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Abstract: Flocking navigation and obstacle avoidance in complex environments remain challenging
for multiple unmanned aerial vehicle (multi-UAV) systems, especially when only one UAV (termed
as information UAV) knows the predetermined path and the communication range is limited. To
this end, we propose a hierarchical weighting Vicsek model (HWVEM). In this model, a hierarchical
weighting mechanism and an obstacle avoidance mechanism are designed. Based on the hierarchical
weighting mechanism, all the UAVs are divided into different layers, and assigned with different
weights according to the layer to which they belong. The purpose is to align the rest of UAVs with
the information UAV more efficiently. Subsequently, the obstacle avoidance mechanism that utilizes
only the local information is developed to ensure the system safety in an environment filled with
obstacles differing in size and shape. A series of simulations have been conducted to demonstrate
the high performance of HWVEM in terms of convergence time, success rate, and safety.

Keywords: multi-UAV system; flocking navigation; vicsek model; hierarchical weighting mechanism;
obstacle avoidance

1. Introduction

Unmanned aerial vehicle (UAV) swarm is an inevitable trend for the aerospace in-
dustry [1], and flocking navigation is one of its spotlights. Flocking behavior refers to
a group-level phenomenon that occurs through simple individual interactions, where
individuals are guided by the local rules rather than central coordination [2–4]. Navigation
requires the group to move along a preset path [5] while all of the members should be able
to avoid obstacles they confront [6], as shown in Figure 1.

Recently, many approaches have been developed to realize flocking navigation for
multi-UAV systems. For example, Yan et al. [7] considered the leader-followers flocking
problem of fixed-wing UAVs in the context of deep reinforcement learning. The followers
can always follow the leader closely. However, it assumes that all followers can obtain
the position and velocity information of the leader no matter how large the group is.
Chen et al. [8] addressed the coordinated path following problem of fixed-wing UAVs
on a 2D plane and derived the sufficient conditions for the stability of the closed-loop
system. However, in the system, every UAV is required to possess the ability to plan its
own path. Hoang et al. [9] proposed a novel control strategy for a swarm of UAVs that
adopts an adaptive weight allocation mechanism based on the current context. The scheme
performs better than the conventional one, yet all the UAVs must know the position of the
target point.

Most of the previous studies either predefine the path of every UAV, or give the
information of the leader to them [7–11], both of which are hard to realize in practice.
Firstly, the mechanism of receiving the path information remotely from the ground station
requires a communication device to be equipped on each UAV, which in turn burdens the
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data transmission load. Secondly, the UAV can execute the path planning based on the
perceived information, but in practice the capability varies a lot; maybe only a few of them
can obtain the goal position and plan the path correctly. Thirdly, the non-cooperation goal
location may not be interpreted precisely, and the information transmission may be blocked
due to the communication interruption. Therefore, determining how to navigate the multi-
UAV system with only one individual knowing the path information is of great importance.
Additionally, determining how to realize path following and obstacle avoidance within a
limited interaction radius is also a challenging task.

To realize flocking navigation, all of the flocking members must follow the trajectory
that is created by the Information UAV (a UAV with the predetermined path information).
As a classic flocking model, the Vicsek model (VEM) describes a system where the member
aligns to the average movement direction of its neighbors, and all the members in the
flocking are finally aligned [12]. Inspired by the VEM, it can be seen that as long as all the
members align themselves with the information UAV within a short enough time, they
can follow tightly with the information UAV, and hence the system can move along the
desired path.

Predetermined Path

Obstacle

Information UAV

Ordinary UAV

Figure 1. The scenario of flocking navigation with obstacle avoidance. The Information UAV (the red
UAV) adjusts its heading angle according to the predetermined path information it learns in advance.
The objective of this paper is to make sure that all the blue UAVs follow the red one closely and avoid
the obstacle successfully.

There have been a lot of studies on how to improve the alignment speed of the Vicsek
model [13–15]. Nevertheless, most of them are only applicable in converging to a random
rather than a desired direction. To solve the problem, we proposed the weighting Vicsek
model (WVEM) to induce all individuals to converge to the reference state [16]. In WVEM,
the individuals are divided into three types according to whether they can directly interact
with the information UAV. The individuals of the same type are assigned with the same
constant contribution intensities. However, the convergence efficiency is not fast enough for
large-scale multi-UAV systems. In this paper, we further propose a hierarchical weighting
Vicsek model (HWVEM) to improve the convergence performance. Compared with WVEM,
HWVEM distinguishes the influence of different individual in a more detailed way and
sets the weight of each individual more flexibly and reasonably. WVEM can be regarded as
the simplest form of HWVEM, and HWVEM is more general and normative.

