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Abstract: The recent development of a superhydrophobic surface enhances the droplet shedding
under a shear flow. The present study gives insights into the effects of shear flow on a pinned droplet
over a superhydrophobic surface. To experimentally simulate the change in the size of a sessile
droplet on an aerodynamic surface, the volume of the pinned droplet is expanded by water supplied
through a pore. Under a continuous airflow that provides a shear flow over the superhydrophobic
surface, the size of a pinned water droplet shed from the surface is experimentally characterized.
The air velocity ranges from 8 to 61 m/s, and the size of pinned droplets shed at a given air velocity
is measured using an instantaneous snapshot captured with a high-speed camera. It is found that
the size of the shedding pinned droplet decreases as air velocity increases. At higher air velocities,
shedding pinned droplets are fully immersed in the boundary layer. The present findings give a
correlation between critical air velocity and the size of pinned droplets shed from the pore over the
superhydrophobic surface.
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1. Introduction

A sessile water droplet on an aerodynamic surface can be shed by airflow. Under the flow,
the droplet experiences an aerodynamic drag. An incipient motion of the droplet shedding, which
is the beginning of the droplet movement, occurs when the external forces overcome the adhesion
between the interfaces of the droplet and surface [1–3]. In recent years, a superhydrophobic coating
has been gained attention for its anti-wetting and self-cleaning properties [4–9]. A sessile droplet on
such a coating can be easily shed by a lower aerodynamic drag [2]. There is a critical velocity at which
a sessile droplet starts running downstream on a superhydrophobic coating. In terms of aerodynamics,
while the impingement and coalescence of incoming water droplets can increase a resting sessile
droplet’s size, the velocity will be related to the droplet size as the critical droplet size for a given
coating [2]. The shedding of a sessile droplet by airflow has become important for the anti-icing of
aircraft wings or the blades of wind turbines [10–12], clear visibility through car windows [13–15],
and other aerodynamic objects that are exposed to environmental flows for engineering purposes.
A superhydrophobic surface under airflow is a passive method that provides benefits to applications
where a surface needs to be kept clean without additional energy expenditure [4,16].

The shedding of a sessile droplet is dependent on the surface property of the aerodynamic
object and the airflow. If we choose a superhydrophobic coating as the former factor, it promotes the
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mobility of a sessile droplet due to its anti-wettability, low adhesion, water repellency, and self-cleaning
abilities [17–21]. For the latter factor, the airflow creates aerodynamic drag. The shedding of a sessile
droplet can be influenced by the magnitude of air velocity and the cross-sectional area of the droplet
exposed to the airflow. When we consider a droplet on a surface under airflow, we need to take into
account a velocity profile in a boundary layer. Based on the air velocity, the boundary layer will be
thicker than the cross-sectional area of the droplet, or the droplet will be larger than the boundary
layer thickness. Inside the boundary layer, the droplet can experience a velocity gradient that may
influence the incipient motion and critical droplet size.

There are studies on the behavior of the shedding of a sessile droplet. In terms of aerodynamics,
Olsen and Walker [1] studied the surface water flow and shedding near a stagnation region on a
scaled airfoil model. They reported the effect of airspeed on the droplet size. For the prediction of
droplet shedding, White and Schmucker [3] investigated the runback threshold of water droplets
under an accelerated boundary layer. Their studies discuss the aerodynamic effects on the incipient
motion of a droplet. However, their work was limited to a hydrophilic surface, and the effect on
a hydrophobic surface was not discussed. In the view of interface science, there are some studies
on the incipient motion of a droplet related to the surface property. There are also evaluations on
different coatings, including a superhydrophobic one. However, their experimental method is to use
gravitational force as an external driven force. Milne and Amirfazli [2] investigated the incipient
motion by shear flow with various coating surfaces. Moghtadernejad et al. [22] investigated the droplet
shedding under the impact of shear flow on hydrophilic and superhydrophobic surfaces. Even though
they covered a wide velocity range, it is still necessary to discuss the incipient motion of a droplet
under a continuous airflow instead of the impact of a shear flow to characterize the critical velocity.
This will give great insights into aerodynamics, as well as interface science, of droplet behavior on
a superhydrophobic surface under continuous shear flow. These insights can be directly related
to the engineering applications described above. It is challenging to simulate and observe such a
phenomenon experimentally. At the leading edge of an aircraft wing, for example, a droplet size
would be in the order of sub-millimeters [1]. Therefore, an indirect method is used to investigate the
phenomenon of water droplets shed by continuous airflow.

