
aerospace

Article

The Impact of Peukert-Effect on Optimal Control
of a Battery-Electrically Driven Airplane

Ferdinand Settele 1,* , Florian Holzapfel 2 and Alexander Knoll 1

1 Department of Mechanical, Automotive and Aeronautical Engineering, University of Applied Sciences
Munich, 80335 Munich, Germany; alexander.knoll@hm.edu

2 Institute of Flight System Dynamics, Technical University of Munich, 80333 Munich, Germany;
florian.holzapfel@tum.de

* Correspondence: ferdinand.settele@hm.edu

Received: 11 November 2019; Accepted: 3 February 2020; Published: 6 February 2020
����������
�������

Abstract: Further investigation on the impact of the so called Peukert effect on optimal control of a
battery-electrically driven airplane is presented. To analyse the impact of the Peukert effect, an ideal
model without this battery concerning effect and a realistic model containing different Peukert exponents
are built up. For the different models, optimal trajectories are generated and altitude dependency of a
maximum range horizontal flight criterion is investigated. On the one hand, it can be shown that the
Peukert effect causes a special form of optimal trajectories. On the other hand, it turns out that range
optimal horizontal flight is more efficient in lower altitudes, if the Peukert effect is taken into account.
The particular efficiency properties of battery electrical propulsion can be explained with its consumption
characteristic, which appear in form of a power function with real exponent.

Keywords: battery-electric propulsion; peukert effect; consumption characteristics; trajectory optimization;
optimal control

1. Introduction

Due to the small energy density of batteries, the range of battery-electrically driven airplanes is
still poor in comparison to conventionally fossil-fuel propulsed airplanes. Therefore, the available
energy on board must be used efficiently to gain the greatest possible amount of range or endurance.
Therefore, principles of efficient flight guidance have to be derived.

In the contributions [1,2], specific flight performance characteristics of electric aircraft are
presented in general. It is shown that electric propulsion has other characteristics than air-breathing
propulsion, regarding especially the range performance. In the works [3–5], a relation between available
energy/capacity in the battery and reachable range or rather endurance is given. The author of [3]
assumes the airspeed to be equal to the respectively optimal airspeeds derived from the aerodynamic
characteristics. Additionally, the sensitivities of maximum range on various design criteria of an airplane
are shown in [4]. Net endurance (single point calculation based) and gross endurance (mission calculation
of simulation based) are differentiated in [5], which lead to different results. A validation of endurance
estimation is given in [6]. In contrast, the works [7,8] show that optimal airspeed for maximum range is
located slightly below the optimal airspeed from the aerodynamics due to the Peukert effect [9]. As a
reason for this battery phenomenon, the effective battery capacity decreases with rising discharge current.

Furthermore, electric airplanes are focussed on the field of optimal control. Using solution
methods for an optimal control problem, parameters for energy efficient climbing are shown in [10],
while the work [11] aims at optimal control for maximum endurance of electric aircraft. Both of them
do not take the Peukert effect into account in their model description. A common numerical solution
of the trajectory optimization problem of more complex mathematical models is presented in [12–14].
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Optimized trajectories regarding technical limitations due to maximal temperature of the propulsion
components are shown in [12]. A complex efficiency model of each component is taken to perform
trajectory optimization in [13,14]. To simplify the expensive optimization, steady-state legs of the
trajectory are correlated with efficiency criteria, derived for battery-electric aircraft. Furthermore, it is
shown that optimal horizontal flight in lower altitude is slightly more efficient than in higher altitude.

A lot of studies present the impact of Peukert effect on range and endurance performance and
corresponding optimal airspeeds. None of them focusses on altitude dependency of maximum
reachable range due to the Peukert effect. Contrarily to expectations, efficient horizontal guidance
of battery-electric aircraft is not constant with the altitude, due to the influence of the Peukert effect.
To investigate this behaviour, the special power characteristics of the battery in context with the aircraft
is examined in this paper. Furthermore, trajectory optimization problems are solved for various
amounts of Peukert exponents to show the impact of the effect on the form of optimal trajectories.

