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Abstract: Relative motion control problem for capturing the tumbling space debris object is considered.
Onboard thrusters and reaction wheels are used as actuators. The nonlinear coupled relative
translational and rotational equations of motion are derived. The SDRE-based control algorithm
is applied to the problem. It is taken into account that the thrust vector has misalignment with
satellite center of mass, and reaction wheels saturation affects the ability of the satellite to perform
the docking maneuver to space debris. The acceptable range of a set of control system parameters
for successful rendezvous and docking is studied using numerical simulations taking into account
thruster discreteness, actuators constrains, and attitude motion of the tumbling space debris.

Keywords: formation flying; relative motion control; space debris capture; SDRE-based control;
reaction wheels saturation; thruster misalignment

1. Introduction

Further exploration of near-Earth space in the short term will become impossible without solving
the problem of space debris removal. A number of international projects are aimed at its solution [1,2].
Space debris removal approaches can be divided into two classes: passive and active [3–5]. In the case
of passive approach the space debris are removed with the help of external natural forces, for example,
aerodynamic drag in low Earth orbits [6,7], solar pressure [8], ionospheric drag [9] etc. Active removal
of inactive spacecrafts and rocket stages often involves the use of special small satellites that can attach
themselves on the space debris object or capture it with a manipulator [10], net [11,12] or harpoon with
tether [13,14], and change its orbit using the on-board motion control system. Active debris removal
implies autonomous relative motion control in order to achieve relative state vector required for
capturing. An onboard propulsion is often considered for the translational motion control and reaction
wheels are for the attitude maneuvers. However, small satellites have restrictions on mass, size, energy,
on-board computing power, and the composition of the control system equipment, which complicates
the on-board control algorithms for the main modes of motion at the mission design stage, taking into
account the limited capabilities of the satellites. The reaction wheels may experience saturation which
must be avoided, the saturation may be caused by thruster misalignment or by high angular velocity
of the tumbling debris. These situations may lead to the failure of the object capturing. That is why
it is required to study the influence of the control system parameters on rendezvous and capturing
maneuver capabilities.

The problem of relative translational and attitude motion control is well studied and a big
variety of control approaches is developed. For example, sliding control-based algorithms [15,16] are
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developed for the relative orbit-attitude tracking problem, for the rendezvous problem the swarm
particle optimization algorithm is applied for the required trajectories generation [17], for the docking
stage with non-cooperative object the majority of the proposed control algorithms are fuel-optimal or
time-optimal [18–22]. The fuel-optimal trajectory generation algorithms are computationally intensive,
its implementation in a real-time system is very challenging. Therefore, the optimal algorithms
for calculating trajectories are often replaced by computationally simpler and faster non-optimal
ones [23,24], however their performance is strongly dependent on initial conditions at the docking
stage. As a compromise between two approaches a feedback control law developed for minimization
of some defined cost-function can be applied to the problem. A linear quadratic regulator (LQR)
is a well-known example of such an algorithm, though the relative motion equations are highly
non-linear. To overcome this inconsistency the motion equations are linearized in the vicinity of the
current state vector and LQR-like State-Dependent Riccati Equation-based (SDRE) control algorithm
is applied [25–27]. In [28,29] a comparative study between SDRE and LQR is presented, and SDRE
showed its advantages considering fuel consumption, rendezvous time, and trajectory accuracy.
The SDRE-based algorithms are used to address various problems such as the position and attitude
control of a single spacecraft [30] or relative motion control in satellite formation flying [29]. For the
problem of space debris object capturing the kinematic coupling effect must be taken into account when
the relative motion of not centers of mass of two bodies but motion between two defined body-fixed
points is considered as in [31]. The paper [32] studies the application of the SDRE-based control for
this type of relative motion equations. The main contribution of the current paper is in the study of the
influence of the control system parameters on the performance of the SDRE-based control algorithm
on the relative motion during the capturing, taking into account the reaction wheels saturation and
thrusters misalignment.

