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Abstract: Pilot fatigue is a critical reason for aviation accidents related to human errors. Human-
related accidents might be reduced if the pilots’ eye movement measures can be leveraged to predict
fatigue. Eye tracking can be a non-intrusive viable approach that does not require the pilots to
pause their current task, and the device does not need to be in direct contact with the pilots. In this
study, the positive or negative correlations among the psychomotor vigilance test (PVT) measures
(i.e., reaction times, number of false alarms, and number of lapses) and eye movement measures
(i.e., pupil size, eye fixation number, eye fixation duration, visual entropy) were investigated. Then,
fatigue predictive models were developed to predict fatigue using eye movement measures identified
through forward and backward stepwise regressions. The proposed approach was implemented
in a simulated short-haul multiphase flight mission involving novice and expert pilots. The results
showed that the correlations among the measures were different based on expertise (i.e., novices
vs. experts); thus, two predictive models were developed accordingly. In addition, the results from
the regressions showed that either a single or a subset of the eye movement measures might be
sufficient to predict fatigue. The results show the promise of using non-intrusive eye movements as
an indicator for fatigue prediction and provides a foundation that can lead us closer to developing a
near real-time warning system to prevent critical accidents.

Keywords: multimodal analysis; fatigue; eye movements; eye tracking; psychomotor vigilance task;
entropy; expertise; pilot; prediction

1. Introduction

Fatigue is a critical reason for human-error-related aviation accidents [1,2]. A recent
review of major airline crashes reported that 48% of aviation crashes were attributed to
pilot errors, and approximately 20% of these errors were associated with pilot fatigue [3,4].
Previous studies have identified that high levels of fatigue severely affect a pilots’ ability to
attend to complex information, detect safety issues, and provide timely responses [5–7].
Therefore, it is important to evaluate and, if possible, also predict pilot fatigue levels so
that intervention measures can be implemented on time.

Fatigue can hinder the pilot’s ability to stay alert and be attentive during a short-
haul flight consisting of multiple consecutive flight missions. Short-haul flights usually
include 4–5 legs per day, whereas long-haul flights usually include 20 or more hours of
non-stop single leg flight [8]. Limited to short-haul flights, the survey results showed that
the number of legs per day, flight duration, and time of day can be factors that increase
fatigue [8–10]. In detail, the number of flight legs and duty length (time-on-task) were the
most significant factors that increased pilot fatigue in short-haul flights, whereas the time
of day had a weaker impact. Furthermore, prior duty and sleep substantially affected the
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pilots’ fatigue [11]. In detail, the reduction in pilots’ prior sleep resulted in the increase in
self-rated fatigue and decrease in mean response speed.

Some approaches have focused on observing physiological and subjective data includ-
ing PVT, electroencephalography (EEG), electrooculogram (EOG), Samn–Perelli fatigue
scale (SPS), and the Karolinska sleepiness scale (KSS) [12,13]. The results showed that fac-
tors, such as unpredictable duty, number of legs, prolonged duty periods (i.e., time-on-task),
insufficient sleep, and circadian disruptions, had substantially influenced pilots’ fatigue.

Building a pilot fatigue prediction model is crucial for developing timely alerting or
scaffolding methods to prevent fatigue-induced aviation accidents. The effectiveness of
a fatigue prediction model depends on the methodology used to evaluate pilot fatigue.
For example, intrusive fatigue evaluation methods (requiring the task to be paused for
assessing fatigue) will hinder the fatigue prediction model’s adaptation for real-time fatigue
prediction. Hence, before developing the pilot fatigue prediction model, we explored the
limitations of the various pilot fatigue evaluation methods so that we could implement
the most appropriate method (or a combination of eye tracking and PVT) in our case.
The various pilot fatigue evaluation methods implemented in earlier studies can be
broadly categorized into subjective methods [14], objective methods [15–23], and hybrid of
subjective and objective methods [11,24–28].

Subjective methods consist of evaluating pilot fatigue through self-assessment scores,
for example, fatigue rating and sleepiness scales, that allow us to understand a pilots’
opinions and fatigued feelings [14]. Despite their ease of use, these methods might suffer
from biased judgment, and it also requires pilots to recollect and write down their self-
perceived fatigue level while the experiment is paused [29]. Hence, these methods might
affect the accuracy of the fatigue prediction model. Objective methods include psychomotor
vigilance tasks (PVTs) [15], EEG [16–18], eye tracking [19,20], or a combination of those
methods (e.g., PVT and eye tracking) [21–23].

In detail, PVT evaluates pilot fatigue by measuring the change in their task-based
performance [15]. The PVT approach has been proven to be very effective in assessing pilot
fatigue [11,24–26]. However, PVT can be intrusive, as it requires the pilots to pause the
current task at hand to assess fatigue level. Thus, it affects the natural working environment
of a pilot flying an aircraft. Therefore, developing a fatigue prediction model using PVT
measures alone might hinder its adaptation for near real-time pilot fatigue prediction that
does not require intervention.

The EEG method evaluates pilot fatigue by analyzing their brain waves, and it does
not require the task to be paused [16–18]. Evaluation of the brain activities can be viable
approach to assess fatigue, but the EEG device can be intrusive because the electrode cap
has to be placed on the pilot’s head throughout the task. Thus, it might be challenging to
implement this approach for a long duration task, as it impacts the pilots’ free movement
in their natural working environment [30,31].

The eye tracking method can be used to evaluate fatigue by analyzing pilots’ eye
movements collected using a small eye tracker placed beneath a monitor or anywhere
within the pilots’ visual field. Prior studies [19,20] demonstrated that eye tracking methods
might effectively measure fatigue levels of pilots, since the pilots do not need to pause
their task allowing continuous data collection in real time. Thus, eye tracking provides a
viable, unintrusive, and real-time fatigue evaluation method, thereby making it suitable
for developing a pilot fatigue prediction model. Furthermore, existing studies combined
PVT and eye tracking measures that investigated fatigue for a single take-off and landing
task [21,22] or where the participants were only novices [23].

