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Abstract: Automatic controls refer to the application of control theory to regulate systems or processes
without human intervention, and the notion is often usefully applied to space applications. A key
part of controlling flexible space robotics is the control-structures interaction of a light, flexible
structure whose first resonant modes lie within the bandwidth of the controller. In this instance, the
designed-control excites the problematic resonances of the highly flexible structure. This manuscript
reveals a novel compensator capable of minimum-time performance of an in-plane maneuver with
zero residual vibration (ZV) and zero residual vibration-derivative (ZVD) at the end of the maneuver.
The novel compensator has a whiplash nature of first commanding maneuver states in the opposite
direction of the desired end state. For a flexible spacecraft simulator (FSS) free-floating planar
robotic arm, this paper will first derive the model of the flexible system in detail from first principles.
Hamilton’s principle is augmented with the adjoint equation to produce the Euler–Lagrange equation
which is manipulated to prove equivalence with Newton’s law. Extensive efforts are expended
modeling the free–free vibration equations of the flexible system, and this extensive modeling yields
an unexpected control profile—a whiplash compensator. Equations of motion are derived using
both the Euler–Lagrange method and Newton’s law as validation. Variables are then scaled for
efficient computation. Next, general purposed pseudospectral optimization software is used to seek an
optimal control, proceeding afterwards to validate optimality via six theoretical optimization necessary
conditions: (1) Hamiltonian minimization condition; (2) adjoint equations; (3) terminal transversality
condition; (4) Hamiltonian final value condition; (5) Hamiltonian evolution equation; and lastly (6)
Bellman’s principle. The results are novel and unique in that they initially command full control
in the opposite direction from the desired end state, while no such results are seen using classical
control methods including classical methods augmented with structural filters typically employed
for controlling highly flexible multi-body systems. The manuscript also opens an interesting question
of what to declare when the six optimality necessary conditions are not necessarily in agreement (we
choose here not to declare finding the optimal control, instead calling it suboptimal).

Keywords: space flight control problems; active dynamic control; structural mechanics control
problems; vibration suppression; zero residual vibration (ZV); zero residual vibration-derivative
(ZVD); pseudospectral; time optimal; flexible control; multi-body; space robotics; structural filters

1. Introduction

Automatic controls refer to the application of control theory to regulate systems or processes
without human intervention, and the notion is often usefully applied to space applications. A key part
of controlling flexible space robotics is the control-structures interaction of a light, flexible structure
whose first resonant modes lie within the bandwidth of the controller. Very flexible materials are
ubiquitous in space robotics because stiffness cannot be achieved by high-mass objects due to the
cost of spaceflight. In this instance, the designed control excites the problematic resonances of the
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highly flexible structure. In order to optimize the control of such challenging systems, a brief review of
mechanics and ubiquitous control techniques is warranted.

Mechanical motion of mass in six degrees of freedom is completely described by separate treatment
of three degrees of freedom of translation plus three additional degrees of freedom of rotation as
articulated in the year 1830 [1] and expanded and modernized over the following two centuries [2–13].
Translational degrees of freedom are governed by Newton’s law, while rotational degrees of freedom
behave in accordance with Euler’s law. While translation is straightforward (a second-order ordinary
differential equation), rotation is complex since the governing equations are nonlinear and coupled and
remain unsolved in general form without simplifying assumptions. Thus, rotational motion remains
an area of considerable recent developments [14–19], where [14–16] are recent works in the control
of rotational mechanics, while [17–19] represent very recent developments in system identification,
in particular, identification of material properties and system parameters (e.g., modal properties like
natural frequencies and moment of inertia) that permit control design of highly flexible multi-body
systems. New research in kinematic representations of the motion is presented in [20]. With the
complete analytic description of translational and rotational motion, multi-body dynamics is used to
apply these two governing relations to masses that move relative to each other (vibrate, flex, etc.).

The hybrid coordinate system [21] was used to separate the model into two subsystems: the rigid
body and the flexible appendage, which is assumed to be linearly elastic. The A, B, C axes are inertially
fixed with the X, Y, Z axes being allowed to rotate to easily express rotational degrees of freedom.
The x’, y’, z’ axes are permitted to rotate with the control actuator (reaction wheel). The rigid body
motion due to flexible motion was written in flexible-body modal coordinates, then transformed to
central body coordinates for translations and rotations. The elastic deformation in terms of cantilever
modal coordinates was combined with the flexible body deformations via a rigid–elastic coupling
term. An elastic stress/deformation relationship is assumed under the small deformation assumption.
The flexible spacecraft simulator (FSS) depicted in Figure 1 was broken into nodes for finite element
analysis of the flexible system as displayed in Figure 2 and Table 1. Finite element analysis was
performed to yield a mathematical model of the system with the flexible appendage.

Aerospace 2019, 6, x FOR PEER REVIEW  2 of 17 

of the highly flexible structure. In order to optimize the control of such challenging systems, a brief 
review of mechanics and ubiquitous control techniques is warranted. 

Mechanical motion of mass in six degrees of freedom is completely described by separate 
treatment of three degrees of freedom of translation plus three additional degrees of freedom of 
rotation as articulated in the year 1830 [1] and expanded and modernized over the following two 
centuries [2–13]. Translational degrees of freedom are governed by Newton’s law, while rotational 
degrees of freedom behave in accordance with Euler’s law. While translation is straightforward (a 
second-order ordinary differential equation), rotation is complex since the governing equations are 
nonlinear and coupled and remain unsolved in general form without simplifying assumptions. Thus, 
rotational motion remains an area of considerable recent developments [14–19], where [14–16] are 
recent works in the control of rotational mechanics, while [17–19] represent very recent developments 
in system identification, in particular, identification of material properties and system parameters 
(e.g., modal properties like natural frequencies and moment of inertia) that permit control design of 
highly flexible multi-body systems. New research in kinematic representations of the motion is 
presented in [20]. With the complete analytic description of translational and rotational motion, 
multi-body dynamics is used to apply these two governing relations to masses that move relative to 
each other (vibrate, flex, etc.).  