In Section 2, the concrete model containing the Peukert effect is explained, while Section 3 specifies
the optimization problem and describes the method of numerical solving the trajectory optimization
problem. Section 4 shows the results of trajectory optimization and analytical investigations,
before Section 6 concludes the issues of this work.

2. Modelling Aspects

In this section, basic aspects of modelling are introduced. To be able to show mathematical-physical
relations, the model is built up as simple as possible. It uses a quadratic polar to determine the
aerodynamic forces and fix efficiencies of the propulsion components.

Aerodynamic coefficients are modelled by a quadratic polar, which is shown in Figure 1.
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Figure 1. Quadratic Polar.

It shows the data of a real polar (black) taken from [14]. For the interval of CL = 0.4, . . . , 0.6
(this interval includes all lift coefficients in the following investigations, as can be seen later), the
original data of the polar can be approximated sufficiently by

CD(CL) = CD0 + kC2
L (1)

with the lift and drag coefficients CL and CD respectively. The lift coefficient for best glide amounts
CL,εmin = 0.4154 and is therefore within the interval of approximation. Lift and Drag itself are calculated
with the well known equations

L = CL
ρ

2
V2 S (2)

D = CD
ρ

2
V2 S (3)

with air density ρ, flight speed V and reference wing surface S. Atmospherical data is taken from [15].
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The differential equations of motion are implemented by

ḋ = V cos γ (4)

ḣ = V sin γ (5)

V̇ =
T − D

m
− g sin γ (6)

γ̇ =
L

m V
− g cosγ

V
(7)

Here, both lateral coordinates are substituted to the distance d. Furthermore, Equations (4)–(7)
include altitude h, flight path angle γ, weight m and gravitational constant g (see also [16,17]). Thrust
T provided by the propeller and drag D are assumed to be co-linear with V. Wind is not considered
and only straight ahead flight, without turns, is regarded as in [14].

The propulsion components include a propeller, an electric motor, a corresponding inverter and a
battery as energy storage system. All components’ efficiencies are assumed to be constant. Thus, total
efficiency amounts to:

ηtot = ηProp ηMot ηInv ≈ (8)

0.70 · 0.94 · 0.98 = (9)

65.8 % (10)

which is also taken approximately for the total efficiency of propulsion components in [11].
The propulsive power Pprop and the required electric power Pel relate with this total efficiency

Pprop = TV = Pelηtot = UBat IBatηtot (11)

with the the battery current IBat and the battery voltage UBat = 358.9 V, which is assumed to be
constant over the state of charge here. Solved for IBat, Equation (11) reads as

IBat =
Pprop

UBatηtot
=

TV
UBatηtot

(12)

This equation can be found in, e.g., [11].
In addition, the Peukert effect [9] is considered, due to which the effective capacity of the battery

is decreasing with increasing current taken from the battery. Therefore, the effective battery current
IBat,eff increases disproportionate with rising battery current IBat [5]:

IBat,eff = IBat

(
IBat

IBat,nom

)e−1
(13)

Here, the nominal battery current is represented with IBat,nom = 20 A. To show the impact
of the amount of Peukert exponent, three different values e = [1.0, 1.05, 1.3] are applied in this
paper (The authors of [5] consider three different types of batteries with Peukert exponents e =

[1.005, 1.05, 1.3]. For typical aircraft applications, Lithium-Ion batteries are used holding a Peukert
exponent of 1.05 [5,18]). For a Peukert exponent 1.0, the battery is ideal [see (13)], while for e > 1.0, the
battery is “realistic”, so called in this paper.
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3. The Trajectory Optimization Problem

In this work, a trajectory optimization for the presented model is performed. Therefore, the
trajectory optimization problem is defined first and is solved by using the MATLAB-Toolbox
FALCON.m.