The main contributions of this paper are twofold. Firstly, we propose the hierarchical
weighting mechanism to induce all the individuals to align with the information UAV. All
the individuals are divided into many layers based on their topological distance from the
information UAV. The contribution intensity of each individual is assigned dynamically
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to ensure that the key information is always provided enough influence. Secondly, the
obstacle avoidance mechanism is designed to ensure the system safety in an obstacle-
existing environment with obstacles. The mechanism induces the UAVs to align with
the edge of the obstacles in a tangential direction and it can be added into other models
conveniently.

The rest of this paper is organized as follows. Section 2 proposes HWVEM and
describes the involved parameters. Numerous experiments are carried out in Section 3
to verify and analyze the model performance. Section 4 summarizes all the points of
this paper.

2. Flocking Navigation and Obstacle Avoidance with HWVEM

This section first proposes the hierarchical weighting mechanism. Then, according to
that, a HWVEM is proposed to facilitate the rest of UAVs in aligning with the information
UAV. Subsequently, an obstacle avoidance mechanism is designed to keep the UAV away
from the obstacle. Finally, a HWVEM-based flocking algorithm is proposed to achieve both
the flocking navigation and obstacle avoidance for a multi-UAV system.

2.1. Hierarchical Weighting Mechanism

In our work, the multi-UAV system assumes that only the information UAV masters
the predetermined path. To describe that capability, this paper applies the enable matrix
EN = [ei]N×1, in which the element follows the rule,

ei(k) =
{

0, if i /∈ ΓIU
1, if i ∈ ΓIU

, (1)

where i ∈ ΓIU means that the individual i is the information UAV [16].
Based on the topology with the information UAV, the rest of UAVs are divided into

different layers (As shown in Figure 2a). The information UAV belongs to the 1-st layer
and i ∈ Λn means that the individual i belongs to the n-th layer. There is i ∈ Λn if there
exists the shortest sequence of neighborhoods{

Nq1 ,Nq2 , . . . ,Nqn−1

}
, (2)

such that
q2 ∈ Nq1 , q3 ∈ Nq2 , . . . , i ∈ Nqn−1 , (3)

where n− 1 denotes the length of the sequence and q1 ∈ ΓIU . j ∈ Ni means the individual j
is the neighbourhood of the individual i and satisfies 0 <

∥∥~xi −~xj
∥∥ ≤ r, where~xi represents

the position of the individual i and r represents the interaction radius. The layer matrix
LN = [li]N×1 is proposed to denote the layer of every UAV and the element li follows
the rule,

li =


1, if i ∈ Λ1
2, if i ∈ Λ2

. . .
n, if i ∈ Λn

. (4)

Transmitting the layer information between UAVs brings a time consumption, thereby
the layer of the individual i at time step k is calculated based on the layers of its neighbor-
hoods at time step k− 1. The layer of the UAV is one layer lower than the highest layer
within its neighborhoods, which is updated by

li(k) = min
{

lj(k− 1) + 1 | j ∈ Ni(k− 1)
}

. (5)

Accordingly, a hierarchical topology network is established (Figure 2a). The upper-
layer UAVs are more directly and quickly influenced by the information UAV. They are
assigned with higher weight to ensure enough influence from the crucial information and
to improve the speed of alignment of the individuals with the information UAV.
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Figure 2. Relationships between UAVs. (a) Definition of different layers of UAVs and interaction
topology diagram between UAVs. (b) Vector synthesis of UAV velocity. The individual U1 be-
longs to the 6-th layer instead of the 7-th layer because the length of the shortest neighborhood
sequence is 5. In (a), the direction of the green dashed arrow represents the movement information
flow direction. (b) shows the synthesis process of the movement direction of the individual U2.
The dotted line represents the influence of other individuals on U2 and the length represents the
contribution intensity.

2.2. Hierarchical Weighting Vicsek Model

The information UAV adjusts its movement direction according to the mastered path
information, as its heading angle θd becomes the reference state for the rest of UAVs. In
the Vicsek model [12], N individuals move at a constant speed v0 on the D× D plane with
periodic boundary in discrete time, and the UAV density is denoted as ρ = N/D2. At
the initial moment, the position of the individual evenly distributes on the plane and the
heading angle obeys [0, 2π) uniform distribution. The heading angle of each individual
at time step k + 1 is the average of the direction of its neighbours at time step k, which is
updated by

θi(k + 1) = tan−1

(
∑j∈Ni(k) sin

[
θj(k)

]
∑j∈Ni(k) cos

[
θj(k)

])+ ∆θi(k), (6)

where Ni(k) denotes the index set of the neighbourhoods of the individual i, and
∆θi(k) ∈ [−η/2, η/2] represents the noise, η is the noise intensity. The individual j is
the neighbor of the individual i if requiring 0 <

