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Abstract: Gas-path diagnostics is an essential part of gas turbine (GT) condition-based maintenance
(CBM). There exists extensive literature on GT gas-path diagnostics and a variety of methods have
been introduced. The fundamental limitations of the conventional methods such as the inability to
deal with the nonlinear engine behavior, measurement uncertainty, simultaneous faults, and the
limited number of sensors available remain the driving force for exploring more advanced techniques.
This review aims to provide a critical survey of the existing literature produced in the area over the
past few decades. In the first section, the issue of GT degradation is addressed, aiming to identify the
type of physical faults that degrade a gas turbine performance, which gas-path faults contribute more
significantly to the overall performance loss, and which specific components often encounter these
faults. A brief overview is then given about the inconsistencies in the literature on gas-path diagnostics
followed by a discussion of the various challenges against successful gas-path diagnostics and the
major desirable characteristics that an advanced fault diagnostic technique should ideally possess.
At this point, the available fault diagnostic methods are thoroughly reviewed, and their strengths
and weaknesses summarized. Artificial intelligence (AI) based and hybrid diagnostic methods have
received a great deal of attention due to their promising potentials to address the above-mentioned
limitations along with providing accurate diagnostic results. Moreover, the available validation
techniques that system developers used in the past to evaluate the performance of their proposed
diagnostic algorithms are discussed. Finally, concluding remarks and recommendations for further
investigations are provided.

Keywords: gas turbine performance; gas-path diagnostics; condition-based maintenance; fault diagnostic
methods; diagnostic method validation

1. Introduction

In today’s competitive business world, one way to increase profitability of machinery equipment
or a process plant is to reduce its operational and maintenance expenses while increasing productivity.
Gas turbine (GT) is one of the most expensive devices in aircraft and industrial applications,
where reliability and availability are the two most desirable attributes. In the past several decades,
trillions of dollars was invested globally in the operation and maintenance of GTs [1,2]. However,
due to their rising roles in the fast-growing industry, the market trend is still expected to be continued
into the foreseeable future. According to the International Air Transport Association (IATA) report,
in 2014, the world fleet count was 24,597 aircrafts. In this fiscal year, globally, airlines spent $62.1
billion on Maintenance, Repair, and Overhaul (MRO), of which about 40% was for engine maintenance.
In 2024, the engines MRO is expected to reach over $36 billion, with a 3.8% increasing rate per
annum [3]. One can see how large these expenses would be if they are extended to include all types of
GT applications. Studies on the GT market indicated that the market for other engine groups is much

Aerospace 2019, 6, 83; doi:10.3390/aerospace6070083 www.mdpi.com/journal/aerospace

http://www.mdpi.com/journal/aerospace
http://www.mdpi.com
https://orcid.org/0000-0002-8466-356X
http://dx.doi.org/10.3390/aerospace6070083
http://www.mdpi.com/journal/aerospace
https://www.mdpi.com/2226-4310/6/7/83?type=check_update&version=2


Aerospace 2019, 6, 83 2 of 53

bigger than the aircraft engines due to rapid industrialization across the globe and the rising demand
for power generation, mechanical drives and propulsion [2,4–6].

The GT fuel consumption and the likely increase in fuel price is another critical issue. For example,
the US Department of Defense (DOD) alone consumes 4.6 billion gallons of fuel annually, which is
93% of the US government fuel consumption and the 34th largest fuel consumption in the world,
of which about 85% is for Air Force and Navy uses [7,8]. On the other hand, in combined cycle power
plants (CCPPs), the fuel cost covers 75% of the total life-cycle cost (LCC) [6]. Therefore, operating the
GT as close to its clean conditions as possible may have a significant contribution to reducing the
engine operating expenses. This can be achieved via an improved maintenance policy assisted by more
advanced engine health monitoring (EHM) systems [9].

