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Abstract: The novel contribution in this manuscript is an expansion of the current state-of-the-art in
the geometric installation of control moment gyroscopes beyond the benchmark symmetric skewed
arrays and the four asymmetric arrays presented in recent literature. The benchmark pyramid
symmetrically skewed at 54.73 degrees mandates significant attention to singularity avoidance,
escape, and penetration, while the most recent four asymmetric arrays are strictly useful in instances
where space is available to mount at least one gyro orthogonal to the others. Skewed arrays of
gyros and the research-benchmark are introduced, followed by the present-day box-90 and “roof”
configurations, where the roof configuration is the first prevalently used asymmetric geometry.
Six other asymmetric options in the most recent literature are introduced, where four of the six options
are obviously quite useful. From this inspiration, several dozen discrete options for asymmetric
installations are critically evaluated using two figures of merit: maximum momentum (saturation)
and maximum singularity-free momentum. Furthermore, continuous surface plots are presented to
provide readers with countless (infinite) options for geometric installations. The manuscript firmly
establishes many useful options for engineers who learn that the physical space on their spacecraft is
insufficient to permit standard installations.

Keywords: U.S. Patent 9567112 B1; control moment gyroscope; actuators; attitude control; guidance;
navigation and control; spacecraft dynamics; skewed pyramid

1. Introduction

Motion mechanics is governed by Euler’s moment equations for three degrees of rotation of
rigid bodies in space [1], and Newton’s Law [2] for three dimensions of translation. External forces
produce a change of linear momentum (i.e., a change in velocity with time for a constant mass), while
external torques produce a change in angular momentum (i.e., a change in angular velocity with
time for a constant mass moment of inertia). Rigid body motion mechanics governing spacecraft
attitude control has a long, distinguished lineage of literature [3–17] that has culminated in recent
advances using the governing Euler’s moment equations as the control [18–27] in a scheme called
deterministic artificial intelligence [28,29]. One alternative to generating an external torque is to modify
the angular momentum of some part(s) of the spacecraft, imparting motion for the entire system whilst
maintaining conservation of the angular momentum. Control moment gyroscopes [30] are an example
of such a system. Gyros use a relationship called a steering law [31–36] to calculate gyro commands
for designed changes in angular momentum (torque commands generated by attitude controllers to
accomplish a desired maneuver). Engineers design maneuvers in such a manner so that they never
demand torque that would produce an angular momentum trajectory that is required to pass through
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a singular condition [37–47]. One of the methods used by engineers is to analyze and implement gyro
installation at angles that yield the most usable momentum space [48], where usability is defined as
singularity-free operations yielding the maximum angular momentum.

This manuscript introduces the control moment gyroscope as a spacecraft torque actuator in the
benchmark installation geometry (symmetric arrays of gyros) modified to a non-redundant instantiation.
The initial research on non-symmetric skewed arrays is briefly reviewed to illustrate the usefulness of
the concept, since the introduction of asymmetry rotates the momentum space, allowing increased
singularity-free torque production in a desired direction. Ubiquitous skew angle optimization for
singularity-free operations results in symmetric arrays of gyros skewed at ninety degrees. From this
baseline, depressing individual gyros from ninety to zero degree skew angles has already demonstrated
momentum space rotation in the literature [43]. These 3n = 32 = 9 instantiations are the state-of-the-art
for asymmetric skewed arrays. From this inspiration, this manuscript investigates many of the infinite
possibilities for skew angle combinations. The figures of merit for comparison are the maximum
singularity-free momentum and maximum (saturation) momentum capabilities. The originally sought
research objective was to increase the yaw maneuvering capability, and several iterations towards this
goal are presented.

In light of recent research illustrating the peculiarities of near-planar momentum associated with
low skew angles [48], where two gyros are held in-plane at a zero (and near-zero) degree skew angle,
while the third gyro is iterated. Subsequently, only one gyro is held at a very low (non-zero) skew
angle, while iterating the other two. Pseudo-cardinal quantities (from a sinusoidal perspective) are also
investigated by iterating each gyro through a zero, thirty, sixty, and ninety degrees skew angle. Other
instantiations investigated include fifteen, twenty, thirty, forty, forty-five, sixty, eighty, and ninety.