∥∥~xj(k)−~xi(k)
∥∥ ≤ r, r is the interaction

radius.
The velocity of the individual i is updated by

~vi(k + 1) = v0 cos[θi(k + 1)]~e1 + v0 sin[θi(k + 1)]~e2, (7)

where~e1 and~e2 are mutually perpendicular unit vectors. The position of the individual i is
updated by

~xi(k + 1) = ~xi(k) +~vi(k + 1). (8)

Considering that the system driven by VEM alone cannot achieve flocking navigation,
and inspired by the hierarchical weighting mechanism, HWVEM is raised. In HWVEM,
each individual has the same kinematic models as VEM, i.e., Equations (7) and (8). The
heading angle of the individual is updated as follows,

θi(k + 1) = tan−1

(
∑N

j=1 hij(k) sin
[
θj(k)

]
∑N

j=1 hij(k) cos
[
θj(k)

])+ ei(k) · θd(k + 1) + ∆θi(k), (9)
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where HN =
[
hij
]

N×N is the neighbor matrix that describes the neighbor relationships of
UAVs, in which the element is defined by

hij(k) = aij(k) · bij(k) · cij(k), ∀i, j = 1, . . . , N. (10)

In the following, we will introduce the involved parameters i.e., aij, bij, cij in more
details.

2.2.1. Adjacency Matrix

The adjacency matrix AN =
[
aij
]

N×N is used to describe the individuals within the
interaction range of the given individual. Only the individuals within the interaction range
can influence the given individual. The element aij is expressed as

aij(k) =
{

1, if j ∈ Ni(k)
0, if j /∈ Ni(k)

. (11)

2.2.2. Dominance Matrix

In the swarm, the heading angle of the information UAV will not be influenced by
any other individual. For the UAVs of other layers, all individuals can be influenced by
others. The flows of information among UAVs are shown in the Figure 2a. Only when
the information of an individual flows to the given UAV, can it contribute to the given
UAV [17]. The dominance matrix BN =

[
bij
]

N×N is defined to describe the information
flow direction between each pair of UAVs. When the information of the individual j flows
to the i, bij = 1 otherwise bij = 0. For HWVEM, the element bij follows the rule,

bij(k) =
{

0, if i ∈ Λ1
1, if i /∈ Λ1

. (12)

The UAV does not contribute to its own new preferred movement direction, bii(k) = 0.

2.2.3. Contribution Matrix

The contribution matrix CN =
[
cij
]

N×N is defined to describe the contribution in-
tensity of every UAV during the decision-making process regarding the new preferred
directions of the given UAV. The contribution intensity cij of the individual j to the in-
dividual i consists of three parts: the absolute layer weight wabs

j of the individual j, the

relative layer weight wrel
j of j, and the weight wnei

ij of the neighborhood layer status dij of
the individual i. Thus, the contribution cij can be expressed as follows:

cij(k) = wabs
j (k) · wrel

j (k) · wnei
ij (k). (13)

The Absolute Layer Weight

Individuals of the same layer are assigned with the same absolute weight. The higher
the layer of the UAV, the earlier it will be affected by the information UAV, and the closer
its direction is to the reference state. The absolute layer weight is used to characterize this
attribute. The closer the individual direction is to the reference state, the higher the absolute
weight it is assigned, and following this principle the faster the UAVs align themselves to
the reference state. to encourage all UAVs to align to the reference state faster. Moreover,
the absolute layer weight value cannot appear negative. Based on the above two properties,
a simple yet effective form of the absolute weight can be designed as follows,

wabs
i (k) =

1
li(k)

+ p1, (14)

where p1 ≥ 0 is the tuning parameter that is used to adjust the value of the absolute layer
weight.
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The Relative Layer Weight

The relative weight refers to the intensity that the given UAV contributes to the UAVs
on its above, same, and beneath layer. As for the given UAV, considering its neighbors,
among them the upper-layer individuals are the closest to the reference state, while the
lower-layer is the opposite, and the individual from the same layer is the middle one.
According to the relative topological distance between the individuals and the information
UAV, the given individual possesses a higher weight to its lower layer individual and a
lower weight to its upper layer. To simplify the model, in general, let the contribution
intensity of the given individual to its same layer individual, and its upper layer and its
lower layer be 1, 1/p2 and p2, respectively, where p2 ≥ 1. The relative layer weight of
every UAV is the same. wrel

i can be expressed as follows,

wrel
i (k) =

1

pli(k)
2

. (15)

The Weight of the Neighbourhood Layer Status

The neighbourhood layer status dij is proposed to represent the status of the number
of individuals at the layer of the individual j in the neighbours of the individual i, which is
calculated by

dij(k) =
|Ni(k)|∣∣{n | ln(k) = lj(k), n ∈ Ni(k)