The gas turbine maintenance and operation costs are highly influenced by the performance
of the engine. Engine overall performance relies on the performance of the gas-path components
(mainly the compressor(s) and turbine(s)) and these components are major problem areas due to their
exposure to different internal and external degradation causes [10]. Some of the major and most
likely existing problems are drop in compressor efficiency due to fouling or erosion or object damage,
loss in turbine efficiency due to blade erosion and blade creep with subsequent tip of probe and
shroud damage, decrease in air flow capacity due to fouling, and an increase in flow capacity due to
turbine erosion. However, these faults are not directly measurable. The gas-path diagnostic technology
thus analyses the engine performance and identifies potential faults and provides an early warning
before these faults develop into more complex problems. An effective and reliable gas-path diagnostic
tool that could detect, isolate, and assess potential problems, based on the measurement deviations,
and suggest solutions well before they develop into more complex problems is therefore very essential.
This plays a major role in the investment by ensuring high levels of GT reliability and availability
along with its best operating performance. There have been a variety of gas path diagnostic methods
introduced so far beginning with the traditional model-based (MB) methods (such as Kalman Filter
(KF) and Gas Path Analysis (GPA)) to the most advanced artificial intelligence (AI) based ones (such
as Artificial Neural Network (ANN), Expert system (ES), Fuzzy logic (FL), Bayesian belief network
(BBN), Deep learning (DL), and Genetic Algorithm (GA)) [9,11]. In recent years, attention has been
paid to hybrid methods [12].

This paper aims to discuss the main gas-path faults that influence the GT performance,
the challenges of an effective fault diagnostic system development that researchers of this field
have experienced so far, and some of the most desirable attributes that an advanced system should
ideally possess. The available MB, AI based, and hybrid methods are thoroughly reviewed and their
advantages and disadvantages regarding how effectively the diagnostic tasks perform, undertake the
challenges, and fulfill the desirable attributes are highlighted. Finally, some of the most commonly
used diagnostic method validation approaches are discussed followed by conclusions and future
research directions.

2. Gas Turbine Performance Degradation

GT performance can be degraded temporarily or permanently. The former can be partially
recovered during operation and engine overhaul while the latter requires replacement [13]. Fouling,
erosion, corrosion, and blade tip clearance are among temporary degradation causes, whereas airfoil
distortion and untwist and platform distortions lead to permanent deterioration (meaning that
residual deterioration exists even after a major overhaul). Deterioration can also be categorized as
recoverable (with washing), non-recoverable (cannot be recovered by washing during operation but
recoverable during overhaul), and permanent (recoverable neither by washing nor during overhaul) [14].
Relating to the service period of the engine or the evolution time frame of the deterioration, performance
deterioration can also be classified into short-term/rapid and long-term/gradual deterioration [15].
Short-term/rapid deterioration happens at the early age of the GT engine as it starts its operation or
may be the result of a single event like an object damage at any time during the engine’s operation.
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Whereas long-term deterioration is formed more gradually due to the ingestion and accumulation of
different contaminants and/or high operating temperature.

As shown in Figure 1, these physical faults cause changes in one or more of the performance
parameters which describe an individual gas-path component’s performance. The performance
parameters generally include compressor flow capacity, compressor isentropic efficiency, turbine flow
capacity, and turbine isentropic efficiency. Changes in the performance parameters cause consequent
changes in the measurement parameters (temperature, pressure, shaft speed, and fuel flow), which are
the fault indicators or symptoms in engine health monitoring.
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2.1. Fouling

Fouling is the adherence of different contaminants (such as sand, dust, dirt, ash, oil droplets,
water mists, hydrocarbons and industrial chemicals) on the surface of gas-path components [17,18].
It leads to an increase in surface roughness and a change in airfoil shapes [19]. The end result is
performance deterioration. Compressor fouling causes a decrease in flow capacity and isentropic
efficiency [20]. However, as shown in Table 1, there is no consensus on the magnitude of the percentage
deviation of those parameters. For instance, according to Saravanamuttoo and Lakshminarasimha [21],
compressor fouling may result in a 5% loss in flow capacity and a 2.5% loss in isentropic efficiency.
Based on site test data, Diakunchak [18] reported a compressor fouling with 5% flow capacity and 1.8%
isentropic efficiency reduction. In another study, it has been reported that the change in flow capacity
due to compressor fouling is equal to 1.25 times the associated change in efficiency [13]. On the other
hand, model simulation results reported by Aretakis et al. [22] showed that flow capacity deviation by
3.1% reduced the isentropic efficiency by 0.906%. However, all studies agreed that fouling influences
the flow capacity more than the efficiency.