To the best of our knowledge, there has been no research on investigating the following
research questions: (a) how fatigue increase might differ based on a pilot’s expertise for a
multi-leg flight mission; (b) how fatigue levels increase after each flight leg; (c) how eye
movement measures are correlated with fatigue levels (measured using PVT that proved to
measure accurate fatigue levels as briefly explained above); (d) whether a fatigue predictive
model can be created using only eye movement measures. Furthermore, PVT has several
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measures (such as reaction times, false alarms, and number of lapses), and there is no
research on how to combine those into a single fatigue assessment measure. Motivated by
our preliminary research efforts [22,23,28], the present study addresses the questions.

2. Background

In this section, an in-depth literature review based on the fatigue evaluation methods
within the aviation and other relevant domains is provided below. Table 1 provides a
concise summary and classifications based on research topic, evaluation method, expertise,
single vs. multiple legs, short vs. long duration flights, and statistical analysis method.

Table 1. Classification of existing research in pilot fatigue: Classifications are mostly based on the fatigue evaluation method.
The last three listed in the table are studies not related to fatigue but worth mentioning.

Research
Related to

Pilots’ Fatigue
Research Topic

Fatigue
Evaluation

Method
Expertise

Single or
Multiple
Take-off
Landings

Short (1~3 h)
vs. Long

Duration (3+ h)
Flight

Statistical
Method

[8] Fatigue Subjective Experts Single Short and long
Multiple

regression and
ANOVA

[14] Fatigue Subjective Experts Single Long and Short linear
mixed-model

[15] Workload and
fatigue

PVTand
Subjective Experts Single Short

Stepwise
Regression and

correlation

[16] Reaction time EEG Novice None Short Robust linear
model

[17]
Mental

workload and
fatigue

EEG - - - Literature review

[18] Fatigue EEG Novices Single Short Classification
model

[19] Fatigue Eye tracking Experts Single Short and Long ANOVA and
linear regression

[20] Fatigue Eye tracking Experts Single Short Pre/Post-Test
design

[21] Fatigue Eye tracking
and PVT Novices Single Short ANOVA and

regression

[22] Fatigue Eye tracking
and PVT

Novices and
experts Single Short

Mann-Whitney-
Wilcoxon

tests

[23] Fatigue Eye tracking
and PVT Novices Multiple Long Kruskal-Wallis

test

[11]
Fatigue and

sustained
attention

PVT and
Subjective Experts Single Long Linear mixed

model regression

[24] Fatigue and
Performance

PVT and
Subjective Experts Single Long and

ultra-long
Mixed-model

ANOVA

[25] Fatigue and
performance

PVT and
Subjective Experts Single Long and

ultra-long ANOVA

[26] Fatigue PVT and
Subjective Experts Single Short and Long Statistical/Machine

learning model

[27] Fatigue EEG Novice Single Long ANOVA
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Table 1. Cont.

Research
Related to

Pilots’ Fatigue
Research Topic

Fatigue
Evaluation

Method
Expertise

Single or
Multiple
Take-off
Landings

Short (1~3 h)
vs. Long

Duration (3+ h)
Flight

Statistical
Method

[28] Fatigue Eye tracking
and PVT Experts Multiple Long ANOVA

[32] Cognitive load Eye tracking Experts Single Short Paired t-tests

[33] Workload
EEG, Eye

tracking, and
Subjective

Experts Single Short ANOVA and
correlation

[34] Performance Eye tracking Novices and
experts Single Short ANOVA

2.1. PVT Measures and Fatigue Assessment

In the absence of any direct fatigue measurement approach, PVT has been proven to
be the most effective and widely used fatigue evaluation method. PVT evaluates fatigue
by assessing changes in an individual’s performance for a particular button-pressing task
when a visual stimulus (e.g., lights) is sequentially presented one by one on a display at
random time intervals [35]. Specifically, three measures are evaluated: (a) reaction times
(RT), where 150 ms < RT < 500 ms; (b) number of false alarms (tallied when RT < 150 ms);
(c) number of lapses (tallied when RT > 500 ms) [36].

Note that RT increases with the rise in fatigue level. Furthermore, for RT < 150 ms,
the button pressing action is considered a false alarm, which implies that either the onset
of the visual stimulus was anticipated or the action was performed without seeing the
stimulus. Conversely, the button pressing act having an RT > 500 ms is counted as a
lapse, thus implying a temporary failure of concentration due to the fact of fatigue.
Another possible measure, also used by researchers to assess fatigue, is the response speed,
which is defined as the inverse of RT (i.e., 1/RT). For example, if RT is 200 ms, then the
response speed is 0.005 ms−1.

Different researchers have used one or a collection of the four PVT measures men-
tioned above to evaluate pilot fatigue. For example, the number of lapses was found to
increase, whereas response speed decreased with a rise in pilot fatigue levels for short-haul
flight operations [15]; a decrease in mean response speed (1/RT) was observed with an
increase in time-induced fatigue on pilots in both long [11], ultra-long flights [24], and short
flights [25]. Notably, the mean reaction times and the mean number of lapses increased
with an increase in pilot fatigue, where pilots performed simulated flying operations under
both rested and fatigued conditions [26].

Regarding the fatigue prediction model development, prior studies (which used a
hybrid approach of combining PVT and subjective measures) found different results for
long- and short-haul flights. For example, for a short-haul flight, the number of lapses
was found to be important for pilot fatigue prediction [15]; whereas, for a long-duration
flight, pilots’ sleep duration was found to be the only significant predictor (in a linear
mixed-model regression model) of pilot fatigue [11].

Note that all these previous studies found similar trends, in which response times,
number of false alarms, and number of lapses increased as fatigue increased. Response
speed (being the inverse of reaction times) decreased with an increase in fatigue. However,
to the best of our knowledge, each PVT measure was evaluated separately when we
reviewed the previously published papers on PVT. If we used the PVT measures separately,
then would we need to develop 3 times the regression models and would not know which
one to apply for prediction. Hence, we would need a single unified PVT measure to
develop a single prediction model. Therefore, we devised a simple unified measure which
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is the weighted linear combination of the three basic PVT measures (i.e., reaction times,
number of false alarms, and number of lapses). More details are provided in Section 3.

The abovementioned studies, due to the PVT method’s implementation, require the
current task to be paused, which might not be either favorable or feasible when performing
a piloting task. In addition, they include flight operations that only have single take-off and
landing tasks for both short- and long-duration flights. Thus, the results obtained cannot
necessarily be transferred to our case of multiple take-offs and landing tasks. Furthermore,
these studies did not consider the effect of pilot expertise on their fatigue level.