This paper considers a spacecraft with thrusters installed on board to control the center of
mass motion and it is equipped with reaction wheels for the attitude control [33]. The motion of a
non-cooperative object relative to the spacecraft is considered known for the sake of simplicity. In real
cases the target motion is estimated by relative motion determination system with some errors and
uncertainties. The purpose of the work is to develop an algorithm for controlling both the center
of mass motion and the angular motion to achieve the required relative position and attitude of the
spacecraft relative to a non-cooperative object, which is necessary for the capturing. It is assumed that
the object of space debris has an axis of dynamical symmetry and rotates freely under the influence
of a gravitational torque and its tumbling motion is similar to nutation. To capture space debris it
is necessary to match a desired point on the spacecraft reference frame with a point on the object
surface [31,34]. As a capturing system can be considered a robotic arm capable of catching on an
element of the space debris body.

SDRE control algorithm to achieve relative motion along a desired trajectory is developed in the
paper [35]. The SDRE method requires linearization of the equations of motion in the vicinity of the
current state [27], and the optimal controller coefficients are calculated as a result of solving the Riccati
equation at each control cycle [36]. Nonlinear coupled translational and rotational motion equations of
the spacecraft relative to the object are used. It is assumed that the value of the thrust is limited and
discrete, and the thrust vector has a misalignment, which produces an additional disturbing torque and
an external coupling effect [37]. Because of control limitations the successful capture of a space debris
object is possible only in the region of acceptable values of the system parameters. The parameters
include the initial conditions for the motion equations, the magnitude of the misalignment of the thrust,
the value of the control constraints, the position of the capture point on the object, the parameters of the
angular motion of the object. This paper is the continuation of authors pervious work [35], it considers
a more generalized equations of motion and proposes a methodology for assessing the acceptable
range of these parameters using a numerical study of the system motion.
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2. Equations of Motions and Control Law

In this section a short introduction to equations of motion and control law is presented.
The relative state vector consist of relative position and velocity between the centers of mass of
a chaser (active satellite) and target (passive space debris) and relative attitude quaternion and angular
velocity. Since for the capturing it is necessary to align two points on the surfaces of the satellites
and in the object (the position of the capturing system of the chaser and capturing point of the target,
see Figure 1), the relative rotational and translational motion equation are coupled.
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2.1. Relative Rotational and Translational Equations of Motion

For modeling the dynamics of this problem the coupled sets of nonlinear rotational and translational
relative equations of motion of spacecraft with respect to the non-cooperative object are used.
The Equations (1) and (2) describe the changes of angular momentum of chaser HC and the target HT

in inertial reference frame:

dHC
dt

∣∣∣∣∣
I
=

dHC
dt

∣∣∣∣∣
C
+ωC ×HC = NC + TC. (1)

dHT

dt

∣∣∣∣∣
I
=

dHT

dt

∣∣∣∣∣
T
+ωT ×HT = NT (2)

where �|I, �|C, and �|T are derivative in the inertial, chaser-fixed, target-fixed reference frame
respectively,ωC, ωT are chaser and target angular velocities, NC and NT are external torques acting
on the spacecraft and debris respectively, and TC is the control torque. The chaser satellite is equipped
with reaction wheels, so its angular momentum is calculated as follows:

HC = ICωC + hWC
Ht = ITωT

(3)

where hWC is the angular momentum produced by reaction wheels, IC and IT are chaser and
debris inertia tensor. It is assumed that the chaser satellite is equipped with three reaction wheels,
the angular momentum of each wheel is aligned with principal axis of the satellite. All the variables in
Equations (1) and (2) are expressed in the corresponding body-fixed reference frame.

Since the target is passive and the chaser is equipped with control system, the relative rotational
equation of motion should be expressed in target-fixed reference frame. By subtracting (2) from (1) and
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taking into account the transition matrix D(q) between the chaser reference frame to target reference
frame the following relative angular motion equation is obtained:

IT
.
ω

T
= ITD(q)IC

−1[−D(q)−1
(
ωT +ωT

T

)
× ICD(q)−1

(
ωT +ωT

T

)
−D(q)−1

(
ωT +ωT

T

)
hWC −

.
hWC + TC + NC] − ITω

T
T ×ω

T + [ωT
T × ITω

T
T]

(4)

Here ωT = D(q)ωC
C
−ωT

T is the relative angular velocity which is expressed in the target’s
reference frame, superscript defines the reference frame where the value is expressed, “C” stands
for chaser and “T” stands for non-cooperative target. The direction cosine matrix of rotation can be
expressed using quaternion q that defines the transition from chaser to target reference frame.