 
Figure 1. Flexible spacecraft robotic arm (very lightweight) attached to a rotational hub free-floating 
on planar air-bearing. The flexible arm is modeled using the lumped-mass technique where arm mass 
is distributed to discretized nodes as depicted in Figure 2. 

The hybrid coordinate system [21] was used to separate the model into two subsystems: the rigid 
body and the flexible appendage, which is assumed to be linearly elastic. The A, B, C axes are 
inertially fixed with the X, Y, Z axes being allowed to rotate to easily express rotational degrees of 
freedom. The x’, y’, z’ axes are permitted to rotate with the control actuator (reaction wheel). The 
rigid body motion due to flexible motion was written in flexible-body modal coordinates, then 
transformed to central body coordinates for translations and rotations. The elastic deformation in 
terms of cantilever modal coordinates was combined with the flexible body deformations via a rigid–
elastic coupling term. An elastic stress/deformation relationship is assumed under the small 
deformation assumption. The flexible spacecraft simulator (FSS) depicted in Figure 1 was broken into 
nodes for finite element analysis of the flexible system as displayed in Figure 2 and Table 1. Finite 

Figure 1. Flexible spacecraft robotic arm (very lightweight) attached to a rotational hub free-floating on
planar air-bearing. The flexible arm is modeled using the lumped-mass technique where arm mass is
distributed to discretized nodes as depicted in Figure 2.
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of the flexible appendage. Burke performed experimental verification of Harrington’s technique. 
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Figure 2. Schematic of flexible robotic arm in Figure 1. Flexible space robot arm nodes (corresponding
to Table 2) are numbered from the base of the arm beginning with node 1 (i.e., nodes 2, 3, 4 and 5
displace by rotation upward and downward, while nodes 5, 6, 7 and 8 displace translationally left and
right).

Table 1. Properties of flexible spacecraft simulator (FSS).

Cross-Section Parameter 1 Value

Length, l 0.25 m
Mass, m 0.455 kg

Beam Density, ρ 2.8 × 103 kg/m3

Modulus, E 72 × 109 N/m2

1 Corresponds to Figure 1.

Hamilton’s principle was used to derive the equations of motion via Newton’s law and Lagrange’s
method and compared to previous analyses [22–26] of somewhat similar systems. Extensive efforts are
expended modeling the free–free vibration equations of the flexible system, and this extensive modeling
yields a distinct improvement over the just-cited literature. Ward [22] completed the initial basic design
of a different version of the flexible spacecraft simulator (FSS). Watkins [23] and Harrington [24] each
implemented proportional-derivative (PD) control and linear–quadratic–Gaussian (LQG) compensators
on various configurations of the FSS. Hailey [25] performed experimental verification of the analytical
results for PD and linear–quadratic regulator (LQR), and additionally tested a classic bang–bang
controller, furthermore implementing control input shaping to eliminate an undesirable spike in the
response of the PD controller. Harrington later performed [26] multivariate control (using LQG) with
piezoelectric sensors [16] and actuators along the length of the flexible appendage. Burke performed
experimental verification of Harrington’s technique. Each referenced author derived the equations
of motion and used finite element analysis to analyze their respective flexible appendage in various
computer languages (FORTRAN, MATLAB, and SIMULINK).
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A key part of flexible system control is the control-structures interaction of a light, flexible structure
whose first resonant modes lie within the bandwidth of the controller. This introduction to designing
compensators will prove capable of minimum-time performance of an in-plane maneuver with zero
residual vibration (ZV) and zero residual vibration-derivative (ZVD) at the end of the maneuver.
This optimal time will provide a figure of merit for synthesis of control techniques. For a flexible
spacecraft simulator (FSS) free-floating planar robotic arm, this paper will first model the flexible
system in detail and then use general purposed pseudospectral optimization software to seek an
optimal control, proceeding afterwards to validate optimality via six theoretical optimization necessary
conditions: (1) Hamiltonian minimization condition; (2) adjoint equations; (3) terminal transversality
condition; (4) Hamiltonian final value condition; (5) Hamiltonian evolution equation; and (6) Bellman’s
principle. The investigation opens an interesting question of what to declare when the six necessary
conditions are not necessarily in agreement (we choose not to declare finding the optimal control,
instead calling it suboptimal). Control derived by the pseudospectral method will be numerically
revealed using MATLAB via a general optimization program [27]. By comparison, recall classical
compensators and those designed to control flexible systems [28–34] ubiquitously command maneuvers
in the direction of the desired end state. To validate this claim, reviews of classical compensators [35] and
frequency domain shaping filters [36] were performed by Wie and Agrawal, respectively. Xu et al. [37]
studied optimized compensator designs, but the dynamics were cantilever vibration modes, neglecting
the so-called “free–free” dynamics illustrated by anti-resonance/resonance pairs in the frequency
domain. “Free–free” refers to the fact that both ends of the vibrating structure are free to vibrate
(e.g., in space, suspended in the atmosphere, etc.). Sands, et al. developed deterministic artificial
intelligence methods stemming from a combination of system identification [17–19], physics-based
methods [38] and adaptive control [39,40], yet all of these embody the former design paradigm of first
designing compensation, then seeking optimization. In parallel, a new paradigm is emerging that
begins the process with solution of an optimization problem that is subsequently used in compensation
design [41]. That new paradigm is adopted here.

Constituting an improvement over the recently published literature, Newtonian derivation
of the equations of motion elaborating the free–free vibration modes is shown to be equivalent
to the derivation by Hamilton’s principle, Lagrange’s method, and Euler–Lagrange’s method.
Since optimization via Pontryagin’s minimization principle is articulated using the Lagrangian
and Hamiltonian, the equivalence permits the original derivation of the dynamics to be used in the
optimized calculation of the control compensator.

2. Materials and Methods

Here, the equations of motion are derived from Hamilton’s principle, then converted into the
format required by general purpose optimization software. A commonplace MATLAB software
package called DIDO [27] was used here to solve for the optimal control. The chosen optimization
software is not particularly important, but significant and detailed explanation and formatting is
given in this manuscript to augment repeatability by other researchers. The reader is urged to initially
focus on the critical analysis of the discovered results, and only in the event they seek to repeat the
results, then emphasize the syntax and formatting required by DIDO. The key novel contribution is
the whiplash nature of the control, which will be validated in Section 3 using six disparate theoretical
optimization criteria.