2.2. Eye Movement Measures and Fatigue Evaluation

Eye tracking is nonintrusive and can provide measures such as eye fixation posi-
tion (or location), duration, pupil dilation, visual scanpath (i.e., the time-order of the eye
fixations that occurred on display), saccade, blink, and eyelid closure [19,20,32,37–39],
in which eyelid closure slowed as fatigue increased [37,38] and saccadic velocity decreased
as fatigue increased after long simulated flights [19,20,32,37–39].

In more detail, previous studies utilizing only the eye tracking method for pilot fatigue
evaluation suggested that expert pilots’ saccadic movements decreased with an increase
in time-induced fatigue for a single take-off and landing operation [19,20]. Moreover,
prior studies that implemented a composite objective approach to fatigue evaluation
(i.e., combining both eye tracking and the PVT method) noted that a pilot’s pupil diameter
increased with a rise in their fatigue level [21]; expert pilots showed faster reaction times
and fewer lapses and false starts than novice pilots at higher fatigue levels [22]; expert pilots
displayed more frequent eye fixations with a shorter duration than novice pilots as their
fatigue level increased [23].

We currently do not know whether similar results can be obtained for a long-duration
aircraft piloting task with multiple take-offs and landing operations and whether a fatigue
predictive model (i.e., regression model) can be developed for the same. In addition to the
traditional measures, eye movement data, especially the saccadic eye movements, can be
further processed to evaluate the pilots’ overall eye movement transition behavior using
visual entropy [23,33]. Visual entropy is a measure that quantifies the randomness of
the eye movement transition behavior, where a large visual entropy value suggests more
random eye movement transition behavior over the display and vice-versa. The concept of
visual entropy has been adapted from information entropy [40]. Previous studies have used
two types of visual entropy measures—transition and stationery—to analyze the impact
of fatigue and task complexity on eye movement transition behavior. For example, for a
helicopter maneuvering task, expert pilots’ transition entropy was found to decrease with
an increase in task complexity levels [33]; in the case of a simulated driving study, increase
in fatigue levels led to an increase in both the visual entropy measures [41]; in a robotic
surgery training task, transition entropy was noted to increase with a rise in perceived
workload [42]. Nonetheless, these studies focused on other aspects and did not consider
the impact of fatigue.

Before calculating two visual entropy measures, we first needed to evaluate the
eye fixation transition probability matrix, also called area of interest (AOI) transition
probability using the design principles [40]. In other words, within a display or a field
of view, we can define certain important areas as AOIs, then analyze the eye movement
characters only using those AOIs. The AOI transition probability matrix was defined as
P =

[
pij

]
, where pij is interpreted as the probability of eye fixation transition from ith AOI

towards the jth AOI. In other words, the transitions among the AOIs can be investigated
using the transition probability matrix. An example of how the AOIs were defined for our
research is provided in Section 4.

Visual entropy can be divided into transition entropy and stationary entropy [43].
Transition entropy is calculated using only the data collected during the experiment and is
also known as the entropy rate [44], whereas stationary entropy shows to which value it is
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expected to converge over a very long period. The following Equations (1) and (2) are the
most important, which we summarized from [43].

Transition entropy:

Ht = −∑i ∈ A πi ∑i ∈ A pij log
(

pij
)

, i 6= j (1)

Stationary entropy:
Hs = −∑i ∈ A πi log(πi) (2)

where, Pij =
nij

∑j∈A(nij)
, π = πP, i, j ∈ A, and π is the steady stationary distribution

(i.e., steady-state vector) associated with AOI transition probability matrix, i and j are AOI
indexes, and A is the set of the AOIs. An interesting relationship between Ht and Hs is
Ht ≤ Hs [45], implying that stationary entropy (Hs) can result in a shorter range compared
to the range of the transition entropy (Hs).

Table 2 shows two extreme numerical examples of eye fixation transition probabilities
and the resulting stationery and transition entropy values. Table 2a shows an extreme
example of randomness, whereas Table 2b shows an extreme example of concentration
(i.e., many eye fixations) on certain transitions from one AOI to another AOI. If we consider
eye movement transition matrices in between two extreme examples, the range of the
transition entropy can be approximately [0.1, 1.6], whereas the range of the stationary
entropy can be approximately [1.6, 2.0] having a shorter range. Since either calculation
approach (i.e., (1) or (2)) is viable and the entropy values show relative differences, we chose
to investigate both approaches to identify which one might better predict fatigue given
that any correlations might exist.

Table 2. Example of two different eye fixation transition probability matrices.

(a)

Ht = 1.6; Hs = 2.0

TO

From A B C D

A 0 0.33 0.33 0.34
B 0.33 0 0.33 0.34
C 0.33 0.34 0 0.33
D 0.33 0.33 0.34 0

(b)

Ht = 0.1; Hs = 1.6

TO

From A B C D

A 0 0.99 0.01 0
B 0 0 0.99 0.01
C 0.99 0 0 0.01
D 0 0.99 0.01 0

In Table 2, matrix (a) is an extreme example of the eye fixation probabilities based
on uniform distribution. The diagonal values were set to zero since we did not consider
consecutive eye fixations that occur on the same AOI when calculating the visual entropy.
Matrix (b) was an extreme example based on non-uniform eye fixation transition probabilities.

Note that having more eye fixations (leading to more eye movement transitions)
does not mean that the entropy is higher. The entropy was calculated based on transition
probabilities; therefore, we can have a higher entropy value with a fewer number of
eye fixations.
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3. Methods

Our proposed method consisted of two steps. In the first step, we evaluated pilot
fatigue using PVT measures and investigated the correlation between the PVT measures
and various eye movement measures. This correlation study helped us to evaluate the
eye movement measures’ validity in assessing pilot fatigue for the given flight scenario.
The second step involved developing a fatigue prediction model using a stepwise regres-
sion model where only the normalized eye movement measures were treated as predictor
variables. Note that fatigue was assessed by normalizing and aggregating three PVT mea-
sures into a single fatigue measure. In other words, we assumed that PVT measures were
very accurate in providing fatigue levels based on previous research [21–23], and we were
investigating which eye movement measures could be used as effective predictor variables
when considering expertise.