In this paper, we focus on the measurement of a pinned droplet shedding on a superhydrophobic
surface exposed to a continuous shear flow. To experimentally simulate the size increase in a droplet
under a continuous airflow, the droplet is pinned through the pore water. The droplet size is arbitrarily
changed to understand the relationship between the critical droplet size and the critical air velocity.
The relationship between the boundary layer thickness and critical droplet size is also considered.

2. Materials and Methods

Figure 1 shows a schematic of the experimental setup. An open-return wind tunnel at Kanagawa
Institute of Technology was used to conduct the experiment. The dimension of the test section is
100 mm in depth, 300 mm in height, and 1800 mm in width. A flat plate was used to produce a
wall boundary layer flow. The dimension of the flat plate was 200 mm in width, 100 mm in depth,
and 10 mm in thickness. It was installed and horizontally mounted at the test section of the wind
tunnel. The leading edge of the plate has an inclined shape of 20 degrees to start a new boundary layer
from the frontal edge of the plate.

A pore of 0.3 mm in diameter was provided on the flat plate to introduce a water droplet to be
pinned over the surface. It was located at 40 mm from the leading edge along the centerline of the
plate. At this location, the boundary layer should be laminar based on the Blasius exact solution [23].
A micro syringe was connected to a mechanical pusher that allowed us to constantly inject water at
0.3 µL/min into the pore.



Aerospace 2020, 7, 34 3 of 9

Aerospace 2019, 6, x FOR PEER REVIEW 3 of 9 

 

 
Figure 1. Schematic diagram of experimental setup. The flat plate was installed at the test section of 
the wind tunnel. Airflow can shed the pinned droplet over a superhydrophobic coating surface within 
a pore of 0.3 mm in diameter via a syringe pump. 

A superhydrophobic coating of HIREC 1450 (NTT A.T. Corp., Tokyo, Japan) was applied to the 
plate surface by spraying. The HIREC coating has demonstrated its superhydrophobic characteristic 
[24–27]. A water contact angle characterized the hydrophobicity of the surface under static conditions 
[28,29]. Figure 2 is an example of the shape of a water droplet on the coating surface. The water 
contact angle, θC, of the HIREC coating was 150 degrees. The contact angle of water repellent material 
is formulated as shown in Equations (1) and (2) [28,29]. Equation (1) describes the Wenzel model, 
which relates the contact angle, θC, to the contact angle of a smooth surface, θS. cos𝜃஼ = 𝑟cos𝜃ௌ (1)

where r is roughness factor defined in an actual wetted area, which is expressed as the ratio of rough 
surface to smooth surface. Equation (2) describes the Cassie Model. cos𝜃௖ = 𝑓ଵcos𝜃ଵ + 𝑓ଶcos𝜃ଶ (2)

where θ1 defines the contact angle between air and water, and θ2 defines the contact angle between 
the solid surface and water. f1 and f2 are the coefficients of the surface areas of the gas interaction and 
water interaction. On the other hand, a contact angle hysteresis is a common parameter used to 
characterize the hydrophobicity of the surface under dynamic conditions [28,29]. The contact angle 
hysteresis is the difference between advancing and receding angles. A lower hysteresis angle 
demonstrates a better hydrophobic surface. Based on Karmouch and Ross [25] and Salazar-Cerreño 
[26], a HIREC coating can show a smaller hysteresis angle lower than 10 degrees. In addition, the roll-
off angle is less than 20 degrees for a water droplet of 1 mm, and five degrees for 2 mm [27].  

 

Figure 2. A photograph of a water droplet on the HIREC coating. The water contact angle, θC, of the 
HIREC coating was 150 degrees. 