Table 1. Compressor fouling and its consequences according to different studies.

Compressor Fouling Consequences Ref.

ΓC ↓ by 5%, ηC ↓ by 2.5%, and power output ↓ by 10% [21,23]

ΓC ↓ by 5%, ηC by 1.8 %, power output ↓ by 7%, and heat rate ↑ by 2.5% [18]

A 1% reduction in Γc resulted in a 0.8% ηc reduction [13]

ΓC ↓ by 3.1% and ηC ↓ by 0.906% [22]

Power output reduces between 2% (under favorable conditions) and 15 to 20% (under adverse conditions) [24]

ΓC ↓ by 5%, fuel consumption ↑ by 2.5%, and power output ↓ by 8% [25]
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Compressor fouling is responsible for 70 to 85% of the total performance loss of a GT [18].
According to Diakunchak [18], a 5% flow capacity and a 1.8% isentropic efficiency reduction due to
compressor fouling, could result in a 7% loss in power output and a 2.5% increase in heat rate. Whereas,
Lakshminarasimha et al. [23] reported that a 10% reduction in power output could result in a 5% mass
flow rate and a 2.5% efficiency reductions due to compressor fouling. This result agreed with the result
in [21]. According to Meher-Homji and Bromley [24], compressor fouling could result in a loss of
power output as high as 20% under adverse conditions. These changes are immediately corrected
by increasing the fuel consumption through the automatic engine control system. A 2.5% increase
in fuel consumption due to a 5% flow capacity reduction was reported by Zwebek and Pilidis [25].
Compressor fouling could also decrease blade tip clearance [26] and surge margin [27] and increase
turbine entry temperature (TET) [28].

Different studies on multistage axial compressor fouling declared that only the first few stages
are subjected to fouling, and level of fouling is not uniform at different stages [29,30]. An experiment
based studies on a 16-stage axial compressor [31] showed that the number of stages affected by the
fouling reaches 5 to 6 and the degree of fouling diminishes from the suction end to the delivery end.
A similar study by Aker and Saravanamuttoo [29] revealed that the first 40–50% of stages of a 16-stage
axial compressor are exposed to fouling. Although the first few stages of the axial compressor are
subjected to the highest amount of foulant, during compressor washing the deposit moves to the rear
end stages and accumulates, and thereby influences the power output [32]. The degree of compressor
fouling and the extent of its impact on engine component’s performance depends on several factors
including the number of stages, surface roughness, airfoil loading, and the contaminant nature [33].

Fouling based performance deterioration can be reversed by compressor washing using water
and/or detergents [24]. There are two types of compressor washing, namely, online and offline [34].
The former is performed during operation, while the latter needs to shut down and cool the GT.
These washing regimes are discussed in detail in [35]. Although the initial stage of fouling deposit does
not cause an immediate degradation, once it has been accumulated, the deposit removal task is time
taking and costly [36]. Online washing is important to minimize the foulant deposit and reduce the
frequency of offline washing. The online washing alone is not effective to completely remove fouling,
while the offline scheme is capable. The frequency of both online and offline washing and the duration
between them depends on the operating condition of the engine [37]. The washing process should
be assisted by an optimized schedule taking into account economic and safety issues [38]. This is
because frequent washing increases downtime and maintenance cost and sometimes it may also lead
to premature blade surface erosion. On the other hand, a long duration may cause an incomplete
performance recovery. Fouling-based performance deterioration is mostly recoverable if the offline
washing is performed when the reduction in compressor flow capacity reaches about 2–3% [39].