Figure 1 represents the two different types of measures including the PVT measures
and eye movement (EM) measures. The widely used PVT measures were used as a basis to
assess accurate fatigue levels. The EM measures were then investigated to discover which
EM measures might be highly correlated with the PVT measures.
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Figure 1. Measures used to investigate fatigue for a multiphase flight task: FN is eye fixation numbers,
FD is eye fixation durations, PS is pupil size, Ht is transition visual entropy, Hs is stationary visual
entropy, RT is reaction times, FS is number of false starts, and L is number of lapses.

The detailed analysis steps are as follows:

Step 1: Assess fatigue level through PVT after each task. Measures are (a) reaction times
(RT), (b) number of false starts (FS), and (c) number of lapses (L).

Step 2: Collect eye tracking data, analyzing the data using the context-specific areas of
interest (AOIs). Measures are:

(a) Mean eye fixation number on AOIs;
(b) Mean eye fixation duration on AOIs;
(c) Mean pupil size on AOIs;
(d) Visual entropy (calculation process explained below).

The visual entropy evaluates the amount of randomness associated with the visual
scanning strategy of the pilots. Higher visual entropy value means that relatively
more randomness (in eye movements) exists. We hypothesized that experts’ visual
entropy would be lower than that of the novices, meaning that the novices’ eye
movements might show more randomness, especially when fatigued. Although
we followed the procedures provided in [43] to calculate visual entropy, one major
difference was that in [43], they used context independent AOIs by dividing
an image into equally sized grids, whereas we used context-specific (or context-
dependent) AOIs. An example of how we defined the context specific AOIs is
provided in the Section 4.

Step 3: Plot the relationships of the variables and investigate the correlations between
the PVT measures and the eye tracking measures. The measures were all those
provided in Steps 1 and 2. Step 3 was needed to first see whether linear correla-
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tions could be observed prior to applying multiple regression. In other words,
different regression models should be applied based on the relationships. For ex-
ample, if the relationship among the variables were quadratic, then a quadratic
regression should be applied.

Step 4: Create a “unified” PVT measure by combining the PVT measures of RT, FA, and L.
The unified measure (S) is expressed as follows:

S = W1 × RT + W2 × FA + W3 × L (3)

where W1 + W2 + W3 = 1. The weight values can be set to be either the same
or different based on the analyst’s needs. For example, if a task requires false
alarms to be most important factor to consider, then its weight can be increased.
In this paper, we assigned the same weight to each factor. Note that we created
the “unified” PVT measure to better investigate the relationships between the PVT
measures and the eye tracking measures. Note that normalized RT, FA, and L
values were used, meaning that the minimum and maximum values obtained
from all the experiment participants were mapped to 0 and 1.

Step 5: Discover an optimal regression model that can predict fatigue using one or more
eye-tracking measures. Stepwise regression approach was applied (both forward
and backward) to discover the optimal regression model. We assumed that the
unified PVT measure accurately represented one’s fatigue level, and we found
eye tracking measures that could predict fatigue level. All eye tracking measures
were normalized, meaning that the minimum and maximum values obtained
from all the experiment participants were mapped to 0 and 1. The full model and
associated variable for the backward regression is:

S = β0 + β1 × FN + β2 × FD + β3 × PS + β4 × TE + β5 × SE (4)

where S is the unified PVT measure, FN is number of eye fixations, FD is eye
fixation duration, PD is pupil dilation, TE is transition entropy, SE is steady state
entropy, β0 is the model intercept, and βi (where i = 1, . . . , 5) represents the
coefficients for eye movement measures. Note that the forward regression model
starts with finding a best predictor variable, then adds more and more variables.
Both methods, in general, should produce the same outcome.

4. Experiment

A moderate fidelity flight simulation environment was created that involved the
short-haul multiphase flight. Details are as follows.

4.1. Participants

A total of twenty pilots participated in the experiment. Ten participants were defined
as “novices” who had moderate expertise (pilot experience: mean of 18 months and SD of
2.4), less than 36 months of experience, and at least met the minimum requirements of 40 h
of actual or simulated IFR flights. The other ten participants were defined as “experts” who
had more expertise (pilot experience: mean of 42 months SD of 4.5), more than 36 months
of experience, and expressed they completed substantially more IFR flight hours (at least
more than twice) than the minimum requirement of 40 h. Unfortunately, all pilots were not
able to exactly recall their IFR flight hours; therefore, the statistics are not provided.

The power analysis indicated that the sample sizes provided reasonable power of 0.91
for the mixed design of within-subjects design related to the tasks and between-subjects
design related to the expertise. In addition, other research papers related to evaluating
pilots’ performance had a mean sample of ten pilots [5,19,34,46,47].
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4.2. Apparatus

Microsoft flight simulator software (i.e., FSX) was used for generating the Boeing B-52
aircraft and the flight scenarios. B-52 aircraft was selected to possibly induce more visual
attention from the pilots. However, since a moderate fidelity flight simulator was used,
piloting a simulated B-52 should be not as difficult as piloting the actual B-52.

The PVT measures were assessed using the Psychology Experiment Building Lan-
guage (PEBL) software version 0.13 [48]. Tobi TX 300 eye tracker (having 300 hz data
collection rate having 0.5 degrees of visual angle accuracy) and Tobii Studio software was
used to collect and process the raw eye tracking data. The I-VT algorithm provided by
the Tobii Studio software was applied to calculate the eye fixations. The eye tracking data
exported from the software were analyzed using MATLAB and R software. A 21-inch
monitor was used for displaying the simulated flight scenarios. A Logitech Extreme 3D Pro
Joystick was applied to control the aircraft. A keyboard was used to collect the PVT-related
task responses.

4.3. Tasks and Procedures

The four consecutive tasks (tasks 1–4, which were equivalent to each leg) are provided
in Figure 2. All the participants were instructed to maintain a regular sleep schedule
and sleep at 9 p.m. on the day before the experiment day in order to prevent the possible
confounding effect of sleep. The experiment started at 8:30 a.m. and ended around 1:00 p.m.
At the beginning of the experiment, calibrations were performed to start collecting accurate
eye tracking data. Each task lasted for 60 min and involved takeoff, climb, cruise, descent,
and landing following the FAA’s IFR.