}∣∣ , (16)

where | · | represents the number of the elements of the set. When the individuals at the
layer of the individual j is too few, j is assigned with higher weight to ensure that its layer
can possess a certain contribution intensity. However, the influence of the neighbourhood
layer status should not grow large nor become the dominant factor, so the natural logarithm
is used to describe it. In this paper, when dij > e, it means that there are too few individuals
at the layer of the j. If the number of individuals at the layer of the j is enough, its
contribution intensity is 1. Therefore, wnei

ij is designed as follows,

wnei
ij (k) =

{
ln
(
dij(k)

)
, if dij(k) > e

1, if dij(k) ≤ e
. (17)

2.3. Obstacle Avoidance Mechanism

The insight behind our obstacle avoidance mechanism is to make the UAV who detects
the obstacle move along the tangent direction of the obstacle [6]. Once the UAV detects
an obstacle, it will first determine whether to take action to avoid the obstacle or not.
Specifically, when the obstacle is in the way of UAV’s original movement direction, the
UAV will align its heading angle to the tangent direction of that obstacle.

The genuine desired movement direction θ
g
i of the individual i represents the direction

contributions of its neighborhoods, except the individuals who are avoiding the obstacle.
The action of avoiding obstacles is both temporary and reactive, and is not a perpetual
demand of the swarm. Ignoring the influence of the individual who is avoiding the obstacle,
θ

g
i is updated by

θ
g
i (k + 1) =

 θd(k + 1), if i ∈ Λ1

tan−1
(

∑N
j=1 hij(k)oj(k) sin[θj(k)]

∑N
j=1 hij(k)oj(k) cos[θj(k)]

)
, if i /∈ Λ1

, (18)

where the element of the state matrix ON = [oi]N×1,

oi(k + 1) =
{

0, if i ∈ Γavoidance
1, if i /∈ Γavoidance

, (19)

i ∈ Γavoidance means that the individual i is taking action to avoid the obstacle.
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The occasion to avoid the obstacle refers to when the position of the individual i, the
genuine desired movement direction of i and the position of the nearest obstacle point
satisfy the following constraints,

‖~xi(k)−~xobs‖ ≤ ravoid , (20)

abs
(

θ
g
i (k)− θ̃(~xobs −~xi(k))

)
≤ θobstruct , (21)

where ~xobs represents the position of the nearest obstacle point, abs(·) means the absolute
value of the number, θ̃(·) denotes the angle between the vector and the x-axis of the inertial
coordinate system, ravoid and θobstruct represent the distance and the direction, respectively,
that the obstacle can threaten the movement of the individual. If the vector is obtained by
rotating x-axis counterclockwise, its heading angle takes a positive value, otherwise it is
taken as a negative value. In this paper, ravoid = 0.5, θobstruct = 11π/20.

If the individual i satisfies the constraints above, it will take action to avoid the obstacle.
The strategy is to adjust its heading angle to align to the tangent direction of the nearest
obstacle point and be consistent with the original direction as much as possible. The
tangent direction can denote two opposite angles, the individual chooses the angle that
makes an acute angle with the previous heading angle (i.e., θobs in Figure 3). The UAV will
not take action based on the obstacle point where there is no tangent. If it only detects the
obstacle point without tangent, it will move in the original direction. The heading angle of
the individual i is updated by

θi(k + 1) =
{

θ
g
i (k + 1), if i /∈ Γavoidance

θobs , if i ∈ Γavoidance
. (22)

( )ix k

obsx

( )g

i k

obs

( ( ))obs ix x k −

Figure 3. The expression of related variables in the process of the UAV avoiding the obstacle. The
red curve represents the obstacle, and the green point represents the nearest obstacle point to the
individual.

2.4. HWVEM-Based Flocking Algorithm

To achieve flocking navigation, it is still necessary to add attraction term and repulsion
term for the multi-UAV system [18,19]. The attraction force is used to maintain the swarm
compactness and the repulsion force is to avoid the collision. The form of attraction term is
as follows:

~vatt
i (k + 1) = ∑

j∈N 1
i (k)

(
rrep −

∥∥~xij(k)
∥∥

ratt − rrep
·

~xij(k)∥∥~xij(k)
∥∥
)

, (23)
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where ratt represents the range of the attraction force, rrep represents the range of the
repulsion force and j ∈ N 1

i satisfies rrep <
∥∥~xij

∥∥ ≤ ratt. The form of repulsion term is as
follows:

~vrep
i (k + 1) = ∑

j∈N 2
i (k)

(
rrep −

∥∥~xij(k)
∥∥

rrep
·

~xij(k)∥∥~xij(k)
∥∥
)

, (24)

where j ∈ N 2
i satisfies 0 <

∥∥~xij
∥∥ ≤ rrep. The intensities of both terms of the UAVs of all

layers to other individuals are the same and the information UAV is still not influenced
by any other individual. The velocity of the UAV is updated according to the following
equations:

~vdes
i (k + 1) = calign ·~valign

i (k + 1) + crep ·~vrep
i (k + 1) + catt ·~vatt

i (k + 1), (25)

~vi(k + 1) =
~vdes

i (k + 1)∥∥~vdes
i (k + 1)

∥∥ ·min
{∥∥∥~vdes

i (k + 1)
∥∥∥, vmax

}
, (26)

where calign, crep, catt represent the coefficients of the alignment term, the repulsion term
and the attraction term, respectively, and vmax represents the max velocity magnitude of
the UAV, vmax = 0.1.