2.2. Erosion

Erosion is the gradual loss of materials from the surface of gas-path components caused by the
ingestion of contaminants such as sand, dust, dirt, ash, carbon particles, and water droplets [40].
Among these causes, sand is the most common due to its occurrence on most of the GT application
areas. The particulates that are causing erosion are usually 20 µm or more in diameter [18]. Erosion can
attack all the gas-path components although the degree of influence is higher for turbines than
compressors. It can result an overall performance loss of about 5% [41]. Like fouling, performance
deterioration subject to erosion can be represented by flow capacity and isentropic efficiency changes.
Efficiency decreases during both compressor and turbine erosions because of an increase in blade
surface roughness and tip clearance and changes in airfoil profile. Whereas, flow capacity decreases
upon compressor erosion and increases upon turbine erosion [42]. According to Ref. [43], the ratio of
change of flow capacity to efficiency is 2:1. The effect of erosion is less for industrial GTs than aircraft
engines due to the presence of a more effective air filtration system [44].
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2.3. Corrosion

Corrosion is an irreversible deterioration of components as a result of oxidation reaction or
chemical interaction with inlet air contaminants (sodium and potassium salts, mineral acids and other
chemically reactive elements including sodium, potassium, lead, and vanadium) and combustion gases
(for instance sulfur oxides) [45,46]. It can be classified as cold and hot corrosion [47]. The corrosion
due to airborne contaminants in combination with water is called cold or wet corrosion and especially
affects the compressor airfoils [46]. The hot corrosion occurs due to combustion gases containing
certain contaminants and/or molten salts, which especially affects the turbines [48]. Corrosion due to
hot gas contaminants is more severe and highly influenced by the gas temperature [45]. Salt is the
main cause of corrosion in both compressor and turbine components [49]. It decreases compressor
flow capacity, compressor isentropic efficiency, and turbine isentropic efficiency and increases turbine
flow capacity [50]. Corrosion effects can be prevented by a proper coating [40].

2.4. Foreign Object Damage (FOD)/Domestic Object Damage (DOD)

Gas-path components are subjected to damage due to the foreign objects being injected into the
engine (such as birds or any other wildlife, stones, frost, snow, ice, and runway gravel) or domestic
objects (broken out engine parts like blade sections or large carbon particles from the fuel nozzles).
Foreign object damage (FOD) is one of the most common problems, usually in aircraft engines [13].
The damage from foreign objects varies from a non-recoverable deterioration to a catastrophic failure,
as in the case of blade off or large object ingestion in the engine [18]. It shows a rapid shift in the gas-path
measurements. In addition, engine vibration may come from unbalanced material loss or aerodynamic
excitation from blade distortion due to FOD [13]. FOD highly influences the components isentropic
efficiency than flow capacity due to its impact on the blade surface roughness and distortion [50].
The magnitude of the loss depends on the type and nature of the FOD/DOD. If the damage causes a
material loss on the blade surface, the flow capacity will increase, or if the foreign object is blocking of
the gas-path, the opposite will be experienced [51].

2.5. Increase in Blade Tip Clearance

Blade tip clearance refers to an increase in the clearance between moving blades’ tips and the
casing or stationary blades’ tips and the rotating hub due to the removal of materials caused by
particulate ingestion, thermal and centrifugal expansion, and erosion [13,14]. It can also be caused
by rotor assembly vibration due to excess speed during the starting cycle [18] or the rubs between
the stator assembly and rotor assembly due to thermal and centrifugal expansions [52]. It causes
a non-recoverable performance deterioration. The increase in clearances will increase the leakage
and thereby a performance deterioration [53]. The performance deterioration due to this fault can
be represented by efficiency and flow capacity reductions [54]. For example, it has been reported
that an increase in tip clearance by 0.8% could result in up to a 3% and 2% reduction in flow capacity
and isentropic efficiency, respectively [55]. According to Diakunchak [39], a 1% increase in blade tip
clearance would lead to over 1% loss in power output and overall efficiency. A 1% to 3.5% increase
in blade tip clearance would also cause up to 15% drop in the stage pressure ration as reported by
Kurz and Brun [45]. Table 2 summarizes contaminant types and their effects on the physical and
thermodynamic characteristics of the gas-path components of GTs.
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Table 2. Summary of GT degradation causes, effects, and component performance change indicators.