IFR flights mean that the pilot does not have visibility out the window and has to rely
on the information obtained from the flight instruments. After completing each flight task,
pilots underwent the PVT, which lasted for approximately 5 min (providing 30 stimuli
during the 5 min), following the guidelines offered [49]. Therefore, a total of four PVTs were
administered for each pilot. Since we used simulator software, the runway configuration
was similar among all airports, and no other aircraft were placed on the runway.
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Figure 2. Four consecutive tasks (without any rest) labeled as tasks 1 through 4. Each task lasted
approximately 1 h. The total duration was approximately 4 h.

4.4. Measures

The response variables extracted from the PVT task were mean reaction times,
mean number of lapses (i.e., number of reaction times greater than 500 milliseconds),
and mean number of PVT false starts (i.e., defined as the number of reaction times less than
150 milliseconds). In addition, the unified PVT measure (see Step 4 within the proposed
analysis approach above) was calculated using the three PVT measures by assigning equal
weights. Context-dependent important AOIs for an IRF flight were identified as shown
in Figure 3. The context dependent AOIs were identified based on experts’ inputs as well
as the collected eye fixation data overlaid on to the visual field of view (see Figure 3) and
analyzed using the eye fixations that occurred on those AOIs instead of dividing the whole
field of view into AOIs. For example, the front and side windows were not defined as AOIs,
since pilots only observed the instruments during the IRF flight. In addition, we verified
that the pilots hardly looked through the front and side windows when we analyzed the
recorded eye tracking data.
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Figure 3. Context-specific AOIs that were defined based on the instrument fight rules (IFRs). The AOI
names were as follows: engine oil pressure: EOP; engine indicators: EIs; enhanced visual screen:
EVS; attitude indicator: ATT; horizontal situation indicator: HS; flight command indicator: FC;
altimeter: ALT; airspeed indicator: AS; true airspeed indicator: TS; heading indicator: HI; vertical
velocity indicator: VV; radar altimeter: RA; Mach indicator: MI; standby horizon indicator: SHS.
Most of the eye fixations occurred on these AOIs during an IFR flight when we observed the
recorded data after the experiments. The response variables related to the eye movements were
eye fixation number on the AOIs, eye fixation duration on the AOIs, pupil size, and visual entropy
(both transition and stationary entropy).

4.5. Data analysis

Two-way mixed model analysis with repeated measures were applied to consider
tasks (i.e., tasks 1–4) and the expertise (i.e., novices vs. experts). After, the relationships
among the variables were plotted followed by correlation analysis. After identifying the
linear relationships, stepwise regressions were conducted using Equation (4).

5. Results
5.1. PVT Measures

Descriptive statistics (i.e., means and standard errors) are plotted in Figure 4. In de-
tail, experts showed faster mean reaction time, lower mean number of lapses, and lower
mean number of false starts compared to the novices. In detail, mean reaction time of
the experts (M = 321.6 ms (or milliseconds), SE = 8.3 ms) were lower than that of the
novices (M = 390.3 ms, SE = 8.2 ms) considering all tasks together. Similarly, expert pi-
lots (M = 2.4, SE = 0.3) had a lower mean number of lapses than that of the novice pilots
(M = 5.6, SE = 0.4), and experts (M = 1.05, SE = 0.2) had a lower mean number of false
starts compared to novices (M = 3.15, SE = 0.3). Furthermore, Figure 4 shows that all three
PVT measures showed increasing trends from Task 1 up to Task 4 for both the expert and
novice pilots.

The mixed-model (i.e., mix of between-subjects design of expertise and within-subjects
design of task) analysis results are provided in Table 3. In short, significant differences
existed between the experts and novices for all three PVT measures (p < 0.001), and signifi-
cant differences existed among the four tasks for all PVT measures (p < 0.001). No outliers
were found in the data. Statistical assumptions (i.e., normality and equal variance) were
not violated when analyzing the data.

5.2. Eye Movement Measures

Figure 5 shows examples of the visual scanpaths for an expert pilot and a novice pilot
for the duration of 40 s during Task 1 (first leg) and Task 4 (last leg). The 40 s duration was
selected to show enough eye movements in the figure but also to avoid clutter by showing
too many eye movements.

In Figure 5, the expert pilot has more eye fixation numbers as compared to the
novice for both the tasks. But the expert had lower mean eye fixation duration than
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the novice. More importantly, the expert showed lower eye fixation numbers in Task 4
than Task 1; however, the mean eye fixations duration higher more in Task 4 than Task 1
(see Figure 5a,b). A similar result was observed for the novice pilot also (see Figure 5c,d).

Descriptive statistics for the overall tasks are plotted in Figure 6. Figure 6a shows that
the mean eye fixation number decreased over the course of the flight (i.e., Task 1~Task 4)
for both expert and novice pilots.
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Table 3. Results of the mixed model analysis of variance on PVT measures: Exp is expertise factor
(experts vs. novices) related to the between-subjects design, and task is the task factor (tasks 1, 2, 3,
and 4) related to the within-subjects design.

Between-Subjects Within-Subjects

F (1,18) p η2
p F (3,54) p η2

p

Reaction time (RT)

Exp 82.45 <0.001 0.8
Task 177 <0.001 0.91
Exp × Task 5.26 <0.003 0.23

Lapse (L)

Exp 104.7 <0.001 5.26
Task 35.11 <0.001 0.66
Exp × Task 4.67 <0.001 0.21

False start (FS)

Exp 90.72 <0.001 0.83
Task 39.87 <0.001 0.69
Exp × Task 6.99 <0.001 0.28

Overall, the mean eye fixation number trended downwards as the task number
increased. Moreover, expert pilots showed higher mean number of eye fixations than those
of the novice pilots for all tasks. On the other hand, mean eye fixation duration showed an
increasing trend over the course of the flight for both experts and novices (see Figure 6b).
Moreover, novice pilots had higher mean eye fixation duration than experts across all tasks.
The pupil size also followed a decreasing trend over the course of the flight. Figure 6c
shows that for Tasks 1 and 2, the difference between mean pupil sizes of novice and expert
was small. However, this difference increases for Tasks 3 and 4. In addition, the rate of
decrease of pupil size was higher for novices than experts.