2.1. Equations of Motion from Hamilton’s Principle

Hamilton’s principle implies that the Lagrange method must:

Minimize J[x(g), u(g), t] =
∫ t f

t0

L
( .
x, x

)
dt (1)
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Subject to
.
x = u (2)

Where L = T −V =
1
2

mV2 + mgh =
1
2

m
.
x2

+ mgh (3)

Writing the control Hamiltonian : H(λ, x, u) ≡ L(x, u) + λu (4)

Pontryagin’s minimization condition :
∂H(λ, x, u)

∂u
=
∂L(x, u)
∂u

+ λ = 0 (5)

Differentiating leads to a minimization equation expression that may be combined with the
adjoint equation to produce the Euler–Lagrange equation, which by algebraic manipulation becomes
Newton’s law.

d
dt

(
∂L(x, u)
∂u

+ λ

)
=

d(0)
dt

= 0→
d
dt

(
∂L(x, u)
∂u

)
−
∂L(x, u)
∂x︸                         ︷︷                         ︸

Euler−Lagrange equation

= 0 (6)

d
dt

(
∂L(x, u)
∂u

)
−
∂L(x, u)
∂x

=
d
dt

(
∂L(x, u)
∂u

)
−
∂L(x, u)
∂x

=
d
dt

(
m

.
x
)
−
∂L(x, u)
∂x

= m
..
x−

∂L(x, u)
∂x

= 0 (7)

∂L(x, u)
∂x︸    ︷︷    ︸
F

= m
..
x︸︷︷︸

A

⇔ F = mA︸   ︷︷   ︸
Newton′s law

(8)

Hamilton’s principle of minimizing the Lagrangian results in two methods to derive equations
of motion: Newton’s law and the Euler–Lagrange equation. Newton’s method sums the forces and
moments about each point in the inertial frame, while the Lagrange approach uses the system’s energy
to derive the equations of motion. Each technique is valid for the flexible spacecraft simulator and
yields identical results, and both methods are used next to validate the derived equations of motion to
be subsequently optimized.

2.2. Equations of Motion from Euler–Lagrange’s Method

Lagrange’s method is appropriate regardless of various coordinate systems, since it utilizes the
system’s kinetic (T) and potential energy (V) to derive the equations of motion.

T =
1
2
=

∫
R
(VR·VR)dm +

∫
F
(VF·VF)dm +

∫
W
(VW ·Vw)dm (9)

where

VR =
.
θk̂× rR is the velocity of a particle on the rigid body;

VF =
.
θk̂× rF + δ+

.
θk̂× δ is the velocity of a particle on the flexible body;

VW = (
.
θ+

.
θW)k̂× rW +

.
θk̂× ro is the velocity of a particle on the reaction wheel;

r vectors are position vectors to the respective particles;
δ is elastic deformation vectors of particles on the flexible body;
î, ĵ, and k̂ are unit vectors in the x’, y’, z’ axes of the reaction wheel.

Expanding all the terms in the equation for kinetic energy, T:

T =
1
2

∫
R

(
x2

R + y2
R

)
dm +

1
2

∫
F

[ .
θ

2(
x2

R + y2
R

)
+

( .
δ

2
x +

.
δ

2
y

)
+

.
θ

2(
δ2

x + δ2
y

)]
dm

+
1
2

∫
F

[
2

.
θ
(
x f

.
δy − y f

.
δx

)
+ 2

.
θ

2(
x f δx + y f δy

)
+ 2

.
θ
( .
δyδx +

.
δxδy

)]
dm
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+
1
2

∫
W

[ .
θ

2(
x2

0 + y2
0

)
+

.
θ

2(
x2

w + y2
w

)
+ 2

.
θ(x0xw + y0yw) +

.
θ

2
w

(
x2

w + y2
w

)]
dm

+
1
2

∫
W

[
2

.
θ

.
θw

(
x2

w + y2
w

)
+ 2

.
θw

.
θ(x0xw + y0yw)

]
dm

Utilizing generalized coordinates θ, θw, δ, assuming the reaction wheel rotates about its center of
mass, and invoking the small displacement assumption simplifies the kinetic energy equation to:

T =
1
2

Izz
.
θ

2
+

1
2

Iw
.
θ

2
w +

1
2

Iw
.
θ

.
θw +

1
2

∫
F

( .
δ

2
x +

.
δ

2
y

)
dm +

.
θ

∫
F

( .
δ

2
x +

.
δ

2
y

)
dm +

.
θ

∫
F

(
xF

.
δy + yF

.
δx

)
dm (10)

where Izz = IR
zz + IF

zz + Iw
zz =

∫
R

(
x2

R + y2
R

)
dm +

∫
R

(
x2

F + y2
F

)
dm +

∫
R dm + mw

(
x2

0 + y2
0

)
.

Now convert the elastic deformation δ into cantilever modal coordinates [27] using δx =
n∑

i=1
φx

i qi(t)

and δy =
n∑

i=1
φ

y
i qi(t). This relationship describes the displacement at time t of a point at position x along

the FSS is related to the mode shape φ (x and y components) and the generalized coordinate or modal
coordinate, qi(t) is a sinusoidal function. The mode shape is a time-independent characteristic of the
flexible structure. Using this relationship, kinetic energy T in terms of the generalized coordinates is:

T = 1
2 Izz

.
θ

2
+ 1

2 Iw
.
θ

2
w + 1

2 Iw
.
θ

.
θw

+ 1
2

∫
F

(
n∑

i=1

n∑
i=1

[φx
i φ

x
j + φ

y
i φ

y
j ]

.
qi

.
q j

)
dm +

.
θ
∫
F

(
x f

n∑
i=1

φ
y
j

.
qi − y f

n∑
i=1

φx
i

.
qi

)
dm

T =
1
2

Izz
.
θ

2
+

1
2

Iw
.
θ

2
w +

1
2

Iw
.
θ

.
θw +

1
2

n∑
i=1

.
q2

i +
.
θ

n∑
i=1

Di
.
q2

i (11)

where rigid elastic coupling term Di =
∫

F

(
x fφ

y
i − y fφ

x
i

)
dm.