The external torque NT acting on the target includes only gravitational torque, but NC also
includes the torque Nth caused by thruster vector misalignment from the chaser center of mass.

Nth = rth × Fth

where Fth is a thrust vector of the thruster, rth is the radius vector from center of mass to the center of
thrust application.

The kinematical equation can be written for quaternions as follow:

.
q =

1
2

Q(q)ωT (5)

In (5) Q is given as:

Q =


q4 −q3 q2

q3 q4 −q1

−q2 q1 q4

−q1 −q2 −q3

 (6)

In Figure 1 the local-vertical-local-horizontal coordinate system of target is shown as CTxT yTzT.
CTξTηTζT is the target body-fixed reference frame and CCξCηCζC is the chaser body-fixed reference
frame of the chaser.

The general nonlinear relative equations of motion centers of mass of two objects are given
as follows:

..
x− 2ωOT

.
y−

.
ωOT y−ωOT

2x = −
µ(rT + x)[

(rT + x)2 + y2 + z2
] 3

2

+
µ

rT2 + ax (7)

..
y + 2ωOT

.
x +

.
ωOTx−ωOT

2y = −
µy[

(rT + x)2 + y2 + z2
] 3

2

+ ay (8)

..
z = −

µz[
(rT + x)2 + y2 + z2

] 3
2

+ az (9)

where ρ0 = [x; y; z]T is radius-vector of chaser center of mass in LHLV reference frame with target in
the origin CT, rT is the value of the radius-vector of the target center of mass in inertial reference frame;

a =
[
ax ay az

]T
is the control acceleration, which is produced by thrusters; ωOT is the orbital angular

velocity of the target; µ is the Earth gravitational constant. In the case of near circular orbits and
rT � ρ0 these equations can be linearized and the well-known Clohessy-Wiltshire can be obtained [38].
To provide control acceleration it is assumed that the chaser satellite is equipped with six thrusters,
a pair of thrusters with opposite directions for each principal axis of satellite.

To develop a control algorithm for capturing the target it is required to obtain the equations of
relative motion of two points—the point of the chaser satellite where the capturing mechanism is
placed, and the point of the target object for which the object can be captured. The coupling effect
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between translational and attitude motion should be taken into account. Consider two arbitrary points
of the target r j

T and of the chaser ri
C (see Figure 1). For these two points the relative motion equations

can be derived from the following relation for the relative vector ρi j between these points:

ρi j = ρ0 + ri
C − r j

T (10)

All of the vectors are expressed in LVLH reference frame. Calculating the first and then second
derivative the following equations can be obtained:

.
ρi j =

.
ρ0 +ω× ri

C (11)

..
ρi j =

..
ρ0 +

.
ω× ri

C +ω× (ω× ri
C) (12)

Taking into account that ρi j =
[
xi j yi j zi j

]T
Equation (12) can be rewritten in the following form:

..
xi j − 2ωOT

.
yi j −

.
ωOT yi j − 3ωOT

2xi j = ax + K1
..
yi j + 2ωOT

.
xi j +

.
ωOTxi j = ay + K2

..
zi j +ω2

OTzi j = az + K3

(13)

where K = [K1 K2 K3]
T are terms which consist ofω and express the coupling between (13) and (4):

K1 =
[
ωy

(
ωxyi

C −ωyxi
C

)
−ωz

(
ωzxi

C −ωxzi
C

)]
+

.
ωyzi

C −
.
ωzyi

C
+2ωOT

(
−ωzxi

C +ωxzi
C

)
+

.
ωOT

(
−yi

C + y j
T

)
+ 3ω2

OT

(
−xi

C + x j
T

)
+

µ

r2
T
−
µrT

r3
C

(14)