A high-speed camera (FASTCAM-APX RS, PHOTRON LIMITED, Tokyo, Japan) was used to 
capture the incipient motion of a shedding droplet. It was installed at the lateral side of the test section. 
The frame rate of the camera was changed from 2000 to 5000 frames per second, depending on the 

Figure 1. Schematic diagram of experimental setup. The flat plate was installed at the test section of
the wind tunnel. Airflow can shed the pinned droplet over a superhydrophobic coating surface within
a pore of 0.3 mm in diameter via a syringe pump.

A superhydrophobic coating of HIREC 1450 (NTT A.T. Corp., Tokyo, Japan) was applied to the plate
surface by spraying. The HIREC coating has demonstrated its superhydrophobic characteristic [24–27].
A water contact angle characterized the hydrophobicity of the surface under static conditions [28,29].
Figure 2 is an example of the shape of a water droplet on the coating surface. The water contact angle,
θC, of the HIREC coating was 150 degrees. The contact angle of water repellent material is formulated
as shown in Equations (1) and (2) [28,29]. Equation (1) describes the Wenzel model, which relates the
contact angle, θC, to the contact angle of a smooth surface, θS.

cosθC = r cosθS (1)

where r is roughness factor defined in an actual wetted area, which is expressed as the ratio of rough
surface to smooth surface. Equation (2) describes the Cassie Model.

cosθc = f1 cosθ1 + f2 cosθ2 (2)

where θ1 defines the contact angle between air and water, and θ2 defines the contact angle between the
solid surface and water. f 1 and f 2 are the coefficients of the surface areas of the gas interaction and water
interaction. On the other hand, a contact angle hysteresis is a common parameter used to characterize
the hydrophobicity of the surface under dynamic conditions [28,29]. The contact angle hysteresis is the
difference between advancing and receding angles. A lower hysteresis angle demonstrates a better
hydrophobic surface. Based on Karmouch and Ross [25] and Salazar-Cerreño [26], a HIREC coating
can show a smaller hysteresis angle lower than 10 degrees. In addition, the roll-off angle is less than 20
degrees for a water droplet of 1 mm, and five degrees for 2 mm [27].
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Figure 2. A photograph of a water droplet on the HIREC coating. The water contact angle, θC, of the
HIREC coating was 150 degrees.
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A high-speed camera (FASTCAM-APX RS, PHOTRON LIMITED, Tokyo, Japan) was used to
capture the incipient motion of a shedding droplet. It was installed at the lateral side of the test section.
The frame rate of the camera was changed from 2000 to 5000 frames per second, depending on the
air velocity. For each test case, the motion capturing was repeated five times to obtain the mean and
standard deviation as an error in the post-processing of the image analysis.

To measure the critical size of a pinned droplet at shedding, an instantaneous snapshot at the
incipient motion was analyzed. The procedure of the experiment was carried out as follows: (1) the
air velocity was fixed at a target velocity; (2) then, the syringe started supplying water and a pinned
droplet was formed on the pore; (3) the pinned droplet expanded its volume until the pinning was
released from the pore and the droplet started running downstream. Image inspection was performed
to determine the frame at which the incipient motion of the droplet started running downstream
from the consecutive images. The extracted frame was used to measure the size of the water droplet.
Figure 3 shows representative frames of a droplet shedding on the superhydrophobic surface. As the
size of droplet, which was pinned by the water within the pore, increased by the water injection under
a fixed air velocity, the droplet reached a critical size, which meant that the droplet finally started
running downstream due to an aerodynamic drag. Right at the incipient motion, the drag overcame
the adhesions of the droplet-coating surface and the pinning force of the water through the pore. In the
case of Figure 3, the droplet started running after 16.5 ms.
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Figure 3. Representative image sequence of the pinned droplet starting to run downstream. The air
velocity in this case was U∞ = 8 m/s. At 16.5ms, the droplet was just released from pinning through the
pore. The droplet dimensions was measured in this phase. The height of droplet, H, is defined as the
length from the coating surface to the top of the droplet image. The contact length, LC, is also defined
as the width of the contact area.

The incipient motions for various air velocities were determined from instantaneous snapshots
captured with a high-speed camera. Each image frame was converted from pixel to actual length in
millimeters. The droplet at 16.5 ms in Figure 3 also shows one of the incipient motions defining the
height, H, of the droplet. It was defined as the length from the coating surface to the top of the droplet
image compared to a numerically estimated boundary layer thickness. We also defined the contact
length, LC, which is the width of the contact area, to describe the contact area associated to the pore
diameter, LP, which can affect the droplet size, since the water droplet was pinned through the pore.

