA Education Series; AIAA: Reston, VA, USA, 2019. [Google Scholar]
- Suzuki, K.; Abe, T. Transonic, Supersonic, and Hypersonic Wind-Tunnel Tests on Aerodynamic Chracteristics of Reentry Body with Blunted Cone Configuration; ISAS Report No. 658; Institute of Space and Astronautical Science: Sagamihara, Japan, 1995. [Google Scholar]
- Neville, A.G.; Candler, G.V. Computational-Fluid-Dynamics-Based Axisymmetric Aeroshell Shape Optimization in Hypersonic Entry Conditions. J. Spacecr. Rocket.
**2015**, 52, 76–88. [Google Scholar] [CrossRef] - Seager, C.; Agarwal, R.K. Hypersonic Blunt-Body Shape Optimization for Reducing Drag and Heat Transfer. J. Thermophys. Heat Transf.
**2017**, 31, 48–55. [Google Scholar] [CrossRef] - Theisinger, J.E.; Braun, R.D. Multi-Objective Hypersonic Entry Aeroshell Shape Optimization. J. Spacecr. Rocket.
**2009**, 46, 957–966. [Google Scholar] [CrossRef] - Ishii, N.; Yamada, T.; Hiraki, K.; Inatani, Y. Reentry Motion and Aerodynamics of the MUSES-C Sample Return Capsule. Trans. Jpn. Soc. Aeronaut. Space Sci.
**2008**, 51, 65–70. [Google Scholar] [CrossRef][Green Version] - Hashimoto, A.; Murakami, K.; Aoyama, T.; Ishiko, K.; Hishida, M.; Sakashita, M.; Lahur, P. Toward the Fastest Unstructured CFD Code ‘FaSTAR’; 2012-1075; AIAA: Reston, VA, USA, 2012. [Google Scholar]
- Ito, Y.; Murayama, M.; Hashimoto, A.; Ishida, T.; Yamamoto, K.; Aoyama, T.; Tanaka, K.; Hayashi, K.; Ueshima, K.; Nagata, T.; et al. TAS Code, FaSTAR, and Cflow Results for the Sixth Drag Prediction Workshop. J. Aircr.
**2018**, 55, 1420–1432. [Google Scholar] [CrossRef] - Kitamura, K.; Nonaka, S.; Kuzuu, K.; Aono, J.; Fujimoto, K.; Shima, E. Numerical and Experimental Investigations of Epsilon Launch Vehicle Aerodynamics at Mach 1.5. J. Spacecr. Rocket.
**2013**, 50, 896–916. [Google Scholar] [CrossRef] - Takahashi, Y.; Ha, D.; Oshima, N.; Yamada, K.; Abe, T.; Suzuki, K. Aerodecelerator Performance of Flare-Type Membrane Inflatable Vehicle in Suborbital Reentry. J. Spacecr. Rocket.
**2017**, 54, 993–1004. [Google Scholar] [CrossRef][Green Version] - Teramoto, S.; Hiraki, K.; Fujii, K. Numerical Analysis of Dynamic Stability of a Reentry Capsule at Transonic Speeds. Aiaa J.
**2001**, 39, 646–653. [Google Scholar] [CrossRef]

**Figure 5.**Pressure coefficient distribution on the symmetry plane with different computational grids.

**Figure 6.**Pressure coefficient distribution on the symmetry plane with different hyperbolic contours at an AoA of 0 degrees.

**Figure 7.**Pressure coefficient distribution on the symmetry plane with different hyperbolic contours at an AoA of 15 degrees.

**Figure 8.**Pressure coefficient distribution on the forebody of the capsules with hyperbolic contours at an AoA of 15 degrees.

**Figure 12.**Effect of parameter of hyperbolic contours on the relative value of the volume and the stagnation point heat flux of the capsule.

**Table 1.**Comparison of drag coefficient and the number of computational cells, faces, and nodes with different computational grids.

Fine | Nominal | Coarse | |
---|---|---|---|

Drag coefficient | 1.12986 | 1.12501 | 1.11057 |

Normalized drag coefficient | 1.0000 | 0.9957 | 0.9829 |

Number of cells | 5,032,000 | 963,596 | 265,743 |

Number of faces | 14,648,152 | 2,748,156 | 740,877 |

Number of nodes | 4,538,027 | 806,003 | 203,326 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Otsu, H.
Aerodynamic Characteristics of Re-Entry Capsules with Hyperbolic Contours. *Aerospace* **2021**, *8*, 287.
https://doi.org/10.3390/aerospace8100287

**AMA Style**

Otsu H.
Aerodynamic Characteristics of Re-Entry Capsules with Hyperbolic Contours. *Aerospace*. 2021; 8(10):287.
https://doi.org/10.3390/aerospace8100287

**Chicago/Turabian Style**

Otsu, Hirotaka.
2021. "Aerodynamic Characteristics of Re-Entry Capsules with Hyperbolic Contours" *Aerospace* 8, no. 10: 287.
https://doi.org/10.3390/aerospace8100287