K2 =
[
ωz

(
ωyzi

C −ωzyi
C

)
−ωx

(
ωxyi

C −ωyxi
C

)]
+

.
ωzxi

C −
.
ωxzi

C
+2ωOT

(
ωyzi

C +ωzyi
C

)
+

.
ωOT

(
−xi

C + x j
T

)
+ω2

OT

(
−yi

C + y j
T

) (15)

K3 =
[
ωx

(
ωzxi

C −ωxzi
C

)
+ωy

(
ωyzi

C −ωzyi
C

)]
+

.
ωxyi

C −
.
ωyxi

C +ωOT
(
zi

C − z j
T

)
(16)

where r j
T = [x j

T y j
T z j

T]
T

is the radius-vector of the capturing point of the target and ri
C = [xi

C yi
C zi

C]
T is

the radius-vector of the capturing system of the chaser.
Note that these coupled equations are expressed in LVLH placed in the target. However, for the

onboard algorithms is it necessary to develop the equations in body-fixed reference frame. This issue
is addressed in the next chapter.

2.2. Modified Coupled Translational Equations of Motion

As mentioned above
..
ρi j is expressed in LVLH and it is required to be expressed in body reference

frame of the target. The relation between radius-vector between the centers of mass ρ0 in the LVLH
reference frame and its value ρ̃0 in target body-fixed reference frame is as follows:

ρ̃0 = A(qT)ρ0 (17)

where qT is quaternion of the target reference frame relative to LVLH, A(qT) is the direction cosine
matrix. The kinematical relations for direction cosine matrix can be written as:

.
A = ΩA, (18)

where Ω is skew-symmetric matrix filled using target angular velocity relative to LVLH. Taking time
derivative from (17) and substituting (18) one can obtain the following:

.
ρ̃0 = Ωρ̃0 + A

.
ρ0. (19)
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From this equation we get the following:

.
ρ0 = AT

( .
ρ̃0 −Ωρ̃0

)
(20)

Taking derivative from (19) acceleration relationship can be found

..
ρ̃0 =

.
Ωρ̃0 −Ω2ρ̃0 + 2Ω

.
ρ̃0 + A

..
ρ0 (21)

On the other hand we can rewrite Clohessy-Whiltshire equations [33] in vector-matrix form as:

..
ρ0 + M

.
ρ0 + Nρ0 = a + K (22)

where

N =


−3ωOT

2
−

.
ωOT 0

.
ωOT 0 0

0 0 ω2
OT


M =


0 −2ωOT 0

2ωOT 0 0
0 0 0


(23)

The Equation (22) is written in LVLH. Rewrite both sides of the equation is in target body-fixed
reference frame:

AT
[ ..
ρ̃0 −

.
Ω

.
ρ̃0 + Ω2ρ̃0 − 2Ω

.
ρ̃0

]
+ MAT

( .
ρ̃0 −Ωρ̃0

)
+ NATρ̃0 = ATã + ATK̃ (24)

where K̃ = AK, ã = Aa. From this equation one can rewrite it as follows:

..
ρ̃0 = ã + K̃ +β

.
ρ̃0 + γρ̃0 (25)

where
β = −A

[
MAT

− 2ATΩ −A
.

Ω
]

γ = −A
[
NA−MATΩ + AΩ2

] (26)

So, the Equation (25) are expressed in body-fixed reference frame of target. Now it is possible to
derive coupled equations of motion between two points expressed in the target body frame. Let the
points of the target r j

T and of the chaser ri
C are written in target reference frame. Then, using (10) and

substituting ρ̃0,
.
ρ̃0,

..
ρ̃0 instead of ρ0,

.
ρ0,

..
ρ0 in (12) the following equation is obtained:

..
ρ̃i j = β

.
ρ̃i j + γρ̃i j +

(
[ωT]x

2
−β[ωT]x + [

.
ω

T
]x
)
ri

C + γr j
T + ã + K (27)

These equations of the relative motion of two arbitrary points of the target and the chaser is used
for control algorithm development.