The air velocity, U∞, varied from 8 to 61 m/s. A total of eleven velocity cases were tested with
an accuracy of ±1.8 m/s. The local Reynolds number, Rex, at the maximum air velocity of 61 m/s was
1.7 × 105 based on the following equation:

Rex =
U∞x
ν

(3)

where x is a distance from the leading edge of the flat plate to the pore location and ν is the
kinematic viscosity of air. This theoretically meets the laminar flow condition. For a lower air velocity,
the boundary layer was also considered to be laminar. During the experiments, supplied water,
the plate and ambient air were maintained at the same temperature of 13 ± 1 ◦C. Within the velocity
range in the present experiment, the Reynolds number, based on the height of the droplet, was in the
order of 103, which covered the Reynolds number of the droplet at the leading edge of the aircraft [1].
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3. Results

Figures 4 and 5 show H and LC related to the freestream velocity, U∞. It can be seen from
Figures 4 and 5 that an increase in U∞ to shed the droplet required smaller H and LC. For example,
at U∞ of 25 m/s, the droplet size, H and LC, was smaller than 1 mm to allow the droplet to be shed from
the superhydrophobic surface. When U∞ increases, for example, to 40 m/s, the shed droplet size was
reduced to a size as small as 0.5 mm. For the correlation between the droplet height and the freestream
velocity, it was shown that H was inversely proportional to U∞.

H =
16.8

U∞0.97 (4)

Similar to the relationship between H and U∞, it was obtained that LC was inversely proportional
to U∞.

LC =
17.6

U∞0.96 (5)

Equations (4) and (5) merged within the error band. This can be seen by an overlay of H and LC in
relation to U∞.
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Figure 4. The critical droplet height related to the critical air velocity. This indicated that the correlation
between the critical droplet height and air velocity was almost inversely proportional, shown as a solid
fitted curve. The error bar of the height was given as the standard deviation. The dashed line is the
numerically estimated boundary layer thickness by the Blasius exact solution [23]. The droplet is fully
immersed in the boundary layer when U∞ is greater than 30 m/s.
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Figure 5. The critical contact length related to the critical air velocity. This indicated that the correlation
between the critical contact length and air velocity was almost inversely proportional, shown as a
solid fitted curve. The ratio of pore diameter and contact length were represented as the cross symbol.
The ratio became higher above the freestream velocity of 30 m/s and the droplet can be considered to be
being more pinned to the pore than the superhydrophobic surface.
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Empirical Equations (4) and (5) are analyzed in the following manner. Three forces, aerodynamic
drag force, adhesive force and pinning force, are acting on the droplet at the moment it starts running
back, as shown in Figure 6. The aerodynamic drag force is a driving force. The adhesive force is acting
on the interface between the droplet and the coating surface as a resistance force [30]. The pinning
force is also working as a resistance force, since the water droplet is pinned by water through the pore
and the droplet cannot start running until the pin is broken. If the pinning force is significantly larger
than the adhesive force due to a low adhesive force of superhydrophobic surface, the adhesive force
can be negligible and then the force balance is expressed as follows:

FP =
1
2

cdρAU2 (6)

where the right-hand side is the aerodynamic drag force of a sphere. Here, ρ, cd, A and U are the air
density, drag coefficient, cross-sectional area of a droplet and airflow speed, respectively. The left-hand
side represents the pinning force, FP, with the assumption that FP only depends on the diameter of a
pore, which gives FP as a constant.
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Let drag coefficient cd be expressed as a power function of the Reynolds number, Re, as follows:

cd = αReβ (7)

where α and β are constant parameters determined empirically. The Reynolds number, Re, is then
shown as follows:

Re =
Ud
ν

(8)

where d is a characteristic length and ν is the kinematic viscosity of air. Then the drag coefficient, cd,
can be expressed as follows:

cd = α

(
Ud
ν

)β
(9)