Accordingly, the HWVEM-based flocking algorithm is summarized as shown in
Algorithm 1.

Algorithm 1 HWVEM-based flocking algorithm

Require:
The position of each neighborhood individual j, ~xj(k)
The velocity of each neighborhood individual j, ~vj(k)
The layer of each neighborhood individual j, lj(k− 1)
The state of each neighborhood individual j, oj(k− 1)

Ensure:
The position of the individual i, ~xi(k + 1)
The velocity of the individual i, ~vi(k + 1)
The layer of the individual i, li(k)

1: Calculate the adjacency matrix aij(k) with (11)
2: Calculate the dominance matrix bij(k) with (12)
3: Calculate the contribution matrix cij(k) with (13)
4: Calculate the coefficient matrix hij(k) with (10)
5: Update genuine direction θ

g
i (k + 1) with (18)

6: Update obstacle detection state oi(k) with (19)
7: Update heading angle θi(k + 1) with (22)
8: Update the alignment term v align

i (k + 1) with (7)
9: Update the attraction term v att

i (k + 1) with (23)
10: Update the repulsion term v rep

i (k + 1) with (24)
11: Update the velocity ~vi(k + 1) with (26)
12: Update the position ~xi(k + 1) with (8)
13: Update the layer matrix li(k) with (4)
14: Return ~vi(k + 1), ~xi(k + 1), li(k)

3. Numerical Simulation and Analysis

This section first conducts numerical simulation experiments to test the alignment
performance and verify the effectiveness of the designed hierarchical weighting mechanism.
Then, the proposed HWVEM-based algorithm is applied to a complex mission scenario to
demonstrate the flocking navigation and obstacle avoidance.
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3.1. The Verification of the Model Alignment Performance

This section verifies whether all UAVs can converge to a fixed direction, which is the
foundation of achieving flocking navigation. The attraction term and repulsion term are
ignored and the simulation is carried out in a periodic boundary environment. We use the
convergence time kcon as performance metric:

kcon = min
{

k0 | ∀k ≥ k0, Degcon (k) ≥ Degd
con

}
, (27)

kcon denotes the minimum time steps required for the system to reach the desired consis-
tency degree Degd

con . Degcon represents the consistency degree between all UAVs’ heading
angles and the reference state θd,

Degcon =

[
π − θcon (k)

N

]
/π, (28)

where
θcon(k) =

∥∥∥[θ1(k)− θd, θ2(k)− θd, . . . , θN(k)− θd
]∥∥∥. (29)

The smaller the kcon is, the shorter the time it is for all UAVs to converge to the reference
state, the better the system performance is achieved.

3.1.1. Contribution of Each Weighting Term

We first evaluate the model performance with different layer weighting parame-
ters. The reference state is set to π/4. An exclusive information UAV is set with a π/4
heading angle fixed, its initial position is at the lower left corner of the area. To stress
that the feasibility of the alignment to the reference state is the focus of our studies, the
noise will not be taken into account here. The following settings are the same: v0 = 0.03,
ρ = 4.102, r = 1, Degd

con = 0.9984, η = 0. Three sets of groups are discussed:
(a)N = 100, D = 4.962; (b)N = 200, D = 7; (c)N = 500, D = 11.051. The initial posi-
tion and velocity of UAV also influence the convergence performance, and thereby the
100 simulations with different initial states are carried out for each parameter to avoid the
randomness and obtain the general results.

Figure 4 shows the process of the multi-UAV system evolution. All of the individuals
have transformed from the initial chaos and disorder to the final alignment, strongly
testifying the reliability of the proposed model.