2.3. SDRE Control Algorithm

The common nonlinear motion equations of the considered system is as follows:

.
x = f(x(t)) + g(x(t), u(t)) (28)
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Here x ∈ Rn is the state vector; u ∈ Rm is the control vector, f( ), g( ) are nonlinear smooth
functions; for establishing the SDRE control algorithm for the dynamical system of type (28) the
functional J of type (29) is considered:

J =
1
2

t f∫
0

[
x(t)TQ x(t) + u(t)TR u(t)

]
dt (29)

where Q,R are positive definite weighting matrices. In (29) finite horizon t f is considered. Here the
point x = 0 is assumed to be equilibrium of the system. In (29) the minimization of the infinite horizon
cost function is required. SDRE method requires the linearization of the equation of motion in a
neighborhood of the equilibrium. The optimal coefficients of the regulator are calculated as a result
of solving Riccati equation at each time step. In this paper Q,R are considered as constant matrices.
Next step is to linearize the nonlinear system. After linearization, the dynamical system has the
following form:

.
x = A(x)x + B(x)u (30)

where A(x) is the matrix of dynamic and B(x) is the control matrix. Similar to linear quadratic regulator a
corresponding algebraic Riccati equation can be derived for nonlinear quadratic regulator. After forming
the Hamilton function and using the maximum principle of Pontryagin [36], necessary conditions for
optimality can be applied to obtain the optimal control law as (31)

u(x) = R−1BT(x)P(x)x (31)

The control function is similar to LQR, but unlike LQR here the coefficients are functions of state
vector. The matrix P(x) is unique, symmetric, and positive-definite and can be achieved by solving
following Riccati equation:

P(x)A(x) + AT(x)P(x) − P(x)B(x)R−1(x)BT(x)P(x) + Q(x) = 0 (32)

The closed loop system using this semi-optimal control (31):

.
x =

(
A−B(x)R−1BT(x)P(x)

)
x (33)

The Riccati equation can be solved analytically using Hamiltonian matrix [39,40].

2.4. Control Application to the Problem of Capturing

In this paper the state vector x(t) consisting of 12 components is considered. The state vector is
composed of three vector-part quaternion components of relative attitude between the target and the

chaser [q1, q2, q3]
T, the angular velocity vector

[
ωx,ωy,ωz

]T
, relative translational position, and velocity

of docking points
[
x̃i j, ỹi j, z̃i j,

.
x̃i j,

.
ỹi j,

.
z̃i j

]T
. The control vector u(t) contains six elements to provide a

full feedback control for the coupled motion. The three first elements of vector u(t) are reaction wheels
control vector

.
hWC and thrusters force vector F. The matrix of dynamic A(x) and control matrix B(x)

are as follows:

A =




[
DT(q)ωT

]
x

q4DT

03×3 Ro

 06×6

06×6

[
03×3 I3×3

γ β

]
. (34)
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B =


03×3 03×3

−DI−1
C 03×3

03×3 03×3

03×3 I3×3/m

, (35)

where

Ro = −
[
DI−1

C DTωT
]
ICDT + [hWC]xDI−1

C DT
−

[
DI−1

C DTωT
T

]
x
ICDT

−

[
ωT

T

]
x
+

[
ICDTωT

T

]
x
DI−1

C DT (36)

Since the control is aimed to coincide attitude of the target and the chaser, then the docking points
of the target r j

T and of the chaser ri
C should be chosen in order not to avoid the collision of them.

From the mathematical point of view it means the constraint that can be written as scalar product of
these two vectors must be negative, i.e.,

(
r j

T, ri
C

)
< 0. In the case when the capturing point of the target

is not satisfied then we can apply an additional rotation to chaser with attitude matrix S, it means that
the point will be calculated as Sri

C.

3. Numerical Study

Consider a demonstration of the proposed docking algorithm application. At the initial time the
parameters of the target objects is set according to the Table 1. The chaser satellite is initially has no
angular velocity with respect to the LVLH, but the target has defined initial rotation. The relative initial
conditions for the attitude motion and for the translational motion is also presented in the right part of
the Table 1.

Table 1. Parameters and initial condition of the modelling.