Potential energy comes from stiffness and can be expressed in generalized coordinates as:

V = 1
2

n∑
i=1

ω2
i q2

i where ωi is the natural frequency of the ith mode. The virtual work is given [35]

as: δW =
∑

Tδ(θ+ θw) −
∑

Tδθ+ TDδθ =
∑

Tδθw + TDδθ where TD is disturbance torques and∑
T is total torques (not to be confused with T = kinetic energy). Revisiting the Euler–Lagrange

equation, substituting potential and kinetic energy yields the equations of motion in terms of the
generalized coordinates. ∑

T = Izz
..
θ+

n∑
i=1

Di
..
qi (12)

..
qi + 2ξωi

.
qi +ω2

i qi + Di
..
θ = 0 (13)

Next, verify that Euler–Lagrange’s method generates the same equations of motion as Newton’s
law. These equations of motion have been derived from Hamilton’s principle via Lagrange’s method.
The equations need to be converted into DIDO Dynamics format. But first note below that Newton’s
law results in the identical equations of motion.

Newton’s law:
∑

F = ma applies at each node of the system, where coordinates are defined in the
hybrid-coordinate system [21].

m1
..
x1 = −k1x1 + k2(x2 − x1) (14)

m2
..
x2 = −k2(x2 − x1) + F (15)
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[
m1 0
0 m2

]
︸        ︷︷        ︸

[M]

{ ..
x1
..
x2

}
︸  ︷︷  ︸

..
x

+

[
k1 + k2 −k2

−k2 k2

]
︸               ︷︷               ︸

[K]

{
x1

x2

}
︸  ︷︷  ︸

x

=

{
0
1

}
F︸  ︷︷  ︸

{F}

(16)

[M] is the system’s global mass matrix (to be derived by finite element analysis);
[K] is the system’s global stiffness matrix (to be derived by finite element analysis);
{F} is the force vector.
Including structural damping results in: [M]

{ ..
x
}
+ [C]

{ .
x
}
+ [K]{x} = {F}. The two degrees of

freedom are x/y displacements and θ rotations. x/y rotations are mutually exclusive, since we are not
allowing plane stress and plane strain. That means the members are not allowed to lengthen/shorten
(bending displacements only). So, for the horizontal members, the x1 in the equation of Newton’s
law corresponds to the y-direction bending displacements. Similarly, for vertical members, the x1

corresponds to x-direction bending displacements. The nodal degrees of freedom are constrained to
zero at the attachment point of the flexible and rigid bodies (forcing the appendage to stay attached).
Also note that the corner node of the flexible body does not permit x or y displacement degrees of
freedom leaving only θ rotations. This reduces our anticipated (14 × 14) system to (12 × 12), eliminating
the displacement degrees of freedom at the attachment point and corner. Translating Newton’s law
into rotational form and adding the rigid–elastic coupling method results in:

Izz
..
θ+

n∑
i=1

Di
..
qi + Iw

..
θw = TD (17)

where

Izz = body principle moment of inertia with respect to the Z-axis;
..
θ = angular acceleration of the system rotation angle, θ;
D = rigid–elastic coupling term;
..
q = acceleration in generalized displacement coordinates;
Iw = reaction wheel principle moment of inertia with respect to C, Z-axis;
..
θw = angular acceleration of the reaction wheel rotation angle, θw;
TD = disturbance torques.

Torques may be combined to more closely resemble the basic expression of Newton’s law:

Izz
..
θ+

n∑
i=1

Di
..
qi =

∑
T (18)

where T = sum of disturbance torques, and control torques of the reaction wheel.
Isolating the first term:

..
θ+

∑n
i=1 Di

Izz

..
qi =

∑
T

Izz
(19)

and also note:
..
θ =

∑
T

Izz
−

∑n
i=1 Di

Izz

..
qi (20)
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3. Results

3.1. Conversion of Equations for Input to DIDO General Purposed Optimization Software

Either
..
θ or

..
qi must be eliminated to put this into standard state space form. Subsequently, the

equations can quickly be formulated as the dynamics equations to enter in DIDO. Using generalized
coordinates from Equation (13), q to express the displacements x and y:

..
qi + 2ξωi

.
qi +ω2

i qi + Di
..
θ = 0 (21)

..
qi + 2ξωi

.
qi +ω2

i qi +
DiT
Izz
−

Di
∑n

i=1 Di

Izz
= 0 (22)(

1−
Di

∑n
i=1 Di

Izz

)
..
qi + 2ξωi

.
qi +ω2

i qi +
DiT
Izz

= 0 (23)

..
qi =

−2ξωi
.
qi

Izz −Di
∑n

i=1 Di

.
qi +

−ω2
i Izz

Izz −Di
∑n

i=1 Di
qi +

DiT
Izz −Di

∑n
i=1 Di

(24)

Substitute into Equation (20):

..
θ+

∑n
i=1 Di(−2ξωiIzz)

Izz(Izz −Di
∑n

i=1 Di)

.
qi +

∑n
i=1 Di(ω

2
i Izz)

Izz(Izz −Di
∑n

i=1 Di)
qi +

∑n
i=1 Di(−DiT)

Izz(Izz −Di
∑n

i=1 Di)
=

T
Izz

(25)

..
θ =

2ξωi
∑n

i=1 Di

Izz −Di
∑n

i=1 Di

.
qi +

ω2
i
∑n

i=1 Di

Izz −Di
∑n

i=1 Di
qi +

TDi
∑n

i=1 Di

Izz
(
Izz −Di

∑n
i=1 Di

) =
T
Izz

(26)

..
θ =

2ξωi
∑n

i=1 Di

Izz −Di
∑n

i=1 Di

.
qi +

ω2
i
∑n

i=1 Di

Izz −Di
∑n

i=1 Di
qi +

T
(
Di

∑n
i=1 Di + Izz −Di

∑n
i=1 Di

)
Izz

(
Izz −Di

∑n
i=1 Di

) (27)

..
θ =

2ξωi
∑n

i=1 Di

Izz −Di
∑n

i=1 Di

.
qi +

ω2
i
∑n

i=1 Di

Izz −Di
∑n

i=1 Di
qi +

TIzz

Izz
(
Izz −Di

∑n
i=1 Di

) (28)

..
θ =

2ξωi
∑n

i=1 Di

Izz −Di
∑n

i=1 Di

.
qi +

ω2
i
∑n

i=1 Di

Izz −Di
∑n

i=1 Di
qi +

T(
Izz −Di

∑n
i=1 Di

) (29)

Recall the expressions for the rigid–elastic coupling using modal coordinates: Di =∫
F

(
xFφ

y
i − yFφx

i

)
dm where φ’s are mode shapes from finite element analysis using the eigenvalues of

K/M (stiffness/mass). The system stiffness matrix is included in Table 2 and mass matrix in Table 3
result in the natural frequencies and mode shapes for the flexible system in Tables 4 and 5 as depicted
in Figure 3.
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Table 2. Stiffness matrix (K) 1.