Taken together, the manuscript comprises a novel initial articulation of asymmetric skewed arrays
permitting guidance, navigation, and control engineers to participate in an integrated product team
where other constituent members may enforce physical space constraints that preclude using the
new-benchmark “box-90” configurations of symmetric gyros skewed at ninety degrees.

2. Materials and Methods

This study will be limited to non-redundant, constant-speed, single-gimbaled control moment
gyroscopes (CMGs). Well-established methods are described first to elaborate typical skewed arrays
of gyros (ubiquitous “benchmark” geometry [42]), inverse steering laws, and the gyro system matrix
(referred to as [A] in the literature). The matrix contains time-varying gimbal angles that may be
commanded to produce a desired torque, and the matrix also contains skew angles representing the
gyro installation angle relative to the spacecraft reference frame. Changing these skew angles can bring
about unique attributes for the spacecraft, such as an increased pitch, roll, or yaw capability. Mapping
out these singularities for iterated gyro mounting geometries can show an engineer how to maximize
these capabilities and enhance a spacecraft’s mission completion ability.

2.1. Benchmark Redundant Arrays and Non-Redundant Arrays

Figure 1b depicts a rigid spacecraft with four gyros (Figure 1a) described in [43], in the so-called
benchmark configuration [42], where redundancy is from four gyros for three degrees of freedom
embodied in three-dimensional motion. The spacecraft’s body reference frame is labeled x, y, and z,
and each gyro is mounted at a fixed skew angle of βi∀i = 1, 2, 3, 4 = β during installation.

2.2. State-of-the-Art Non-Redundant Symmetric Skewed Arrays

Typical non-redundant symmetric installation is depicted in Figure 2a, while recently developed
asymmetric installation is depicted in Figure 2b. Skew angles are not normally modified after
installation. The gyros are gimballed, and their gimbal rotations about their respective gimbal axes
are expressed as δi∀i = 1, 2, 3. Gimballing rotates the angular momentum vectors hi∀i = 1, 2, 3 in
planes perpendicular to the gimbal axis, and these planes contain the respective torque vectors in a
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right-hand arrangement: angular momentum, torque, and the gimbal axis. The torque axis (τ) rotation
for a CMG is the axis around which the spacecraft maneuver is accomplished. The torque axis and the
orthogonal relationship between the CMG’s gimbal axis (δ) and angular momentum axis (hi) can be
seen in Figure 1. These relationships demonstrate how one may discover the torque axis and provide
the intuition behind singularity generation in this configuration [48].
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Figure 1. Control moment gyroscopes (a) placed onto a spacecraft mounted at a skew angle, with β
depicted here (b) in the former research benchmark with minimally redundant (four) gyros arranged in
the shape of a pyramid skewed at the symmetric angle, β. Notice the reduced vertical space occupied
by the gyros in (d) compared to the vertical space occupied by the gyro in (c). This vertical space
reduction is one reason why engineers might need to understand configurations with one or more gyro
mounted at disparate skew angles resulting in an asymmetric configuration.

Figure 2 depicts a rigid spacecraft with only three gyros (non-redundancy for three degrees of
freedom embodied in three-dimensional motion) [44]. Frames and axes are consistently labeled with
regards to the minimally redundant case in Figure 1, despite lacking a fourth gyro (the non-redundant
case). Notice the literature’s [43,44] use of a capitalized Hi to denote an individual gyro’s angular
momentum (seen in Figure 1), while we prefer the use of a lower-case term assembled in the capitalized
vector (seen in Figure 2) H =

{
h1 h2 h3

}
. Notice that vectors annotated in bold font in the figures

are also written in equations using { } brackets, underlined terms, or even over-arrows.
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Figure 2. Spacecraft body axes serving as basis vectors in schematic drawings of skewed SGCMG array
geometries, noting the angular momentum, torque, and gimbal vectors that define a right-hand set.

According to Euler’s equation
∑

Tinertial =
.

Hinertial =
.