Main goal of the optimization is to reach the fix goal distance with minimum amount of used
capacity ∆Q(t f ) = Q(t0)−Q(t f ) of the battery. The optimization problem is defined as follows: Find

min
CL(t),Pprop(t)

J = ∆Q(t f ) (14)

with respect to the dynamic constraints

ẋ = f (x(t), u(t), p), (15)

The state vector x(t) contains the states of motion and the remaining capacity Q(t):

x(t) =
[
d(t) h(t) V(t) γ(t) Q(t)

]>
(16)

The corresponding state derivatives ẋ include Equations (4)–(7) and

Q̇(t) = −IBat,eff(t) (17)

with Equations (12) and (13). The control vector contains the lift coefficient CL and propulsive power
Pprop from (11):

u(t) =
[
CL(t) Pprop(t)

]>
(18)

Here, maximum propulsion power is constrained by Pprop ≤ 30 kW and for the lift coefficient
values within the interval CL = [0.3, 0.8] are allowed. The two parameters are final time t f , which is
variable in the trajectory optimization, and the Peukert exponent e:

u(t) =
[
t f e

]>
(19)

In addition, the initial conditions

d(t0) = 0 m

h(t0) = 500 m

V(t0) = 46 m/s

Q(t0) = 432000 C

(20)

the final conditions

d(t f ) = 70 km

h(t f ) = 500 m

V(t f ) = 46 m/s

(21)

have to be fulfilled (h(t0), h(t f ), V(t0) and V(t f ) are assumed to be typical values after lift off and
before touch down for the described model).

Like in [14], trajectories are optimized using the MATLAB toolbox FALCON.m [19]. With this
toolbox, the trajectory optimization problem is defined programmatically. Afterwards, the trajectory
optimization problem is converted automatically to a classical parameter optimization problem by
time discretization, specifically using trapezoidal collocation. The resulting parameter optimization
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problem is passed to IPOPT (Interior Point OPTimizer) [20] , which solves the problem numerically
and returns the result to FALCON.m back again. FALCON.m (FSD OptimAL CONtrol Toolbox for
MATLAB) helps to solve the trajectory optimization problem very efficiently by converting the model
functions to so called mex-functions [21].

4. Results

In this section, first the optimized trajectories are presented. Afterwards, the altitude dependency
due to the Peukert effect is shown and discussed. To conclude, the consumption characteristic of
the simplified model is illustrated. With this, the special form of the trajectories and the altitude
dependency due to Peukert effect can be explained.

4.1. Optimal Trajectories

Figure 2 shows the resulting optimized trajectories for the three variants of e = [1.00, 1.05, 1.30]
(The legend in subplot Pprop(d) is to be applied to all subplots).
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Figure 2. Optimal Trajectories for e = [1.00, 1.05, 1.30].

The sub figures depict the histories of the states x and the controls u plotted over the travelled

distance d. Here, the velocity V is substituted by the airspeed VEAS = V
√

ρ(h)
ρ0

representing the Equivalent
Airspeed (EAS), which is corrected for the air density depending on the actual altitude ρ(h).

It can be seen immediately that the form of the trajectory of e = 1.00 differs fundamentally from
the two others (The transition phase in the optimal trajectory for the ideal battery is not considered
more closely in this paper). While the trajectory e = 1.00 (ideal battery) contains two significantly
different segments (climb and glide segment), trajectories with e > 1.00 proceed nearly linear in every
diagram. The altitude h and the flight path angle γ represent the progress of the different trajectories:
For the ideal battery the climb segment takes a positive (slightly decreasing with rising altitude) γ ≈ 5 ◦

and a constant negative γ = −3 ◦. In contrast, the histories for the realistic model (e > 1.00) are nearly
constant γ = 0, but both trajectories show a light sink in the altitude progression at about d = 35 km.