As shown in Figures 4 and 5, there is no significant difference of the size between the contact length, LC,
and the height, H, in relation to the air velocity. Thus, let us assume that the aerodynamic drag force of
the droplet can be regarded as the drag of a sphere. Then, by substituting Equation (9) into Equation
(6) and solving it for the sphere diameter, d, it becomes inversely proportional to the air velocity, as
follows:

d =
γ

U
(10)

where γ is

γ =

 FP
π
8 ραν

−β


1

2+β

(11)

Here, γ can be considered as a constant. If the contact length, LC, or the height, H, are regarded as
the sphere diameter and they correspond to the characteristic length, d, then we can find that the
relationship between the air velocity and the droplet size are inversely proportional, which shows the
same trend as shown in Equations (4) and (5).
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If the adhesive force is dominant and the pinning force is negligible, the correlation between
the size of the droplet and the critical air velocity would not follow Equation (10), but would still be
inversely proportional. As can be seen in Figure 5, the contact length, Lc, decreases with increasing
air velocity. If we assume the pore size is reduced, the ratio of Lp and Lc is reduced. Because of the
decrease in the ratio, the overall Lc value would rise, keeping the inverse relationship.

Figure 4 also showed a numerically approximated boundary layer thickness using the Blasius
exact solution. As one can see from Figure 4, the droplet is likely to be fully covered by the boundary
layer when U∞ is greater than 30 m/s. Even under 25 m/s of U∞, at least over 60% of the droplet height
was immersed in the velocity profile. This indicates that the incipient motion is mainly governed
by the velocity profile associated with U∞. Even though we take into account a boundary slip by
the superhydrophobic surface, the surface velocity is still smaller than U∞. This creates a velocity
profile. If the droplet experienced the velocity gradient in the height direction, and the velocity was
not uniform, a practical velocity, such as an average velocity affecting the droplet, should be applied
when aerodynamic drag force is considered. Based on our experimental setup, we could not identify
the rolling motion of the droplet as being shed from the surface. However, we could relate U∞ and the
size of the droplet for the incipient motion. If the rolling motion is involved, it would be efficient to
shed the droplet with the same amount of U∞. The droplet could be deformed by drag, which depends
on the velocity profile around the droplet. The ratio between the thickness of the boundary layer and
the height of the droplet should be considered. If the thickness of the boundary layer is much smaller
than the height of the droplet, the shape of the droplet would be unlikely to be deformed due to a
uniform flow profile. If the droplet is completely immersed in the boundary layer, it would experience
the velocity gradient of the boundary layer. The velocity is different above and below the droplet.
In that case, the droplet may deform depending on the velocity profile.

Figure 5 showed that the ratio between pore diameter, LP, and contact length, LC. The ratio,
LP/LC, was over 38% when U∞ increased over 25 m/s. This can be seen from the right horizontal
axis in Figure 5. This scale indicates that the effect of pinning force exists in relation to this ratio.
Above the air velocity of 30 m/s, the droplet can be considered to be being more pinned than the
adhesive force between the droplet and superhydrophobic surface, as shown in Figure 7. To discuss
the superhydrophobic effect on the droplet behavior, the air velocity should be considered around or
below 25 m/s. To extend the validity of the velocity range, we should use smaller pores to reduce the
ratio of pore diameter, LP, over the contact length, LC.
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4. Conclusions

To understand the relationship between the air velocity and the size of a pinned droplet shedding
on a superhydrophobic surface, we simulated the incipient motion of a pinned droplet under continuous
flow at various air velocities, and applied a numerically estimated boundary layer thickness. It was
found that a critical velocity existed for the shedding of a pinned droplet on a superhydrophobic surface.
The droplet size was expressed as inversely proportional to the air velocity. In this experimental
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method, a water droplet was pinned through the pore to simulate the size growth of a sessile droplet
under exposed air flow. To utilize this method, it would be preferable to fabricate smaller pores to
reduce the effect of the pinning force. Based on the boundary layer simulation using the Blasius exact
solution, the droplet was fully immersed within the boundary layer for a velocity over 30 m/s, and was
immersed by at least 60% at a lower velocity. These facts reveal that smaller droplets remaining on the
surface need a higher velocity to be removed, and that the droplet was shed due to the velocity gradient.
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