HB + ωB ×HB, a time-derivative (rate of
change) of the angular momentum is torque, here referred to as the (negative) torque of the CMGs,
where τCMG is referred to in typical literature on controls as the variable u. Equation (1) is the steering
law (in the forward direction) that is merely the time-derivative of the projection of the individual
angular momentum vector H = {h1 h2 h3}

T. The relationship is expanded using the product rule
for derivatives to express the change in angular momentum as the product of the gimbal rates and a
spatial gradient Jacobian matrix containing gimbal angles and skew angles referred to in the literature
as [A]. (ASIDE: notice the change in nomenclature from Figure 1, the benchmark configuration, where
a lower-case hi is assembled into an upper-case vector H). The relationship must be inverted, since the
control u is known, and the current known gimbal positions define the [A] matrix, while the necessary
gimbal commands

.
δ are unknown. Equation (2) reveals the inverse relationship for the gimbal steering

commands, where control u is generated by typical equations of automatic control (e.g., a feedforward
controller like nonlinear optimal control, and feedback controllers like PI-Proportional, Integral,
PD-Proportional, Derivative, and PID-Proportional, Integral, Derivative controllers, etc.). The matrix
inverse in Equation (2) is usually a matrix pseudoinverse in the literature, since the benchmark research
configuration has four gyros providing four degrees of freedom for only three dimensions of motion
(i.e., an overdetermined problem for which the pseudo-inverse is appropriate). The regular matrix
inverse is correctly used here for this precisely determined problem where three degrees of freedom
are used to provide three-dimensional motion. The [A] matrix is the spatial gradient matrix of angular
momentum normalized by one gyro’s value of angular momentum, as per Equations (3) and (4).

τCMG ≡ u =
.

H =
dH
dt

=
dH
dδ

dδ
dt
≡ [A]

.
δ (1)

.
δ = [A]−1u (2)

H =


hx

hy

hz

 =


cosδ3 − cosδ1 + cosβsinδ2

cosβ(sinδ3 − sinδ1) − cosδ2

cosβ(sinδ1 + sinδ2 + sinδ3)

 (3)

[A] =
dH
dδ

=


sinδ1 cosβcosδ2 −sinδ3

−cosβcosδ1 sinδ2 cosβcosδ3

sinβcosδ1 sinβcosδ2 sinβcosδ3

 (4)

It should be noted that the skew angles βi∀i = 1, 2, 3 = β are also in the [A] matrix in Equation (4)
due to its use of projecting the angular momentum vectors of the gyros onto the spacecraft reference
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frame, as done in Equation (3). Therefore, β contributes to mathematical singularity, since the [A]
must be inverted in Equation (2). The inverse itself is of interest in this study, and several methods of
computing the inverse were investigated in this research for a non-redundant (three gyro) array, and the
results are summarized in Table 1. While an analytic inverse is rarely used for overdetermined systems
in favor of the pseudoinverse, since the steering matrix has a [3 × 3] dimension in this non-redundant
case, analytical expressions are available in both matrix form and as decoupled, multiple equations.
These are respectively named “analytic inverse” and “analytic formulas” in Table 1.

Table 1. Matrix 2-norm error defined as the difference between each case and the baseline Moore–Penrose
matrix pseudoinversion, pinv. Skew angle was set to βi = {90 90 90}T during a 30 degree maneuver,
while gimbal angles δi = {δ1 δ2 δ3}

T were free to rotate.

[A] Inversion Method Matrix-Norm Error

[A]−1 0.872826646563208
inv[A] 0.872826646563208

pinv[A] –
[A]\eye(size([A])) 0.872826646560334
LU Decomposition 0.872826646560693

Analytic Matrix 6.67204727298 × 104

Analytic Formulas 6.67204727298 × 104

Notice identical results for [A]−1 and inv[A] implementations.

A common controversial issue is that the chosen computational implementations produce disparate
results, despite using the same equation. One such computational implementation is the methodology
chosen to calculate the matrix inverse (the source of mathematical singularities) in the steering law in
Equation (2). In order to aid reproducibility of the results in this manuscript, seven common inversion
methods are compared in Table 1, while the Moore–Penrose pseudoinverse was chosen here and
implemented by the MATLAB pinv command. The Moore–Penrose pseudoinverse implemented in
MATLAB was the baseline for comparison, since it had the lowest matrix norm error.

2.3. Benchmark Geometry: Optimal Symmetric Skew Angle

The minimally redundant (4-gyro skewed pyramid) has been extensively studied in the literature,
with the consensus that the skew angle βi∀i = 1, 2, 3, 4 = β = 54.73 degrees [42] establishes a spherical
momentum envelope (maximal obtainable angular momentum). This skew angle is the benchmark from
which subsequent research has grown in the past few decades, including the re-optimization of the
skew angle [45] for the non-redundant to be introduced in the next section of this manuscript. The basis
for the original benchmark optimization was to optimize the spherical nature of the outer momentum
generation capability (i.e., saturation). Additional knowledge on this aspect of the benchmark geometry
is revealed later in this manuscript, when the asymmetric geometries are evaluated for the first time
for a maximal (saturation) performance.