W2 θ2 W3 θ3 W4 θ4 W5 θ5 u6 θ6 u7 θ7 u8 θ8

W2 958.8179 0.0000 −479.409 59.9261 0 0 0 0 0 0 0 0 0 0
θ2 0.0000 19.9754 −59.9261 4.9938 0 0 0 0 0 0 0 0 0 0
W3 −479.409 −59.926 958.8179 0.0000 −479.409 59.9261 0 0 0 0 0 0 0 0
θ3 59.9261 4.9938 0.0000 19.9754 −59.9261 4.9938 0 0 0 0 0 0 0 0
W4 0 0 −479.409 −59.926 958.8179 0.0000 −479.409 59.9261 0 0 0 0 0 0
θ4 0 0 59.9261 4.9938 0.0000 19.9754 −59.9261 4.9938 0 0 0 0 0 0
W5 0 0 0 0 −479.409 −59.926 479.409 −59.926 0 0 0 0 0 0
θ5 0 0 0 0 59.9261 4.9938 −59.9261 19.9754 −59.9261 4.9938 0 0 0 0
u6 0 0 0 0 0 0 0 −59.926 958.8179 0.0000 −479.409 59.9261 0 0
θ6 0 0 0 0 0 0 0 4.9938 0.0000 19.9754 −59.9261 4.9938 0 0
u7 0 0 0 0 0 0 0 0 −479.409 −59.926 958.8179 0.0000 −479.409 59.9261
θ7 0 0 0 0 0 0 0 0 59.9261 4.9938 0.0000 19.9754 −59.9261 4.9938
u8 0 0 0 0 0 0 0 0 0 0 −479.409 −59.926 479.4089 −59.926
θ8 0 0 0 0 0 0 0 0 0 0 59.9261 4.9938 −59.9261 9.9877

1 Notice state sequence alternates translation, then rotation at each node.

Table 3. Mass matrix (M) 1.

W2 θ2 W3 θ3 W4 θ4 W5 θ5 u6 θ6 u7 θ7 u8 θ8

W2 0.4761 0.0000 0.0037 −0.0002 0 0 0 0 0 0 0 0 0 0
θ2 0.0000 0.0000 0.0002 −0.0001 0 0 0 0 0 0 0 0 0 0
W3 0.0037 0.0002 4.76 × 10−1 0.0000 0.0037 −0.0002 0 0 0 0 0 0 0 0
θ3 −0.0002 −0.0001 0.0000 0.0000 0.0002 −0.0001 0 0 0 0 0 0 0 0
W4 0 0 0.0037 0.0002 0.4761 0.0000 0.0037 −0.0002 0 0 0 0 0 0
θ4 0 0 −0.0002 −0.0001 0.0000 0.0000 0.0002 −0.0001 0 0 0 0 0 0
W5 0 0 0 0 0.0037 0.0002 2.63 −0.0004 0 0 0 0 0 0
θ5 0 0 0 0 −0.0002 −0.0001 −0.0004 0.0000 0.0002 −0.0001 0 0 0 0
u6 0 0 0 0 0 0 0 0.0002 4.76 × 10−1 0.0000 0.0037 −0.0002 0 0
θ6 0 0 0 0 0 0 0 −0.0001 0.00 0.0000 0.0002 −0.0001 0 0
u7 0 0 0 0 0 0 0 0 0.0037 0.0002 0.4761 0.0000 0.0037 −0.0002
θ7 0 0 0 0 0 0 0 0 −0.0002 −0.0001 0.0000 0.0000 0.0002 −0.0001
u8 0 0 0 0 0 0 0 0 0 0 0.0037 0.0002 4.66 × 10−1

−0.0004
θ8 0 0 0 0 0 0 0 0 0 0 −0.0002 −0.0001 −0.0004 0.0000

1 Notice state sequence alternates translation, then rotation at each node.
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Table 4. Natural frequencies, ωn (rad/s) 1.

ω1→3 ω4→6 ω7→9 ω10→12 ω13→14

0.7 15.8 54.9 596.8 1415.5
2.1 30.9 410.9 774.3 1809.5

10.2 43.7 478.8 1042.2
1 Corresponding to mode shapes in Table 5.

Table 5. Normalized mode shapes (×104).

−1 3 2 0 −3 −5 3 1501 383 1037 443 −692 181 240
−1097 3080 4481 4992 4505 3173 −1154 −4544 −136 2388 2221 4049 1395 1669
−1 1 −3 −7 −5 1 −2 −1569 −215 204 667 1425 −670 −712
−2158 4857 3958 28 −3814 −4883 2208 −943 −2040 −7064 −867 912 −2460 −1864
−1 −1 −5 0 7 3 2 1296 −125 −1076 125 995 −1385 −1057
−3111 4495 −1058 −4992 −1185 4481 −3142 5806 2118 368 −2572 4061 −3204 −683

0 0 0 1 1 −1 1 −99 30 113 −105 248 2247 954
−3902 2199 −4861 −47 4875 −2071 3937 −4288 −3426 4504 1878 4753 −3652 1689

0 −3 4 0 −6 6 1 536 −918 135 898 754 −946 736
−4493 −1062 −3138 4985 −3062 −1232 −4519 815 2292 −2423 3091 891 −3893 3998