In addition, Figure 6d,e shows the stationary entropy (Hs) and transition entropy (Ht)
for four different tasks for both expert and novice pilots. Both stationary entropy and
transition entropy showed an increasing trend for both novice and expert pilots as the
task index increased (i.e., from Task 1 to Task 4); however, the rate of increase of transition
entropy was more prominent for both groups compared to stationary entropy. For both
transition and stationary entropies, the novice pilots showed higher values than those of
the expert pilots.



Aerospace 2021, 8, 283 12 of 19

Aerospace 2021, 8, x FOR PEER REVIEW 11 of 19 
 

 

Lapse (L) 

Exp 104.7 <0.001 5.26    

Task    35.11 <0.001 0.66 

Exp × Task    4.67 <0.001 0.21 

False start (FS) 

Exp 90.72 <0.001 0.83    

Task    39.87 <0.001 0.69 

Exp × Task    6.99 <0.001 0.28 

5.2. Eye Movement Measures 

Figure 5 shows examples of the visual scanpaths for an expert pilot and a novice pilot 

for the duration of 40 s during Task 1 (first leg) and Task 4 (last leg). The 40 s duration 

was selected to show enough eye movements in the figure but also to avoid clutter by 

showing too many eye movements. 

  
(a) Task 1 (Expert pilot): FN 80 and mean FD 500 ms (b) Task 4 (Expert pilot): FN 61 and mean FD 660 ms 

  
(c) Task 1 (Novice pilot): FN 65 and mean FD 600 ms (d) Task 4 (Novice pilot): FN 35 and mean FD 1150 ms 

Figure 5. Examples of visual scanpaths of an expert and a novice pilot: The yellow circles represent the eye fixations where 

the numbers represent its index. The yellow lines represent the saccades. The size of the eye fixation circles have been kept 

at a fixed size for visual clarity. In addition, only 40 s of data are provided for each sample. FN is the eye fixation number, 

and FD is the eye fixation duration. 

In Figure 5, the expert pilot has more eye fixation numbers as compared to the novice 

for both the tasks. But the expert had lower mean eye fixation duration than the novice. 

More importantly, the expert showed lower eye fixation numbers in Task 4 than Task 1; 

however, the mean eye fixations duration higher more in Task 4 than Task 1 (see Figure 

5a,b). A similar result was observed for the novice pilot also (see Figure 5c,d). 

Descriptive statistics for the overall tasks are plotted in Figure 6. Figure 6a shows that 

the mean eye fixation number decreased over the course of the flight (i.e., Task 1~Task 4) 

for both expert and novice pilots. 

Figure 5. Examples of visual scanpaths of an expert and a novice pilot: The yellow circles represent the eye fixations where
the numbers represent its index. The yellow lines represent the saccades. The size of the eye fixation circles have been kept
at a fixed size for visual clarity. In addition, only 40 s of data are provided for each sample. FN is the eye fixation number,
and FD is the eye fixation duration.

Aerospace 2021, 8, x FOR PEER REVIEW 12 of 19 
 

 

Overall, the mean eye fixation number trended downwards as the task number in-

creased. Moreover, expert pilots showed higher mean number of eye fixations than those 

of the novice pilots for all tasks. On the other hand, mean eye fixation duration showed 

an increasing trend over the course of the flight for both experts and novices (see Figure 

6b). Moreover, novice pilots had higher mean eye fixation duration than experts across all 

tasks. The pupil size also followed a decreasing trend over the course of the flight. Figure 

6c shows that for Tasks 1 and 2, the difference between mean pupil sizes of novice and 

expert was small. However, this difference increases for Tasks 3 and 4. In addition, the 

rate of decrease of pupil size was higher for novices than experts. 

   
(a) Eye fixation number (ms) (b) Eye fixation duration (ms) (c) Pupil size (ms) 

  

 

(d) Stationary entropy (bits) (e) Transition entropy (bits)  

Figure 6. Means and standard errors of the eye movement measures. 

In addition, Figure 6d,e shows the stationary entropy (𝐻𝑠) and transition entropy (𝐻𝑡) 

for four different tasks for both expert and novice pilots. Both stationary entropy and tran-

sition entropy showed an increasing trend for both novice and expert pilots as the task 

index increased (i.e., from Task 1 to Task 4); however, the rate of increase of transition 

entropy was more prominent for both groups compared to stationary entropy. For both 

transition and stationary entropies, the novice pilots showed higher values than those of 

the expert pilots. 

The results from the mixed-model analysis show significant effects of both pilot ex-

perience and task number, and their interactions on all eye movement measures (see Table 

4). The results from the one-way repeated measures analysis of variance show that task 

number significant affect the eye movement measures (see Table 5). 

Table 4. Mixed-model analysis on eye movement measures. 

 
Between-Subjects Within-Subjects 

F (1,18) p 𝜼𝒑
𝟐 F (3,54) p 𝜼𝒑

𝟐 

Eye fixation number (FN) 

Exp 72.41 <0.001 0.80    

Task #    157.12 <0.001 0.89 

Exp × Task #  5.25 <0.003 0.22 

Eye fixation duration (FD) 

Exp 459.9 <0.001 6..0    

Task #    168.75 <0.001 0.90 

Exp × Task #    7.51 <0.001 0.29 

Figure 6. Means and standard errors of the eye movement measures.

The results from the mixed-model analysis show significant effects of both pilot expe-
rience and task number, and their interactions on all eye movement measures (see Table 4).
The results from the one-way repeated measures analysis of variance show that task number
significant affect the eye movement measures (see Table 5).
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Table 4. Mixed-model analysis on eye movement measures.

Between-Subjects Within-Subjects
F (1,18) p η2

p F (3,54) p η2
p

Eye fixation number (FN)

Exp 72.41 <0.001 0.80
Task # 157.12 <0.001 0.89
Exp × Task # 5.25 <0.003 0.22

Eye fixation duration (FD)

Exp 459.9 <0.001 0.96
Task # 168.75 <0.001 0.90
Exp × Task # 7.51 <0.001 0.29

Pupil size (PS)

Exp 101.89 <0.001 0.85
Task # 408.79 <0.001 0.96
Exp × Task # 21.24 <0.001 0.54

Transition entropy (Ht)

Exp 210.88 <0.001 0.92
Task # 200.75 <0.001 0.92
Exp × Task # 9.15 <0.001 0.34

Stationary entropy (Hs)

Exp 119.11 <0.001 0.87
Task # 75.99 <0.001 0.81
Exp × Task # 3.85 <0.014 0.18

Table 5. Results of the one-way repeated measures analysis of variance on eye movements measures
in which the task number (tasks 1, 2, 3, and 4) is the factor.