2.4. State-of-the-Art Geometry: Re-Optimized Symmetric Skew Angle

The current state-of-the-art for gyro-pyramid installation geometry comes from a re-optimization
of spherical singularity-free angular momentum, and is often referred to in industry as the slang term
“box-90”. Notice the substantial difference between the displays in Figures 3 and 4 of the pyramid
singularity hypersurfaces. This heuristically illustrates the benefit of the bi-planar generation of angular
momentum, while [48] reveals some weaknesses with the counter-opposing philosophy, near co-planar
angular momentum generation. Another configuration that has recently arisen to be commonplace in
industry is a “roof configuration”, which will now be elaborated.



Aerospace 2019, 6, 98 6 of 14
Aerospace 2019, 6, x FOR PEER REVIEW 6 of 15 

 

 

Figure 3. Maximum Singularity Free Momentum of β1 = 90°, and β2, and β3 = Free. 

 
(a) Numerical Maximum Singularity Free 
Momentum of β1 = 0°, and β2 and β3 = Free 

 
(b) Numerical Maximum Singularity Free 

Momentum of β1 = 30°, and β2 and β3 = Free 

 
(c) Numerical Maximum Singularity Free 

Momentum of β1 = 60°, and β2 and β3 = Free 

 
(d) Numerical Maximum Singularity Free 

Momentum of β1 = 90°, and β2 and β3 = Free 

Figure 4. Numerical Maximum Singularity Free Momentum of β1 = 0°, 30°, 60°, and 90°, and β2 and β3 
= Free. 

2.6. State-of-the-Art Asymmetric Geometry: Iterated Non-Symmetric Orthogonal Skew Angles 

The depiction of angular momentum planes established by the use of “mixed” skew angles 
results in asymmetries, while the slang “roof configuration” is obviously applicable when the plane 
for gyro #2 rotates from 90 degrees to 0 degrees (establishing a “roof/floor” on the seemingly walled-
structure). While the box-90 configuration has a maximal capability around the y-axis (pitch), the 
investigation described in [43] consecutively analyzed installations where each gyro(s) is/are rotated 
from 90 degrees to 0 degrees. The result is rotation of the singularity hypersurfaces, where the “roof” 
configuration depresses gyro #2 from 90 to 0 degrees, and the maximal capability is established in the 
z-direction (yaw). 

Figure 3. Maximum Singularity Free Momentum of β1 = 90◦, and β2, and β3 = Free.

Aerospace 2019, 6, x FOR PEER REVIEW 6 of 15 

 

 

Figure 3. Maximum Singularity Free Momentum of β1 = 90°, and β2, and β3 = Free. 

 
(a) Numerical Maximum Singularity Free 
Momentum of β1 = 0°, and β2 and β3 = Free 

 
(b) Numerical Maximum Singularity Free 

Momentum of β1 = 30°, and β2 and β3 = Free 

 
(c) Numerical Maximum Singularity Free 

Momentum of β1 = 60°, and β2 and β3 = Free 

 
(d) Numerical Maximum Singularity Free 

Momentum of β1 = 90°, and β2 and β3 = Free 

Figure 4. Numerical Maximum Singularity Free Momentum of β1 = 0°, 30°, 60°, and 90°, and β2 and β3 
= Free. 

2.6. State-of-the-Art Asymmetric Geometry: Iterated Non-Symmetric Orthogonal Skew Angles 

The depiction of angular momentum planes established by the use of “mixed” skew angles 
results in asymmetries, while the slang “roof configuration” is obviously applicable when the plane 
for gyro #2 rotates from 90 degrees to 0 degrees (establishing a “roof/floor” on the seemingly walled-
structure). While the box-90 configuration has a maximal capability around the y-axis (pitch), the 
investigation described in [43] consecutively analyzed installations where each gyro(s) is/are rotated 
from 90 degrees to 0 degrees. The result is rotation of the singularity hypersurfaces, where the “roof” 
configuration depresses gyro #2 from 90 to 0 degrees, and the maximal capability is established in the 
z-direction (yaw). 