0 2 5 −7 7 −4 0 −294 753 446 880 410 −1936 1905
−4872 −3903 2129 75 −2232 3920 4832 −2471 3385 −210 −3658 3392 −4013 5178
−1 −2 2 −3 4 −5 −6 90 −261 192 −699 −732 −2945 3254
−5031 −5052 5012 −5030 5062 −4984 −4965 3580 −7823 3941 −7649 −5153 −4046 5502
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Equations of Motion in Standard State Space Form

{ .
x
..
x

}
[nx1]

= [A]nxn

{
x
.
x

}
nx1

+ [B]nx1{u}1x1 (30)

Finite element analysis performed in MATLAB (code is included in the appendix) generates the
mode shapes used to calculate the rigid–elastic coupling terms. The program outputs the flexible
system [A], [B], [C], and [D] matrices of the standard state space form. The results are:

{ .
x
..
x

}
[nx1]

=



0 0 1 0
0 0 0 1

−ω2
i Izz

Izz−Di
∑n

i=1 Di
−ω2

i
∑n

i=1 Di

Izz−Di
∑n

i=1 Di

0
0

−2ξωiIzz
Izz−Di

∑n
i=1 Di

−2ξωiIzz
Izz−Di

∑n
i=1 Di

0
0


nxn

{
x
.
x

}
nx1

+


0
0
−DiT

Izz−Di
∑n

i=1 Di
T

Izz−Di
∑n

i=1 Di


nx1

{u}1x1 (31)

[C] =
[

1 0 0 0 0 0 0 0 0 0 0 0
]
[D] = [0] (32)
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Given these equations, the resultant state space matrices are:

[B] = { 0 0 0 0 0 0 0.126794 −0.19565 0.126794 0.032156 0.002952 0.27828 }
T (33)

[C] =
{

1 0 0 0 0 0 0 0 0 0 0 0
}

[D] = [0] (34)

3.2. Analysis

This flexible plant’s state space matrices in Table 6 and Equations (31) and (32) display
anti-resonances/resonance pairs that occur at discrete natural frequencies. These illustrate an
improvement to Figure 11b in [37], which lacks the anti-resonances generated by inclusion of
the free–free vibration mode in the dynamics (thus the extensive development of the dynamic
equations here). These nonlinear features are a challenging aspect of flexible spacecraft.
The anti-resonance/resonance pairs are indicative of correct modeling of the “free–free” vibrating
multi-body system.

Table 6. State space [A] matrix 1.

1 2 3 4 5 6 7 8 9 10 11 12

1 0 0 0 0 0 0 1 0 0 0 0 0
2 0 0 0 0 0 0 0 1 0 0 0 0
3 0 0 0 0 0 0 0 0 1 0 0 0
4 0 0 0 0 0 0 0 0 0 1 0 0
5 0 0 0 0 0 0 0 0 0 0 1 0
6 0 0 0 0 0 0 0 0 0 0 0 1
7 0 0.099 −1.064 −3.382 −0.736 −26.635 0 1.392 × 10−4

−5.066 × 10−4
−3.298 × 10−4

−4.662 × 10−5
−8.609 × 10−4

8 0 −0.659 1.642 5.218 1.136 41.100 0 −9.264 × 10−4 7.817 × 10−4 5.088 × 10−4 7.194 × 10−5 1.328 × 10−3

9 0 0.188 −6.435 −6.433 −1.401 −50.670 0 2.649 × 10−4
−3.064 × 10−3

−6.273 × 10−4
−8.869 × 10−5

−1.638 × 10−3

10 0 0.025 −0.270 −106.024 −0.187 −6.755 0 3.531 × 10−5
−1.285 × 10−4

−1.034 × 10−2
−1.182 × 10−5

−2.183 × 10−4

11 0 0.002 −0.025 −0.079 −249.447 −0.620 0 3.241 × 10−6
−1.179 × 10−5

−7.677 × 10−6
−1.579 × 10−2

−2.004 × 10−5

12 0 0.022 −0.233 −0.742 −0.162 −962.998 0 3.055E × 10−5
−1.112 × 10−4

−7.237 × 10−5
−1.023 × 10−5

−3.113 × 10−2

1 Flexible states, where base (rigid body) rotation is controlled.

3.3. Convert Standard State Space Form to DIDO Dynamics Form

DIDO uses the format of fundamental optimization problems where the derivative terms are on
the left side of the equal sign in an equation as in the standard state space expression above). To enter
the dynamics equations in DIDO, we simply multiply out the matrix expression

{ .
x
}
= [A]{x}+ [B]{u}

resulting in Nx = 12 equations for the DIDO Dynamics file.

.
x = A1,1x1 + A1,2x2+ · · · +A1,12x12 + B1,1u1
.
x = A2,1x1 + A2,2x2+ · · · +A2,12x12 + B2,1u1

...
...

...
.
x = A1,11x1 + A11,2x2+ · · · +A11,12x12 + B1,1u1
.
x = A1,12x1 + A12,2x2+ · · · +A12,12x12 + B1,1u1

〉
(35)

Note the expansion of [B]{u} has been simplified for single control input (rotation of the spacecraft
only). Thus, the u2, u3 . . . u12 terms are zero in the simplified expression above. These are the DIDO
Dynamics equations. The odd states (x1, x3, x5, x7, x9, and x11) correspond to x/y displacements, while
the even states (x2, x4, x6, x8, x10, and x12) are rotations. Referencing the system graphic on the first
page: x1, x3, x5 are y-direction displacements, while x7, x9, and x11 are x-direction displacements.