For the ideal battery, the two arcs of the trajectory hold two nearly identical airspeeds, where
climb segment airspeed is little smaller than glide segment airspeed. Basically for the realistic model,
the airspeed is smaller for bigger values of the Peukert exponent e. This dependency between Peukert
exponent and optimal airspeed is presented in [7,8]. Airspeeds for the realistic model are nearly
constant over travelled distance d. As all three trajectories are at a quasi steady-state for most of the
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history, respective airspeeds require different lift coefficients CL. Therefore, a high airspeed (ideal
battery; blue) leads to a small CL, while a small airspeed (e = 1.30; red) leads to a big CL [cf. (2)].

The histories of the propulsion power Pprop correlate with the trajectories: for the ideal battery,
the climb segment takes maximum possible power Pprop = 30 kW, while the glide segment does not
take propulsion power. Therefore, the glide segment is a pure glide. For the realistic models, the
propulsion power is nearly constant. The propulsion power solely increases a little during its history,
caused by the little sink in altitude at about d = 35 km. In the second half of the trajectory, the altitude
increases after this sink and a little more propulsion power is required.

This all leads to three different histories of the battery capacity Q(t). Regarding the propulsion
power history for the ideal battery, it is obvious that history of battery capacity decreases linearly in the
first segment and is constant in the second segment. Because of the quasi linear history of propulsion
power for the realistic model, the battery capacity decreases quasi linearly—a little bit steeper for
e = 1.30 than for e = 1.05. The trajectory for e = 1.30 ends with the least remaining battery capacity,
while for the ideal battery, it ends with the highest remaining capacity. Obviously, a small Peukert
exponent is preferred for less capacity consumption.

Table 1 contains some values gathered from the three trajectories (cf. Figure 2) to give a quantitative
comparison. As can be seen in the trajectories, the ideal battery (e = 1.00) consumes the fewest
capacity ∆Q. The trajectory for e = 1.05 needs 3.9 % more capacity than the ideal model and the
trajectory for e = 1.30 needs 24.8 %. The airspeed for e = 1.05 is only about 0.5 m/s slower in
comparison to the ideal model, while for e = 1.30 the airspeed is 1.7 m/s slower. The propulsion
power Pprop for e = 1.05 and e = 1.30 are nearly equal. Therefore, the battery current IBat (not IBat,eff!)
is nearly the same for both (not listed in Table 1). However, the effective battery current IBat,eff for
e = 1.30 is over 5 A higher due to the bigger Peukert exponent and (13).

Table 1. Quantitative Comparison of Values in the three Trajectories.

e =
1.00 1.05 1.30

climb glide

∆Q [105 C] 0.648 0.0 0.673 0.809
VEAS [m/s] 45.4 45.5 45.0 43.8
Pprop [kW] 30 0 ≈10.0 ≈9.9
IBat,eff [A] ≈147 0 ≈44.2 ≈50.8
t f [103 s] − 1.422 1.524 1.594
hmin [m] − 420.9 445.2

Iterations [−] 274 34 53

The fastest trajectory reaching d(t f ) = 70 km is the ideal model. Despite the longer distance
(due to the two segments), it is faster due to its highest airspeed and its progress in higher altitude
with less air density additionally. The two other trajectories need more time to reach the goal, due to
their slower airspeed VEAS in comparison to the ideal model. Furthermore, the number of iterations
and the trajectory optimizations take is different for the three model variants. The trajectory for the
ideal model converges remarkably slower than the two remaining trajectories. As shown later, the
choice of the altitude does not influence the optimality of the trajectory for the ideal model. The flat
gradient causes therefore greater numbers of iterations.