DV
Experts Novices

F (3,27) p F (3,27) p

Eye fixation number (FN) 64.66 <0.001 107.72 <0.001
Eye fixation duration (FD) 151.37 <0.001 71.98 <0.001

Pupil size (PS) 160.11 <0.001 264.57 <0.001
Transition entropy (Ht) 125.02 <0.001 98.08 <0.001
Stationary entropy (Hs) 42.39 <0.001 38.59 <0.001

5.3. Correlation Results

The increasing and decreasing trends were quantified through the correlation analysis
shown in Table 6. In general, the correlation values were high. In addition, the correlation
values were higher for novices than experts. In detail, all three PVT measures (i.e., reaction
times, number of lapses, and number of false starts) showed positive correlation with eye
fixation duration and both the entropy measures, whereas they were negatively associated
with eye fixation number and pupil size. Thus, the association between the PVT measures
and eye movement measures suggested that the latter might be alternatively used to replace
PVT variables in predicting fatigue levels.
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Table 6. Correlations among PVT measures and eye movement measures.

Expert Novice

RT L FS RT L FS

FN −0.69 −0.61 −0.49 −0.84 −0.73 −0.76
FD 0.76 0.68 0.61 0.88 0.78 0.74
PS −0.81 −0.56 −0.53 −0.86 −0.78 −0.70
Ht 0.75 0.63 0.63 0.79 0.68 0.70
Hs 0.65 0.56 0.59 0.73 0.64 0.62

5.4. Regression Models

After identifying that high correlation exist among the variables, two types of regres-
sion models (i.e., full models and optimized models) were investigated as provided below.
Note that we chose to conduct the regression analysis using the unified PVT measure
instead of using each measure separately. Details of the reason are provided in Section 2.1
and the procedure is provided in Section 3 (Step 4).

(1) Multiple linear regression results: The multiple linear regression analysis using the
unified PVT measure (S) and all eye movement measures resulted in regression
models provided in Equations (5) and (6). The full model of the novice pilots re-
sulted in the overall model fit of adjusted R2 = 0.85 and AIC = −177.04. Whereas,
the full model of the expert pilots’ group, resulted in the overall model fit of adjusted
R2 = 0.66 and AIC = −145.12.

Novice pilots (full model):

S = 0.46 + (0.42× FD)− (0.27× FN)− (0.08× PS) + (0.42× Ht) –(0.40× Hs) (5)

Expert pilots (full model):

S = 0.31 + (0.33× FD)− (0.046× FN)− (0.07× PS) + (0.25× Ht)− (0.007× Hs) (6)

(2) Stepwise regression results: The results of the stepwise regressions are provided
in Equations (7) and (8). For the novice pilots, to predict S, eye fixation duration
(β = 0.45, p < 0.05), eye fixation number (β = −0.31, p < 0.05), transition entropy
(β = 0.42, p < 0.05), and stationary entropy (β = 0.38, p < 0.05) were found to be
significant with an overall model fit of R2 = 0.84 and AIC= −178.76. For expert pilots,
only eye fixation duration (β = 0.65, p < 0.05) was found significant with a lower
model fit R2 = 0.64 and AIC= −151.15.

Novice pilots (optimized model):

S = 0.43 + (0.45× FD)−(0.31× FN)+(0.42× Ht) –(0.38× Hs) (7)

Expert pilots (optimized model):

S = −0.23 + (0.65× FD) (8)

Steps of the stepwise regression analysis are provided in Table 7. We conducted both
backward and forward methods which resulted in obtaining the same model. Therefore,
we only provided the backward steps in Table 7.

Note that it is possible to have positive correlation but obtain a negative regression
coefficient in a multiple regression model due to the effect of other variables [50].
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Table 7. Stepwise regression (backward) results with unified PVT measure as response and eye
movement measures as predictors for both expert and novice pilots.

Variables
Expert Novice

Step I Step II Step III Step IV Step V Step I Step II

(Constant) 0.31 0.31 0.29 0.20 0.23 0.46 0.43
FD 0.33 0.33 0.35 0.40 0.65 0.42 0.45
FN −0.05 −0.05 −0.27 −0.31
PS −0.07 −0.09 −0.08 0.42
HT 0.25 −0.07 0.25 0.29 0.42 −0.38
HS −0.007 0.25 −0.40

Adjusted
R 0.61 0.62 0.63 0.64 0.64 0.83 0.84

F 13.26 * 17.06 * 23.32 * 35.61 * 68.72 * 39.17 * 50.0 *
AIC −145.12 −147.1 −149.02 −150.78 −151.15 −177.03 −178.76

* p < 0.001.

6. Discussion

In summary, the increase in fatigue was verified through the PVT measures of reaction
time, number of lapses, and number of false starts, and the results accord with many
previous research efforts in aviation [11,15,21–26]. The results allowed us to devise a
unified PVT measure of combining the three measures to quantify a fatigued state as a single
point. In addition, as fatigue increased, eye fixation duration increased, visual entropies
(i.e., transition and stationary) increased, eye fixation number decreased, and pupil size
decreased. The results enabled us to discover viable fatigue prediction models in a multi-leg
flight based on expertise and using eye movement measures.

We learned that, unlike novices, the expert pilots had a greater number of eye fixations
and shorter eye fixation duration on the context dependent AOIs throughout the flight
mission. The results accord with a previous research [34], in which expert pilots fixated
upon more instruments and spent less time viewing each individual instrument compared
to the novice pilots. We believe that, limited to the piloting task, more eye fixations might
indicate more active information processing, whereas longer eye fixation might indicate
the pilot needing more time to focus and process the information of interest.