3.4. Fundamental Optimization Problem

Formulation of the scaled problem

xT =
{

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12
}T
∈!12 (36)

u = {u} ∈ U ⊆ R1 (37)



Aerospace 2019, 6, 93 12 of 18

Minimize J
[
x(g), u(g), t

]
= t f

Subject to

.
x1 = x7 (38)
.
x2 = x8 (39)
.
x3 = x9 (40)
.
x4 = x10 (41)
.
x5 = x11 (42)
.
x6 = x12 (43)

.
x7 = 0.0099x2 − 1.064x3 − 3.382x4 − 0.736x5 − 26.635x6 + 1.4e−4x8 − 0.01x9 − 3.3e−4x10 − 4.6e−4x11 − 0.1x12 + 0.127u (44)

.
x8 = −0.659x2 + 1.642x3 + 5.218x4 + 1.136x5 + 41.1x6 − 9.2e−4x8 + 7.8e−4x9 + 5e−4x10 + 7.2e−5x11 + 0.001x12 − 0.19565u (45)

.
x9 = 0.188x2 − 6.435x3 − 6.433x4 − 1.401x5 − 50.670x6 + 2.6e−4x8 − 3e−1x9 − 6.3e−4x10 − 8.9e−5x11 − 1.6e−3x12 + 0.24u (46)
.
x10 = 0.0025x2 − 0.27x3 − 106x4 − 0.187x5 − 6.76x6 − 3.5e−4x8 − 1.3e−4x9 − 0.01x10 − 1.2e−5x11 − 2.2e−4x12 + 0.032156u (47)

.
x11 = 0.002x2 − 0.025x3 − 0.079x4 − 250x5 − 0.62x6 + 3.2e−6x8 − 1.2e−5x9 − 7.7e−6x10 − 0.016x11 − 2e−5x12 + 0.0029u (48)

.
x12 = 0.022x2 − 0.233x3 − 0.742x4 − 0.162x5 − 962.998x6 + 3.1e−5x8 − 1.1e−4x9 − 7.2e−5x10 − 1e−5x11 − 0.031x12 + 0.00827u (49)(

t0, x10, x20, x30, x40, x50, x60, x70, x80, x90, x100, x110, x120

)
= (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) (50)(

x12 f

)
= (1) (51)

Note that only the final state and derivative (statedot) of the end node (x11) are constrained:(
x11,

.
x11

)
= (1, 0), as depicted in Figure 4. This keeps the problem in its simplest form. The other nodes

are permitted to have any final values, but x11 must be fixed at tf to a value of 1 and have no rate. It is
entirely possible that the mathematical solution will result in those other nodes’ final states being such
that the member retains its original shape. But, that is not forced in this problem formulation.
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such that the member retains its original shape. But, that is not forced in this problem formulation. 
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cost = 3.1869). (a) Flexible spacecraft simulator (FSS) optimal extremal tip displacement and rate; (b)
flexible spacecraft simulator (FSS) optimal states (node displacement only).
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3.5. Necessary Conditions of Optimality

Per Pontryagin’s minimization principle, write the control Hamiltonian H(λ, x, u, t) ≡ F(λ, x, u, t)+
λT f (λ, x, u, t) in general terms, specifically as H(λ, x, u, t) = 0 + λT

i fi(x, u, t) = 0 + λT
x 1

.
x1 + λT

x 2
.
x2 +

λT
x 3

.
x3KλT

x 12
.
x12. Consider the nonlinear programming case where we wish to implement a control

limit. H(λ, x, u, t) is assumed differentiable where the control set U(t) in Equation (35) is given
by hL(t) ≤ h(u, t) ≤ hU(t). The Lagrangian of the Hamiltonian adjoins the control constraint in
general terms with a reformatted fundamental optimization problem. Minimize H(λ, x, u, t) with
respect to u, subject to hL(t) ≤ h(u, t) ≤ hU(t). The Lagrangian of the Hamiltonian: H(µ,λ, x, u, t) ≡
H(λ, x, u, t) + µTh(µ, t), specifically, it may be expressed as the following H(µ,λ, x, u, t) = λT

x 1
.
x1 +

λT
x 2

.
x2 + λT

x 3
.
x3KλT

x 12
.
x12µTh(µ, t).

3.5.1. Minimization Condition

∂H
∂u = ∂H

∂u + ∂h
∂u

T
µ = 0⇒ ∂H

∂u =
∂λT f (x,u,t)

∂u + µ = 0 , and the constraint–multiplier pair at each
instant of time satisfies the complimentary condition (switching structure of the optimal control):

µi =


≤ 0
= 0
≥ 0

unrestricted

f or

hi(u, t) = hL
i (t)

hL
i (t) < hi(u, t) < hU

i (t)
hi(u, t) = hU

i (t)
hL

i (t) = hU
i (t)

(52)

For this first problem iteration, no control constraint was imposed. After successfully completing
this initial problem formulation, a control constraint was added. The minimization of the Lagrangian
of the Hamiltonian was used in the necessary conditions of optimality in the subsequent problem
analysis. For this analysis, simply apply the minimization condition directly to the control Hamiltonian:
H(λ, x, u, t) ≡ F(x, u, t) + λT f (x, u, t), such that

∂H
∂u
≡
∂F
∂u

+
∂λT f (x, u, t)

∂u
= 0 +

∂λT f (x, u, t)
∂u

= 0 (53)

∂H
∂u

= 0.126794λ7 − 0.1956λ8 + 0.241212λ9 + 0.032156λ10 + 0.002952λ11 + 0.027828λ12 = 0 (54)

3.5.2. Adjoint Equations

If we find an optimal solution, it should satisfy the following conditions: All costates are roughly
constant over small changing values of t(λx8thruλx12 ≈ 0).

.
λi = −

∂H
∂xi

= 0⇒ λxi = constant .

.
λ1 = −

∂H
∂x1

= 0⇒ λx1 = a (55)

.
λ2 = −

∂H
∂x2

= 0⇒ λx2 = b (56)

.
λ3 = −

∂H
∂x3

= 0⇒ λx3 = c (57)

.
λ4 = −

∂H
∂x4

= 0⇒ λx4 = d (58)

.
λ5 = −

∂H
∂x5

= 0⇒ λx5 = e (59)
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.
λ6 = −

∂H
∂x6

= 0⇒ λx6 = f (60)

.
λ7 = −

∂H
∂x7

= 0⇒ λx7 = g (61)

.
λ8 = −

∂H
∂x8

= −0.001⇒ λx8 = −0.001t (62)

.
λ9 = −

∂H
∂x9

= 0− 0.003⇒ λx9 = −0.003t (63)

.
λ10 = −

∂H
∂x10

= −0.01⇒ λx10 = −0.01t (64)

.
λ11 = −

∂H
∂x11

= −0.16⇒ λx11 = −0.016t (65)

.
λ12 = −

∂H
∂x12

= −0.031⇒ λx12 = −0.031t (66)

3.5.3. Terminal Transversality Condition

The costate at the final time is transverse with the gradient of the endpoint Lagrangian at the final
time. λxi

(
t f

)
= ∂E

∂xi(t f )
.