4.2. Steady-State Evaluation

For the evaluation of optimal steady state horizontal flight, the criterion of range optimal flight
from [13,14,22] is taken into account. To gain the longest possible travelled distance per amount of
capacity, expression

max J =

(
∆d
∆Q

)
γ=0

(22)
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with constant airspeed is to be maximized. For a small dt and with (17), the criterion reads:

max

(
d
dt
d
dt

∆d
∆Q

)
γ=0

= max
(

V
Ieff,Bat

)
γ=0

(23)

The equilibrium of forces of a non accelerated (V̇ = 0) horizontal flight are

L = mg

T = D
(24)

Therefore, a fix relation between flown airspeed and the lift coefficient is given:

CL(V) =
2mg
ρV2S

(25)

With the polar (1) the drag coefficient CD is known:

CD(V) = CD0 +
4m2g2k
ρ2V4S2 (26)

This leads to the amount of drag in the horizontal flight:

D(V) =
1
2

ρV2S
(

CD0 +
4m2g2k
ρ2V4S2

)
(27)

With Equations (12), (24) and (13), criterion (23) reads as

J(V) =
V

IBat,nom

(
CD0ρ2V4S2+4m2g2k
2IBat,nomUBatρVSηtot

)e (28)

The optimal airspeed to gain maximum range—the Peukert effect taken into account—is presented in [8].
Here, optimal airspeed for maximum range for a quadratic polar is described with:

Vopt =
4

√
4m2g2k
CD0ρ2S2 ·

(e + 1)
(3e− 1)

=√√√√ 2mg

ρS
√

CD0
k

(e+1)
(3e−1)

(29)

(The optimal airspeed can also be derived by analytical study of (28) by zeroing the differential ∂J
∂V ,

similarly to [7,8].)
Combining (29) and (28), the criterion for optimal range reads as:

J(Vopt) =
Vopt

IBat,nom

(
4m2g2k

(
1+ (e+1)

(3e−1)

)
2IBat,nomSUBatηtotρVopt

)e (30)

It can be shown that for the ideal model (e = 1.00) the criterion (30) with optimal
airspeed Vopt simplifies to

J(e=1.00) =
UBatηtot

2mg
√

CD0k
(31)
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and therefore does not contain the air density ρ any more. In other words, the altitude h has no
influence considering a range optimal flight of the ideal model (e = 1.00).

For the two other realistic model variants, the criterion (30) contains the air density ρ. Hence, the
altitude h has an influence on the criterion’s value. Numerical values of this formula are visualized in
Figure 3.
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Figure 3. Values of the criterion for range optimal horizontal flight depicted over altitude h for
e = [1.00, 1.05, 1.30].

Here, the ideal model (e = 1.00) achieves the maximum possible values and the values are constant
over altitude h. The criterion’s values of both realistic model variants are located below. Besides, these
values decrease with increasing altitude for e = 1.05 only slightly (≈1%), and for e = 1.30 significantly
(≈ 5%). The smaller the Peukert exponent is, the bigger the maximum reachable range. In addition,
flight is more range efficient for the realistic battery models if performed in lower altitudes.

The progressions of the altitude dependency of the realistic models (e > 1.00) are the cause for
the form of the optimal trajectories (cf. Figure 2). A trajectory (for the realistic model) in lower altitude
is more efficient than in higher altitudes and therefore it proceeds at lower altitudes.

5. Discussion

The form of the optimal trajectories and the altitude dependency of the two realistic models can
be explained with the consumption characteristic of the battery-electric propulsion.

Equations (12) and (13) combined show the relation between propulsive power Pprop and the
effective battery current IBat,eff:

IBat,eff(Pprop) = IBat,nom

(
Pprop

IBat,nomUBatηtot

)e
(32)

In Figure 4 the consumption characteristics of the three model variants are shown for e = [1.00, 1.05, 1.30].
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Figure 4. Consumption Characteristics for e = [1.00, 1.05, 1.30].

The effective battery current IBat,eff represents the consumption equivalent depending on the
propulsion power Pprop, as with (17) the effective battery current decreases the available battery
capacity Q. The ideal model (e = 1.00) performs exactly linear dependence between propulsive
power and effective battery current. For every power taken from the battery the efficiency is equal.
Both realistic models show progressions in form of a power function with positive real exponent >1.
Above nominal current IBat,nom, consumption equivalent increases disadvantageously with increasing
power for the realistic model in comparison to the ideal model. The bigger the Peukert exponent, the
worse the impact is. Below the nominal current IBat,nom, this phenomenon performs vice versa and
therefore a big Peukert exponent is advantageous.