Figure 5 shows the average convergence time of the system with different layer
weighting parameter. Intuitively, the convergence time increases with the increase of p1
while decreasing with the increase of p2. The relative weight of the upper layer UAV and
the given UAV decreases, following the increase of p1 while increasing with the growing
of p2. The upper layer UAV is closer to the reference state and is assigned with higher
relative weight, which can induce the given UAV to align with the upper layer UAV faster,
and thus the given UAV can converge to the reference state faster. Furthermore, as shown
in Figure 5b, when the value of p2 is quite large, especially p2 ≥ 50, the convergence
time is no longer significantly reduced. The reason is that the system performance has
reached saturation. On one hand, as long as the given individual is affected by the upper
layer individual, it can take the fastest action to align with the upper individual. On the
other hand, even if the influence of the upper-layer continues to be improved, the given
individual cannot take faster action to align to the reference state. Therefore, when p2 is
large enough, the system performance will not be further promoted with the increase of p2.
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(a) 𝑘 = 1 (b) 𝑘 = 8 (c) 𝑘 = 16

Figure 4. The process of one evolution with N = 200, L = 7, p1 = 0.1, p2 = 5. The red individual
represents the information UAV.

Figure 5. The performance of different group with different layer weighting parameter. (a) Different
values of p1 with p2 = 5. (b) Different values of p2 with p1 = 0.01.

Then, the ablation experiment is carried out to verify the contribution of the mech-
anism of weighting the neighborhood layer status. The ablation results are shown in
Figure 6.

nei

ijw
nei

ijw

Figure 6. The box-plot for system performance under different application circumstances of the
neighborhood layer status. The red boxes represent the system performance with the mechanism of
weighting the neighborhood layer and the blue boxes without. The black rhombus are the extreme
outliers.

As shown in Figure 6, the larger the group, the longer the convergence time. Obviously,
weighting the neighborhood layer status brings better system performance. When the
upper layer is lack of individuals, by this mechanism the contribution intensities can be
improved to a certain extent compared to not applying the mechanism. The individuals can
be induced to align with the upper layer individual and the reference state more quickly.
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When there are too few individuals of other layers, the contribution intensities provided
by the mechanism are limited. The individuals of the upper layer are sufficient to induce
the given individual to align with the reference state with the shortest time. This result
demonstrates that the proposed mechanism of weighting the neighborhood layer status
can improve the system performance.

3.1.2. Comparisons of Different Models

To further evaluate the performance of HWVEM, we compare it with five baseline
models, i.e., the classic Vicsek model (VEM), the classic Vicsek model with one information
UAV (VEM-A), the improved Vicsek model (IVEM) [15], the improved Vicsek model with
one information UAV (IVEM-A), the weighting Vicsek model (WVEM) [16]. In IVEM, the
individual obeys the rule of moving toward the middle of two neighbors’ motion directions
with the maximum deviation. The updated model of the individual heading angle is as
follows,

θi(k + 1) = θi(k) + λ
maxp,q∈Ni

(
θp(k)− θq(k)

)
2

, (30)

λ =


1, if θi ≤ minj∈Ni θj

0, if minj∈Ni θj < θi < maxj∈Ni θj
−1, if θi ≥ maxj∈Ni θj

. (31)

Furthermore, to make IVEM adapt to the mission scenario and make sure all the
individuals converge to the desired direction, a simple improved model named IVEM-A is
proposed. In IVEM-A, the information UAV is introduced. If an individual can interact with
the information UAV, it will take action based on the information of its neighbors, where
the influence weight of the information UAV is 100 and ordinary UAV is 1. According to
our previous work, the parameters kα = 30, kβ = 18, kγ = 1 are purposely set for WVEM
and the system can reach saturation (excellent) performance. kβ means the weight of
the UAVs who directly interact with the information UAV and kγ means the UAVs who
not. For HWVEM, we simply set p1 = 0.1, p2 = 5. In these experiments, the reference
state is set to π/4. The following settings are the same: v0 = 0.03, ρ = 4.102, r = 1,
Degd

con = 0.9984, η = 0. Three sets of groups are discussed: (a)N = 100, D = 4.962;
(b)N = 200, D = 7; (c)N = 500, D = 11.051. The simulations with different initial states
are carried out 100 times for each model.

Table 1 shows the alignment performance of these models. Obviously, the convergence
time of IVEM is shorter than VEM and the method of IVEM can enhance the convergence
efficiency. As can be seen, both VEM-A and IVEM-A can induce the system to converge
to the reference state π/4 while the system inspired by VEM or IVEM cannot. The only
difference between VEM-A and VEM, and also between IVEM and IVEM-A, is the infor-
mation UAV, which indicates that the information UAV is the foundation for the system
to converge to the reference state. In VEM-A or IVEM-A, the individuals are constantly
directly or indirectly affected by the information UAV, leading to the tendency that they
align with the information UAV and eventually align to the reference state. However, the
convergence time increases greatly.