E = E + υe = t f + υx1

(
x1 f − 0

)
+ υx2

(
x2 f − 0

)
+ KK + υx11

(
x11 f − 0

)
+ υx12

(
x12 f − 1

)
(67)

λxi
(
t f

)
=

∂E

∂xi
(
t f

) ⇒


λx1
(
t f

)
= υx1 = a; λx2

(
t f

)
= υx2 = b;λx3

(
t f

)
= υx3 = c;λx4

(
t f

)
= υx4 = d

λx5
(
t f

)
= υx5 = e; λx6

(
t f

)
= υx6 = f ; λx7

(
t f

)
= υx7 = g

λx8
(
t f

)
= υx8 = −0.001t f ;λx9

(
t f

)
= υx9 = −0.003t f ;λx10

(
t f

)
= υx10 = −0.01t f

λx11
(
t f

)
= υx11 = −0.016t f ;λx12

(
t f

)
= υx12 = −0.031t f

3.5.4. Hamiltonian Final Value Condition

H
(
t f

)
= ∂E

∂t f
= −1 as depicted in Figure 5.
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3.1869) where normalized (scaled) time units are on the abscissa.

3.5.5. Hamiltonian Evolution Equation

∂H
∂t =

.
H = 0⇒ H = constant . So, if we find an optimal solution, it should satisfy the following

condition: Hamiltonian should be constant, −1 for all t as depicted in Figure 5.
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The discovered solution meets most (but not all) of the theoretical optimization criteria. This result
could be called astounding. If analysis had stopped at Pontryagin’s principle of minimizing the control
Hamiltonian (or the adjoint equation or one of the other successful criteria), we would have rightfully
declared an optimal control that is consistent with theory. However, if we had instead chosen the
Hamiltonian evolution condition, we would have rightly chosen to declare that we had not found an
optimal control consistent with theory. Certainly, both cannot be true.

Therefore this “optimal control” will therefore be referred to as a suboptimal control solution.
All the conditions of optimality are met so far except the Hamiltonian value condition. Next, review
Bellman’s principle to confirm that this suboptimal solution satisfies that additional criteria. Notice we
henceforth refer to the “optimal control” synonymous with “suboptimal control”, since the Hamiltonian
evolution equation is not satisfied, despite four other necessary conditions of optimality being met
(so far).

3.6. Demonstration of Computational Optimality via Bellman’s Principle

Lemma: The optimal path (x(·), y(·), v(·),u(·),t(·)) should lie on the previous suboptimal trajectory if this were
the optimal trajectory.

Choosing node 10 from the previous analysis as the new starting point: If DIDO found a suboptimal
solution, perhaps there may be some difference in the two trajectories (just as we saw in the necessary
conditions for optimality).

>> primal.nodes(10) = 1.4651 . . . new t(0).
>> primal.states(1,10) = −0.1064 . . . new x1(0).
>> primal.states(2,10) = 0.1475 . . . new x2(0).
>> primal.states(3,10) = −0.0683 . . . new x3(0)
>> primal.states(4,10) = −1.7291 × 10−4 . . . new x4(0)
>> primal.states(5,10) = 0.0016 . . . new x5(0)
>> primal.states(6,10) =−1.0705 × 10−5 . . . new x6(0)
>> primal.states(7,10) = −0.1175 . . . new x7(0)
>> primal.states(8,10) = 0.1389 . . . new x8(0)
>> primal.states(9,10) = 0.0600 . . . new x9(0)
>> primal.states(10,10) = −3.7851 × 10−4 . . . new x10(0)
>> primal.states(11,10) = 0.0041 . . . new x11(0)
>> primal.states(12,10) = −1.1934 × 10−5 . . . new x12(0)

Bellman’s principle holds true for this extremal control. The trajectory is the same and the cost
function is less than the previous cost function. Plots containing the trajectories for the nominal zero
start point and the Bellman’s analysis are simultaneously displayed in Figure 6a,b. This helps to
quickly see the identical trajectory (slide to the right for the different start point). The results plotted in
Figure 6a,b are identical but plotted differently for heuristic comparison.
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Figure 6. Bellman analysis for chosen time t = 1.4651: cost = 3.1462 < 3.1869. (a) Normalized FSS
extremal tip displacement and rate trajectories for the nominal (zero) start point and also for Bellman’s
analysis (slid to the right for the different start point) are simultaneous. (b) scaled (for depiction)
graphically “sliding” the Bellman curves up and over to heuristic verification of Bellman’s principle.

Despite not being able to declare the control in Figure 7 an optimal control in accordance with
all theories, even the sub-optimal time of just over 3 s is impressive, especially considering that the
extremal control met the zero vibration and derivative requirements.
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Table 7. Variable scaling 1.

Variable Scaling Scaled Variable

Time, T t f t = t/t f
Displacement, X x f x = X/x f

Mass, m m = m/m f = m
Control, u 1 u = u

1 Scaled control = unscaled control.

4. Discussion

The results of this research illustrate some interesting differences compared to the previously
cited studies. In particular, a full account of the dynamic governing differential equations revealed
(expected) control–structural interactions that led to a counterintuitive control strategy, which is often
the case in nonlinear optimal control when compared to nominal linear, time-invariant control schemes.
In particular, the initial negative scaled-control would seem to impart multi-body elastic strain energy
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that unloads as the maneuver propagates that exactly negates the flexible modal energy that typically
leads to a non-zero state and derivative conditions at the end of the commanded maneuver. Future
research should expand this two-dimensional robotic arm to three-dimensions for general applicability
in orbital robotics.

5. Future Works

The Hamiltonian final value condition is not met, yet five other optimality conditions are met.
Whether they are sufficient conditions or merely necessary conditions of optimality, it is clearly a
contradiction to find a solution that meets some, but not all of the conditions. This dichotomy is left for
future research.
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