Figure 4. Numerical Maximum Singularity Free Momentum of β1 = 0◦, 30◦, 60◦, and 90◦, and β2 and
β3 = Free.

2.5. State-of-the-Art Asymmetric Geometry: Iterated Non-Symmetric Orthogonal Skew Angles

The depiction of angular momentum planes established by the use of “mixed” skew angles results
in asymmetries, while the slang “roof configuration” is obviously applicable when the plane for gyro
#2 rotates from 90 degrees to 0 degrees (establishing a “roof/floor” on the seemingly walled-structure).
While the box-90 configuration has a maximal capability around the y-axis (pitch), the investigation
described in [43] consecutively analyzed installations where each gyro(s) is/are rotated from 90 degrees
to 0 degrees. The result is rotation of the singularity hypersurfaces, where the “roof” configuration
depresses gyro #2 from 90 to 0 degrees, and the maximal capability is established in the z-direction (yaw).
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Six instances of non-symmetric skewed pyramids are the current state-of-the-art, but only four
options have immediately obvious benefits. The other four subplots are desirable installations for
engineers who learn that their space missions need a predominant capability around the roll, pitch,
or yaw, respectively, as listed in Table 2. This legacy research inspires new developments in this
manuscript. What should an engineer do if they learn that their space mission requires predominant
capabilities about some intermediate axis (e.g., an axis in the x-z plane)? What if (for example) a gyro’s
mounting space gets prohibitively restricted?

Table 2. Mixed skew angles in the literature and resulting preference dictions [43].

Singularity Case
CMG Skew Angle

Preferred Direction
CMG #1 CMG #2 CMG #3

Case 1 0 90 90 NA
Case 2 90 0 90 ẑ
Case 3 90 90 0 NA
Case 4 0 0 90 x̂
Case 5 0 90 0 ŷ
Case 6 90 0 0 x̂

CMG skew angles in degrees.

2.6. Methodology

There does not exist a reference volume that includes many, a dozen, or continuous infinite
selections of installation geometries (options for skew angles, β), and Section 3 accomplishes this key
novel contribution to the field. Towards the goal of creating such a reference volume, Section 3 of this
manuscript reveals the results of our research starting from the current state-of-the-art summarized
in Table 2 that has already been presented in the literature. We commence with holding gyro #1 at
a 90-degree skew angle and allowing gyros #2 and #3 to vary continuously from 0 to 90 degrees.
Similarly, we examine holding gyro #1 at zero degrees and permitting the other two gyros to be
installed at any arbitrary angle. Next, we step through logical iterations: what happens when two
gyros are fixed and a third is free. Considering recent companion research [48] by the authors
illustrating peculiarities of near-planar momentum generation associated with very low skew angles,
and following the logical iteration methodology, we next consider holding two gyros at very low
skew angles. The aforementioned iterations reveal the maximum singularity-free momentum space
available (an inner momentum space), so lastly, we investigate the maximum (saturation) capability,
regardless of inner singularities akin to the original benchmark optimization [42].

3. Results

We have introduced the benchmark geometry (Figures 1 and 3) and its corollary state-of-the art
non-redundant modification (Figures 2, 4 and 5), in addition to initial implementations of asymmetric
arrays. The next section’s motivation is the fact that engineers may not always be permitted to install
one or more gyro skewed at ninety degrees, occupying the most physical space of all options. Consider
a gyro of an arbitrary dimension of unity. Symmetric mounting of three or four such gyros occupies
one unit in the vertical plane and also one unit in the horizontal plane. Meanwhile, depressing either
of the planes to non-orthogonal mounting at less than ninety degrees requires space of less than one
unit. The spinning mass remains in the same dimension, as does the gimbal and mounting hardware,
but we rotate that dimension away from an orthogonal plane, reducing the space occupied by the
apparatus. Therefore, symmetric, orthogonal mounting at ninety degrees requires the most space
onboard a spacecraft compared to any of the other options. Quickly peak back to Figure 1b and notice
how depressing the skew angle reduces the height of the pyramid. Similarly, the long-axis of the CMG
(depicted in Figure 1a) depresses, reducing the physical size requirement inside the spacecraft.
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Space systems engineers might be required to install one of more gyros at an angle of less than
ninety degrees to (for example) make physical space available to another subsystem (e.g., a cold gas
thruster tank, propellant piping, heat exchangers, etc.).