Compared with VEM-A and IVEM-A, the convergence time of WVEM is significantly
shorter. WVEM proposes a fairly simple weighting mechanism. When considering the
contribution intensity of an individual to the new preferred movement direction of the
given individual, the highest weight is assigned to the information UAV, the second is
assigned to the individuals directly interacting with the information UAV, and the least is
assigned to other UAVs. By assigning the higher weight to the individual who is closer to
the reference state, the whole system is induced to converge in a faster way to the reference
state. Therefore, the system performance of WVEM is more superior, which demonstrates
that an appropriate weighting mechanism can shorten the convergence time.
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Table 1. The alignment performance of VEM, VEM-A, IVEM, IVEM-A, WVEM and HWVEM.

Test Case Setup

Method

Convergence
Time (Time-Step) Converge to

Reference StateNumber of
UAVs Size Avg 25th pctl 50th pctl 75th pctl

100 4.96 × 4.96

VEM 84.31 55.00 81.00 105.50 No
VEM-A 568.39 362.50 542.50 741.00 Yes
IVEM 62.02 47.00 62.00 74.50 No

IVEM-A 556.05 527.00 559.00 584.00 Yes
WVEM 113.70 83.50 97.00 122.00 Yes

HWVEM 12.23 12.00 12.00 13.00 Yes

200 7 × 7

VEM 153.74 104.00 135.50 193.50 No
VEM-A 1236.60 701.50 969.00 1489.50 Yes
IVEM 78.03 48.50 70.00 96.00 No

IVEM-A 1170.62 1012.50 1180.50 1290.50 Yes
WVEM 238.57 152.50 185.50 301.50 Yes

HWVEM 16.03 15.00 16.00 17.00 Yes

500 11.2 × 11.2

VEM 296.30 204.50 282.50 357.00 No
VEM-A 4097.30 1550.50 3157.00 4333.00 Yes
IVEM 40.65 34.50 39.00 45.50 No

IVEM-A 4662.11 3462.50 3807.00 4730.00 Yes
WVEM 662.36 370.50 656.00 757.00 Yes

HWVEM 24.77 22.50 24.50 26.00 Yes

The time required by HWVEM is drastically shorter than WVEM. That is because
HWVEM occupies the following improvements. Firstly, the exploration of the identity
information of the UAV in HWVEM is more comprehensive and precise. The influence of
the different individuals can be distinguished in a more detailed way and the weight of
each individual can be set more flexibly. Secondly, the designed contribution intensity in
HWVEM is no longer constant but dynamic. The designed rule is more reasonable and
convincing. It can determine the intensity easily and flexibly and adapt to the large-scale
multi-UAV system with lots of layers. Therefore, HWVEM performs better than WVEM
and the weighting mechanism of HWVEM is more valid than WVEM.

3.2. Flocking Performance in Complex Scenario

The UAVs driven by VEM and IVEM cannot converge to the reference state, so they
cannot accomplish flocking navigation. Other models acquire different convergence time,
and parts of UAVs cannot keep up with the information UAV in time in complex mission
scenarios and thus lose track and fail to complete the task. This section will remove periodic
boundary and add the attraction term and repulsion term to evaluate the task performance
of the flocking algorithms based on VEM-A, IVEM-A, WVEM, and HWVEM, respectively.
The influence of weighting parameters setting for HWVEM is also considered and two sets
of parameters whose alignment performances vary greatly are chosen: p1 = 0.1, p2 = 5 for
HWVEM-I and p1 = 0, p2 = 100 for HWVEM-II. In Figure 5 in Section 3.1.1, we can simply
conclude that the alignment performance of HWVEM-II is much better than HWVEM-I.

We define the success rate Ps as metric to evaluate the task performance. Ps represents
the proportion of the number of individuals that complete the task to the total individuals,

Ps =
Ns

N
× 100%, (32)

where Ns represents the number of the UAVs that achieve the task successfully. The larger
the Ps and Ns , the better the task performance. If a UAV follows the information UAV
closely from the beginning to the end, it is considered to be successful. Besides, to evaluate
the safety, two metrics are proposed: the minimum distance between individuals Dind and
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the minimum distance from the individual to the obstacle Dobs during the entire process.
The larger the Dind and Dobs , the safer the swarm.

In the experiments, a certain degree of noise is introduced to test the system robustness.
The following settings are the same: v0 = 0.1, ρ = 3.265, r = 1, calign = 1, ralign = 1,
crep = 0.1, rrep = 0.7, catt = 0.003, ratt = 1, η = 0.1. To reduce computational burden and
take the actual group into account, three sets of groups are discussed: (a)N = 5, D = 1.2375;
(b)N = 20, D = 2.4749; (c)N = 50, D = 3.9132. One-hundred simulations with different
initial states are carried out for each model.