Orbital Parameters Initial Conditions

Altitude, km 750 q(t0) = qT
T(t0) = qC

C(t0) [0, 0, 0, 1]T

Eccentricity 0.03 ω(t0) =ω
T
T(t0), deg/sωC

C(t0), deg/s [10,−10, 20] T[0, 0, 0] T

Inclination, deg 70 ρ(t0) = [x0, y0, z0]
T, m [50, 27, 100]T

Right ascension, deg 50
.
ρ(t0) =

.
r0, m/s [0,−2, 0]T

Argument of perigee, deg 80 ri
C, m [−1, 1, 0]T

Initial true anomaly 0 r j
T, m [1, 0, 1]T

In this example the weight matrix Q is set to identity matrix and matrix R is block matrix of the
following structure:

R =

[
Rrot 03x3

03x3 Rtran

]
(37)

The matrix Rrot equals to 160 · I6x6 and Rtran = 160 · I6x6. These parameters are chosen using trial
and error approach in order not to meet reaction wheels saturation. It is assumed in the paper that
Rtran is fixed, but the influence of Rrot on the algorithm is studied. The thruster misalignment in this
example is set to 3.5 mm. In this example the inertia tensor of the target is set to identity matrix, and the
inertia tensor of the chaser is 2 · I3x3. The maximal reaction wheel kinematic momentum is chosen as
1 Nms, which corresponds to reaction wheels mini-wheels produced by Honeywell company [41].

For the docking, it is necessary to control motion in a way that relative distance and velocity
(both of rotational and translational motion) converge to zero. These relative position and velocity are
shown correspondingly in Figures 2 and 3. This relative translational motion is shown in Figure 4.
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Figure 4. Relative motion of satellite to target.

The attitude of the chaser and angular velocity with respect to the target is shown in Figures 5 and 6.
At the time of about 135 s quaternion parameters achieve values less than 10−5 (about 10−3 deg of the
deviation) and it is assumed as the required accuracy for attitude tracking. At the same time the position
errors are quite large and the more control effort from thrusters are required to obtain rendezvous.
When the relative distance becomes less than 1 cm the docking is assumed to be accomplished. This time
is longer and is 294 which is shown in Figures 2 and 3.
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Reaction wheels have operational limitation, exceeding these limits will lead to saturation,
which is caused not only by the thruster misalignment but also by improper choices of control
algorithm parameters such as weighting matrix Rrot. The inertia tensor of the target and its rotational
velocity can cause saturation as well. Here the task is to determine the maximum values of angular
velocity of the target, the misalignment of thrust vector, the weighting matrix at which the capturing
maneuver will be successful, i.e., the required attitude and points positions deviation will be achieved.
After numerical simulation it will be possible to determine the operational range of reaction wheels
under critical variables to avoid the wheels saturation.

Consider a target with inertia tensor that is not identity matrix, but a inertia tensor of body with
dynamical symmetry as the following:

IT = diag(J, J, kJ) (38)

where J is inertia moment along principal axis, k is the ration coefficient for the inertia moment
along axis of dynamical symmetry. According to physical constraint of the inertia moments k > 0.5.
It is assumed that the inertia tensor of the target is known. In practical cases it is estimated at the
stage of space debris observation, for example using image processing technique [42]. The target
with dynamical symmetry is chosen for consideration because in that case it is easier to study the
influence of the inertial moment of the target on control algorithm performance. Moreover, a lot of
debris such as upper stages of rockets and some inactive satellites are close to body with dynamical
symmetry. Taking all the parameters from the previous simulation example except the target inertia
tensor, the maximal value of the reaction wheels momentum is calculated for changing ratio coefficient
k. The results are shown in Figure 9. It can be seen that the lowest maximal angular momentum
is close to the case when k = 1 that correspond to spherical body. In the case when the body has a
dynamical symmetry the more the ratio coefficient of matrix of inertia, the higher the maximal angular
momentum of the reaction wheels. It can be explained by the increasing influence of the nutation
motion of the body, the capturing point of the target position is harder to track by the reaction wheels
of the chaser. To further study the influence of nutation motion on the control algorithm performance,
the initial angular velocity is also varied. For the random ratio k from the interval k ∈ [0.5, 3] and
for the random initial angular velocity of the target (each component value is chosen from interval
[0, 24] deg/s) after simulation the maximum value of the reaction wheels momentum is obtained.
Figure 10 shows these points for each simulation and corresponding values of maximum angular
momentum which is required to be provided by reaction wheels. Almost all of the maximal values of
the reaction wheels are less than 1 Nms, that is assumed to be the upper limit. However, in the case the
angular velocity is higher that 24 deg/s the wheels saturation often occurs that causes the inappropriate
errors for the capturing.
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Figure 10. Maximum angular momentum of reaction wheels with respect to the target angular
moment value.