Novel, Non-Symmetric, Non-Orthogonal Skew Angles

With the understanding that all references to angular momentum are normalized by one gyro’s
angular momentum capability (i.e., so-called 1h, 2h, and 3h nomenclature ubiquitous in the literature),
we commence the investigation by holding gyro #1 at a 90-degree skew angle and allowing gyros #2
and #3 to vary continuously from 0 to 90 degrees (depicted in Figure 3). The results are self-validating
by examining the singularity-free maximum momentum capability for the symmetric case (since it is one
of the infinite iterations). βi∀i = 1, 2, 3 = β = 90 degrees is illustrated in Figure 3 to produce 1h, which
is one gyros worth of angular momentum, and this exactly coincides with the contemporary literature
on the “box-90” configuration. Due to the difficulties in visualizing all the possible iterations of angles
in Figure 3, we “flatten” the depictions to two-dimensions, necessitating multiple plots depicted in
Figure 4 for four semi-cardinal values for the skew angle of gyro #1.

Inspired by the effectiveness of momentum space rotation of the “roof” configuration established
by laying down the center gyro (gyro #2 here) to zero degrees, companion research by the authors [48]
investigated issues that arise when using other combinations of low skew angles. Figure 5 is inspired
by the companion research which claims peculiarities with low-skew angle combinations (albeit the
“roof” configuration has proven quite effective). We take gyro #1 as the illustrative example, since it
has a counterpart, gyro #3, which acts in a parallel plane. Immediately evident in Figure 5a is the fact
that laying gyro #1 to a near-zero skew angle does not bestow a benefit unless one of the other gyros
is also depressed (allowing near 1h capabilities). Notice how poorly the configuration performs if
only gyro #1 is depressed, leaving the other two gyros at ninety degrees. As a matter of fact, the only
favorable regions of Figure 5a are in the upper-left and lower-right corners, where one of the other
respective gyros is also depressed to zero degrees. Another aspect evident in Figure 5 is the nature of
the right hand side of each subplot. Notice that the far-right sides of the plots become only yellow
(best performing) when skew angles all are beyond 60 degrees (precisely validating the discovery
in the companion research that revealed peculiarities of near-planar momentum associate with low
skew angles).

Figure 6 presents a three-dimensional version of Figure 5 (gyro #1 held at 1 degree) akin to
Figure 4’s original presentation of gyro #1 held at ninety degrees. Meanwhile, Figure 6 moves away
from singularity-free capability to focus on maximal (saturation) capability, but the iterations are
similar: we iterate the skew angle of gyro #1 discretely, and present continuous (infinite) iterations of the
other two skew angles. Table 3 contains the maximum yaw maneuverability skew angle combinations.
The space mission motivating this research needed to maximize yaw maneuverability. While the
analysis displayed in Figures 4–6 provides (infinite) continuous optional alternatives for mounting
gyros asymmetrically, the graphic depictions nonetheless can make it difficult to discern the exact
capability of a discrete combination of asymmetric skew angles. To remedy this deficiency, the analyses
of discrete options are listed in Tables 4–7. For example, if a space mission dictates two that gyros must
be set to a skew angle lower than ninety degrees, several discrete options are immediately evident, and
some even maintain a very similar singularity-free momentum capability (e.g., β = {80 1 1}T yields
097h, while the box-90 configuration β = {90 90 90}T yields 1h).
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Table 3. Maximum (saturation) yaw maneuverability skew angle combinations.

|H| β1 β2 β3

2.017 1 90 90
2.259 15 90 90

2.5 30 90 90
2.707 45 90 90
2.866 60 90 90
2.966 75 90 90

3 90 90 90

Skew angles measured in degrees.

Next, we iterated only gyro #1’s installed skew angle, retaining other skew angles at zero degrees.
We investigated one-thousand iterations of mixed skew angles, and some key iterations are described
here. Once again, the maximum amplitude is 1h, representing one gyro’s worth of angular momentum,
but furthermore, there is an almost noticeable pattern in the results. Iterations 201, 301, 401, 501, 601,
701, and 801 all peak at 1h. The skew angle combinations responsible for these peaks can be seen
in Table 4. These results indicate that having two gyro’s with a skew angle of zero results in high
allowable angular momentum values. Space is at a premium on a spacecraft and this information
could prove useful if a certain gyro configuration can be made to fit onboard.