Furthermore, in the case of the pupil size, it became progressively smaller (for both
expert and novices) as fatigue increased over the course of the flight mission. The results
are similar to existing research [39], which also reported significantly smaller pupil size
with increased pilot fatigue. What we have additionally discovered is that the experts’
pupil size remained relatively larger compared to the novice pilots as the task number
increased (see Figure 6c in the Results section). The size of the pupil varies with a person’s
state of arousal, with an increase in arousal level resulting in dilation [51]. Therefore,
it seems that the novices were affected more by fatigue, meaning that the experts were
able to keep the arousal state better than the novices.

Regarding the visual entropy outputs, both the stationary entropy and the transi-
tion entropy increased with higher fatigue levels. One possible reason might be that,
with higher fatigue levels, pilots’ visual search strategy became more random in na-
ture resulting in higher entropy values. Expert pilots showed significantly lower visual
entropies (both stationary entropy and transition entropy) compared to novice pilots
(see Figure 6d,e in the Results section), indicating that the experts might have applied
more overall organized (less random) visual search strategies that can reduce fatigue.
Note that we have introduced the concept of entropy to better develop the fatigue pre-
diction model and have not considered characterizing and classifying the visual search
strategies. The analysis of the visual search strategies is out of the scope of this paper and
requires an in-depth follow-up research.

The regression results show that, depending on the level of expertise of the pilot
(experts vs. novices), a different set of eye tracking measures can be used for predicting
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fatigue. Furthermore, limited to our experiment conditions in a multiphase consecutive
flight mission, the optimized models show that some eye movement measures can be more
effective at predicting fatigue than others. Specifically, when observing the optimized
models (Equations (7) and (8)), eye fixation duration was a significant predictor variable
for both pilot groups, whereas the eye fixation number and the visual entropies can be
additionally useful when assessing the fatigue of the novice pilots.

In addition, note that only eye fixation duration (FD) was sufficient in the optimized
model for the expert pilots even though the eye fixation numbers (FN) seemed to be
equally highly correlated. The reason is that FN was highly correlated with reaction
times (RT) and number of lapses (L), but not highly correlated with false starts (FS).
Since we used the unified PVT measure that considers all three measures of RT, L, and
FS, the stepwise regression analysis resulted in not including FN as a predictor and only
using FD was sufficient, in which the results are limited to our experiment conditions.
We do not recommend the stakeholders to simply use the computed coefficients and the
predictors in their unique environment. We do believe that the stakeholders could benefit
by applying our developed research methods. We would be very interested in any insight
other researchers could provide if they obtained similar or different regression models.

In detail, the results make us question whether we should only use the optimized
models to predict fatigue. The important contribution of this research is that we were able
to discover that all eye movement measures introduced in this paper are somewhat strongly
correlated with fatigue, and some eye movement measures might better predict fatigue
over other measures. The optimized models can vary based on individual differences,
experiment settings, and/or the flight task types. Therefore, we recommend that the
proposed research approach should be used as a foundation that can be further customized
based individual needs and flight environment.

Furthermore, it will be possible to use each eye movement measure separately or in
different combinations to provide multiple evidence (or accumulated evidence) to better
detect and verify fatigue levels. To the best of our knowledge, the general guidelines are
recommending a break after piloting an aircraft for a certain number of hours or legs.
The multimodal analysis approach provided in this paper can be utilized to develop near
real-time fatigue detection models that can be used as a tool to manage fatigue-related risk
by proactively detecting fatigue of pilots.

7. Limitations and Future Research

One of the limitations of this research is that we collected and analyzed the data based
on each flight phase (or leg) rather than across a continuous flow of time. The reason that
we chose the above option was to compare the eye movement measures against the discrete
PVT measures. Therefore, future research involves devising methods to evaluate fatigue
continuously using only eye movement measures. The continuous evaluation can be done
based on time (i.e., seconds, minutes, hours) or based on detailed events during take-off,
cruising, and landing.

Another limitation in on defining an expert and a novice. How to define an expert
and a novice has always been an issue raised by the research communities in all applica-
tions. Although we have used the thresholds based on the inputs of the flight instructors,
opinions can differ, and unfortunately, the participants were not able to precisely recall
their IFR flight hours. However, we believe that out classification of the participants
into two groups were somewhat successful, as we did obtain distinctive differences be-
tween the two groups. We are planning to apply a set of carefully constructed criteria for
follow-up research.

In addition, this research is concentrated on providing aggregated outputs. It is possi-
ble that individual differences can exist. Therefore, future research involves investigating
whether individual eye movement characteristics, especially the individual’s visual scan-
ning patterns, differ as fatigue levels increase. The analysis of the visual scanning patterns
involves developing algorithms to effectively characterize and compare those differences.



Aerospace 2021, 8, 283 17 of 19

In terms of the methodology, we have proposed the concept of the unified PVT
measure, but more in-depth analysis is required on how to assign an optimal weight to
each PVT measure. In this research, we assumed equal weights, but our assumption might
be incorrect. Discovering an optimal weight value for each PVT measure is a challenging
task which can be investigated through various algorithms and associated sensitivity
analyses. We are currently working on how improve the regression models by developing
appropriate algorithms that can find optimal weight values.

In addition, we had assumed that the initial fatigue levels of all the participants should
be somewhat similar since the sleep and experiment time were controlled to the best of
our abilities. In our future research, baseline measurements of initial fatigue should be
obtained before the experiment is conducted.

The reason for the significant differences in term of the PVT measures seems that
the experts might have developed more effective visual scanning strategies to reduce
fatigue, and more in-depth analysis on the visual scanning strategies will be needed as
future research. In more detail, the visual scanpaths were analyzed using the concept of
visual entropy in this research; however, the visual scanpaths can be also characterized and
classified based on the concept of visual groupings [52] or graph theory [53], among many
others that we have published. We are currently investing viable options, including
machine learning [54], to better characterize and classify the visual scanning behaviors that
can be used to predict fatigue.

Finally, this research can be used as a foundation to further develop near real-time
fatigue detection models that can be used to alert the stakeholders and provide scaffolding
options to the pilots, but we currently do not know what the threshold should be to trigger
such alerts or the scaffolding options. If we could identify the possible thresholds, then the
alerting and scaffolding options can be used in conjunction with the Boeing Alertness
model [55], currently used to develop regulations for duty time limitations. Note that
the Boeing Alertness model cannot definitively answer whether the work schedule is
acceptable and safe [56], and the fatigue prediction approaches provided in this research
might be able to provide a solution, possibly tailored to each pilot.
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