The reaction wheels saturation can be also caused by thruster misalignment. To study its
effect on the capturing the random misalignment l ∈ [0, 0.01] m is added to simulations additionally
to the varying parameters k and angular velocity of the target. Moreover, the control parameter
weighting matrix Rrot affects the required angular momentum of reaction wheel, consequently the
changing elements of Rrot ∈ [120, 200] are added as well to the simulation alongside other varying
parameters. The results of multiple simulations are presented in the Figure 11 in the parameters ranges,
where bubbles mean that there is no saturation and the capturing is successful, and the stars are for
capturing the failure due to reaction wheels saturation. The smaller the bubbles the less the maximal
angular momentum of the reactions wheels.
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Figure 11. Random points and range of saturation of reaction wheels (bubbles means that there is no
saturation and the capturing is successful, and the stars are for the capturing failure due to reaction
wheels saturation).

To interpret Figure 11 it will be helpful to present the box diagram of influential parameters.
Figure 12 shows the dependence of maximum angular momentum of reaction wheels to the
misalignment of thrusters from the center of mass. The 50% of the simulation results are inside
the rectangular and each outside interval contains 25% of results, the mean value is depicted as
horizontal line in the box. Figure 12 demonstrates a gradual increase in angular momentum which
intuitively could be predicted. Starting from 8 mm of thruster misalignment some of the simulations
results exceed the limit of the angular momentum. Figure 13 shows the effect of angular momentum of
target on maximum angular momentum of reaction wheels. In the given scale the increment seems
that the lower values are exponentially converging to the value of 0.9 Nms. Using Figure 11 with a
fixed HT and l it is possible to choose the optimum value for control weighting matrix Rrot.
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Thus, the developed relative coupled motion equations and SDRE-based control algorithm allow to
study the influence of the most crucial parameters influence on the capturing performance. The multiple
numerical study showed that for the presented case with defined parameters the successful capturing
is possible when the thruster misalignment does not exceed 8 mm, the control weighting matrix Rrot

elements are inside the interval [120, 200]. Moreover, the successful capturing is limited to the target
angular velocity of about 24 deg/s for each component and inertia tensor ratio k ∈ (0.5, 2.8]. It should
be noted that these results will be different for different initial relative vector and for other limit of the
reaction wheels momentum but using the same methodology it is possible to obtain the allowable
range for the successful capturing.

4. Conclusions

In this work an active space debris removal approach is considered. An algorithm for capturing a
non-cooperative target in LEO orbit is presented. Moreover, a method to explore the boundaries and
limitation of this suggested algorithm is developed. This method is used to determine the range of
the acceptability of the algorithm with respect to the parameters such as targets angular momentum,
and misalignment of the thrusters to avoid saturation of reaction wheels. For a debris with given
moment on inertia and angular velocity this method allows to predict the possibility of tracking the
target and capturing it. The multiple numerical study showed that for the presented case with defined
parameters the successful capturing is possible when the thruster misalignment does not exceed 8 mm,
the control weighting matrix Rrot elements are inside the interval [120, 200]. Moreover, the successful
capturing is limited to the target angular velocity of about 24 deg/s for each component and inertia
tensor ratio k ∈ (0.5, 2.8]. It should be noted that these results will be different for different initial
relative vector and for other limit of the reaction wheels momentum but using the same methodology
it is possible to obtain the allowable range for the successful capturing.
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