Figure 7 shows the entire mission scenario and task execution of HWVEM and Figure 8
displays the snapshots. As shown in Figure 7, the mission scenario is comprehensive,
including traveling through narrow areas, and bypassing tiny or huge obstacles. The shapes
of the obstacles include spheres, rectangles, diamonds, and triangles. In this experiment,
all UAVs align with the information UAV within a short time and follow closely with
the information UAV during the entire process, which illustrates that the swarm moves
along the predetermined path successfully. Besides, the safety is demonstrated because
no collision happened during the whole process. These results verified the feasibility and
adaptability of HWVEM. The system can still complete the mission in the presence of noise,
which shows that the model is robust and can be used to guide the actual flocking.

As shown in Table 2, when N = 5, all five models possess a relatively high success
rate. Since the group is not large, every model can induce the UAVs to align with the
information UAV within a short enough time. Nevertheless, VEM-A and IVEM-A acquire
the lowest success rate, which is consist with their alignment performances.

Narrow
Passage

Rectangle
Obstacle

Circle
Obstacle

Triangle 
Obstacle

Diamond
Obstacle

Figure 7. The scene of the system executing the mission. The inset of red dotted line represents the
setup of the obstacles. The blue dotted line shows the detail that the individual avoids the obstacle.

(e)

(a) (b)

(d)

(c)

(f)

Figure 8. The snapshots of the multi-UAV system executing the mission. (a) k = 1; (b) k = 80;
(c) k = 320; (d) k = 485; (e) k = 560; (f) k = 630.
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Table 2. The task performance of VEM-A, IVEM-A, WVEM, HWVEM-I and HWVEM-II

Test Case Setup

Method

Ps (%) Dobs Dind

Number of
UAVs

Initial
Size Avg 25th

pctl
50th
pctl

75th
pctl Avg Avg

5
1.24

×
1.24

VEM-A 69.58 60.00 80.00 80.00 0.1779 0.1873
IVEM-A 69.60 60.00 60.00 80.00 0.1821 0.1799
WVEM 76.40 60.00 80.00 100.00 0.1756 0.1738

HWVEM-I 86.40 80.00 80.00 100.00 0.1848 0.1702
HWVEM-II 86.00 80.00 80.00 100.00 0.1809 0.1623

20
2.47

×
2.47

VEM-A 31.61 10.00 20.00 45.00 0.0832 0.1576
IVEM-A 44.65 30.00 40.00 55.00 0.0852 0.1168
WVEM 71.05 60.00 65.00 80.00 0.0828 0.0962

HWVEM-I 83.80 65.00 100.00 100.00 0.0836 0.0887
HWVEM-II 83.85 65.00 97.50 100.00 0.0832 0.0823

50
3.91

×
3.91

VEM-A 9.29 4.00 6.00 12.00 0.0528 0.155
IVEM-A 17.66 12.00 16.00 21.00 0.0526 0.1105
WVEM 52.54 42.00 52.00 62.00 0.0535 0.0772

HWVEM-I 82.62 54.00 100.00 100.00 0.0492 0.0485
HWVEM-II 88.38 97.00 100.00 100.00 0.0501 0.0427

When N = 20, the task performances of VEM-A and IVEM-A decline sharply. Once
the system reaches a certain large group, the difference of task performance between
the models begins to manifest. The task performance of HWVEM is the best, which is
consistent with the alignment performance. It implies the rationality of our idea.

When N = 50, the performance of HWVEM-II is significantly higher than HWVEM-I.
The better the parameters for the system convergence performance, the better the perfor-
mance of the multi-UAV system executing the mission, which emphasizes the importance
of the weighting parameter configurations.

Additionally, the values of Dind and Dobs of different models are always similar,
which shows the same system safety. The values are always positive and the minimal
values are Dind = 0.0427, Dobs = 0.0492. It shows that a certain degree of security of the
multi-UAV system can be guaranteed.

4. Conclusions

This paper proposed a HWVEM based on VEM to achieve the flocking navigation
and obstacle avoidance for the multi-UAV system in which only one UAV knows the
predetermined path. According to the hierarchical weighting mechanism, all UAVs are
divided into different layers based on their topological distance with the information
UAV. The contribution intensity of each individual is assigned reasonably and flexibly,
which is composed of three parts: the absolute layer weight, the relative layer weight,
and the weight of the neighborhood layer status. The rationality of each part has been
verified through numerous experiments. The proposed obstacle avoidance mechanism
consists of two steps: occasion and behavior. Specifically, when the obstacle obstructs the
genuine desired movement direction of the UAV, the UAV will align its heading angle
to the tangent direction of the obstacle. The feasibility and reliability of HWVEM have
been verified by comparing it with several baseline models in comprehensive mission
scenario. Additionally, the system can still achieve mission in the presence of noise,
which demonstrates the robustness of HWVEM and its potential in the real world. In
the future, we will further evaluate our proposed model in the real-world environment.
Another promising direction is to search the optimal weights for HWVEM via intelligent
optimization algorithms, such as genetic algorithm (GA) and particle swarm optimization
algorithm (PSO).
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