Table 4. Mixed skew angle selected test cases (from 1000 iterations seeking max. singularity
free momentum).

Iteration β1 β2 β3

201 20 0 0
301 30 0 0
401 40 0 0
501 50 0 0
601 60 0 0
701 70 0 0
801 80 0 0

Skew angles measured in degrees.

Afterwards, we iterated both gyros #1 and 2 while holding gyro #3 at a very low value of one degree,
and the results are provided in Table 5, followed by numerous further iterations in Tables 6 and 7.
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Table 5. Singularity-Free Maximum Angular Momentum Values for Mixed Skew Angles.

Angular Momentum β1 β2 β3

1 90 90 free
0.97 80 1 1
0.93 70 3 1
0.89 60 7 1
0.83 50 12 1
0.79 40 18 1
0.76 30 26 1
0.78 20 38 1
0.85 10 54 1
1.00 1 90 1

Skew angles measured in degrees.

Table 6. Singularity-free maximum angular momentum values for various mixed skew angles.

β1 β2 β3 H

15 30 60 0.54
30 15 60 0.51
30 60 15 0.16
15 60 30 0.16
60 15 30 0.51
60 30 15 0.54

20 40 80 0.34
20 80 40 0.17
40 20 80 0.33
40 80 20 0.17
80 20 40 0.33
80 40 20 0.53

30 60 90 0.12
30 90 60 0.41
60 30 90 0.51
60 90 30 0.41
90 30 60 0.51
90 60 30 0.25

0 45 90 0.73
0 90 45 0.22

45 0 90 0.41
45 90 0 0.22
90 0 45 0.41
90 45 0 0.73

0 30 60 0.52
0 60 30 0.39

30 0 60 0.52
30 60 0 0.39
60 0 30 0.52
60 30 0 0.53

Skew angles measured in degrees.



Aerospace 2019, 6, 98 12 of 14

Table 7. Significant skew angles and maximum (saturation) angular momentum.

β1→β2→β3 Maximum Momentum, H

0→ 0→ f ree 3
0→ f ree→ 0 3

30→ 0→ f ree 3
60→ 0→ f ree 3
90→ 0→ f ree 3
90→ f ree→ 90 3

0→ 90→ 90 2.449
30→ 90→ 60 2.449
60→ 90→ 30 2.449
90→ 90→ 0 2.449

Skew angles measured in degrees.

4. Discussion

Previously established in the 1990’s, control moment gyroscope installation geometry is
ubiquitously accepted to include minimally redundant (four) gyros mounted at symmetric skew
angles of 56.73 degrees to generate maximum spherical momentum at the outer saturation surface. This
benchmark has necessitated considerably voluminous research into singularity avoidance, singularity
escape (when avoidance fails), and singularity penetration. In the 2000’s, the benchmark was replaced
by the “box-90” configuration prevalent in industry today, following a re-optimization of the symmetric
skew angle to maximize the inner zone of singularity-free momentum space. Coincidently, initial
asymmetric geometries were introduced without expansive explanatory research, and these geometries
were demonstrated to provide useful options for singularity-free momentum generation capabilities in
instances where gyros could not all be installed at ninety degrees.

With this auspicious beginning, this manuscript provides a more comprehensive treatment of
asymmetric options for gyro installations by providing several dozen discrete options for skew angle
combinations. Furthermore, surface plots are provided to allow readers to mentally iterate in between
the discrete cases provided. This manuscript establishes a reference article to future systems. Future
research will include experimental validation of these results on actual space hardware, either in-orbit
or using free-floating spacecraft simulators in laboratories.

This study concludes that infinitely more useful asymmetric options are available than currently
reflected in the predominant literature. No specific, single configuration is urged; rather, many
optional configurations are identified as having identical performance characteristics, while occupying
a reduced space. By “performance”, we mean both the maximum momentum capability and the
maximum singularity-free momentum capability. For engineers utilizing control moment gyroscopes
in space-constrained environments, we recommend using the results here to choose options that require
less physical space onboard the vehicle than the ubiquitous symmetric array skewed at ninety degrees.

5. Patents

Patent 9,567,112 February 14, 2017 by the author illustrates methods of singularity avoidance
without null motion and singularity penetration in the event that trajectories enter singularities [47].
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