Basically, it is more efficient to avoid huge battery discharge currents over the nominal current to
minimize waste of capacity. This explains the altitude dependency as well as the form of the optimal
trajectories. The higher the altitude, the less the air density is. To gather the same dynamic pressure ρ

2 V
like in lower altitude, airspeed V must be faster in higher altitudes. With (11), more propulsive power
is needed. As a consequence of the consumption characteristic of the battery electrical propulsion, the
power drain is less efficient at higher power and current, respectively. Thus, higher altitudes are less
efficient than lower altitudes in battery-electrically propulsed flight.

This characteristic also influences the form of optimal trajectories. To save capacity, the trajectory
for the realistic models proceeds preferably without power-requiring climb segments. Here, the
altitude history is as flat as possible. Without the dependency from the air density ρ described above,
optimal trajectories would proceed exactly linearly between start and finish.

6. Conclusions

In this paper, impacts of the Peukert effect on optimal guidance of battery electric aircraft are
discussed. For this investigation, a variable mathematical model is built up. One model represents an
ideal battery with e = 1, two others (realistic models) take a Peukert exponent of e > 1 into account.
Optimal trajectories are generated using those three model variants. Especially the form of the altitude
history for the ideal and realistic model diverges. While the ideal model performs a significant climb
and glide phase, the realistic models show nearly linear histories between start and goal.

Furthermore, the analysis of an efficiency criterion of range optimal horizontal flight proves that
efficiency of a range optimal horizontal flight depends on the altitude. Here, the maximum range
with the realistic model can be reached travelling at lower altitudes. The special form of the optimal
trajectories, as well as the altitude dependency of range optimal horizontal flight, can be explained with
the consumption characteristic of the battery-electric propulsion. For the realistic model, consumption
increases disproportionately with increasing battery current (or battery power) in form of a power
function with a positive real exponent. The described phenomena are (excepting the altitude histories)
bigger, the bigger the Peukert exponent is.

Summarizing, the two main impacts of Peukert effect on optimal flight guidance can be noticed:
high discharge currents during flight should be avoided. Therefore, capacity optimized trajectories
progress flat and quasi linear on the one hand. On the other hand, range optimal flight should be
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performed in lower altitudes. These statements are only valid for the described model. If an additional
constant discharge current is added to the propulsive power current, results will appear differently.
Furthermore, other physical effects placed in the battery (like internal resistance, temperature
dependency, inner battery dynamics, etc.) can modify the characteristics. Regarding future battery
systems, specific values of the Peukert exponent must be considered for flight performance analysis
and assessed taking the field of application of the vehicle into account.
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Abbreviations

The following abbreviations are used in this manuscript:

Symbols Indices

�̇ Time derivative of � [. . .] 0 zero
C� Coefficient of � [−] Bat Battery
D Drag [N] EAS Equivalent Airspeed
d Distance [m] eff effective
e Peukert exponent [−] el electrical
g Gravitational acceleration [m/s2] f final
h Altitude [m] Inv Inverter
I Current [A] Mot Motor
J Criterion [C/s2] min minimum
k aerodynamical Constant [−] nom nominal
L Lift [N] opt optimal
m Mass [kg] Prop Propeller
P Power [W] prop propulsive
p Parameter vector [. . .] tot total
Q Capacity [C]
S Surface [m2]
T Thrust [N]
t Time [s]
U Voltage [V]
u Control vector [. . .]
V Velocity [m/s]
x State vector [. . .]
γ Flight path angle [◦]
η Efficiency [−]
ε glide path angle [◦]
ρ Air density [kg/m3]
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