Physical Fault Contaminant/Cause Exposed
Component(s) Effect Performance Change

Indication Results References

Fouling

Dust, dirt, sand, rust, ash, carbon
particles, oil, unburned
hydrocarbons, soot, chemicals,
fertilizers, herbicides fuel, etc.

Compressor &
turbine

- Increase in surface roughness
- Changes in airfoil shape
- Increase the airfoil angle

of attack
- Disrupt rotating balance
- Obstruct and plug flow path

- ↓ Γ
- ↓ Pressure ratio

(PR)
- ↓ η

- Loss of power
output/trust

- ↑ heating rate and
Exhaust gas
temprature (EGT)

[17,19,37,56–58]

Erosion Dirt, sand, dust, ash, carbon
particles, etc.

Compressor &
turbine

- Airfoil profile changes
- Blade tip and seal

clearances increase
- Surface roughness increases
- Reduce the compressor and

turbine cross-sectional areas

- ↓ Comp. Γ
- ↑ Turb. Γ
- ↓ Compr. PR
- ↓ η Comp.

& Turb.

- Loss of power
output/trust

- ↑ heating rate
and EGT

[18,19,59]

Corrosion Salts, acids, nitrates, sulfates, etc. Compressor &
Turbine

- Increase in blade
surface roughness

- Alters blade profile change

- ↓ Comp. Γ & η

- ↑ Turb. Γ & ↓η

- Loss of power
output/trust

- ↑ heating rate
and EGT

[18,45,50,59]

Blade tip clearance

Rubs between rotor and stator
blades caused by thermal expansion,
Foreign Object Damage (FOD) and
erosion

Compressor &
turbine

- Increased leakage
- Vibration
- Chock at lower flow

- ↓ η and Γ
- ↓ surge margin

- Loss of power
output/trust

- ↑ heating rate
and EGT

[39,52]

Foreign object damage
(FOD)/Domestic object
damage (DOD)

Hailstones, runway gravel or birds,
large carbon particles

Compressor and
turbine

- Increase in blade
surface roughness

- Removal of parts from
blade surfaces

- ↓ η (C+T)
- ↑/↓ Γ
- ↓ PR

- Loss of power
output/trust

- ↑ heating rate
and EGT

[56,59]
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3. Fault Diagnostics

There is inconsistency in the literature on the terminology and definition of fault diagnostics.
Some of the commonly used terminologies are fault diagnostics [60,61], fault detection and isolation
(FDI) [62,63], fault detection and diagnostics (FDD) [64,65], fault detection, isolation, and identification
(FDII) [66], fault detection, isolation and accommodation (FDIA) [67,68], fault detection, isolation and
recovery (FDIR) [69] and identification and fault diagnostics [70]. This makes it difficult to understand
the goals of the contributions and to compare the different techniques. For example, the definition of
the term “isolation” in FDI and FDII is different in some papers. In the former case, it refers the process
of determining the fault type and location followed by estimating its level whereas in the latter case it
does not include the fault level estimation. However, the broader research community, including the
military and other industry sectors, defines fault diagnostics as the procedure of detecting, isolating and
identifying an impending or incipient failure condition, during which the affected component is still
operational, even at a degraded mode [71]. Each element in the fault diagnostic process is further
defined as:

• Fault detection: Detecting the presence of an abnormal behavior, which may gradually lead to the
failure of the system or part of it.

• Fault isolation: Determining the type and location of the fault(s).
• Fault identification: Estimating the magnitude of the fault(s).

Figure 2 shows the general conceptual model of performance-analysis-based GT fault diagnostics,
adapted from [72]. Usually, complete fault diagnostics requires three basic activities; data acquisition,
data processing, and diagnostics. Each of these phases are equally significant and critical in the attempt
to provide a reliable and practically useful decision support mechanism. Data acquisition is the process
of collecting and storing the necessary engine performance data for fault diagnosis. The second step,
the data processing task, involves two basic activities: data screening and analysis. Data screening is
the process of filtering outliers and reducing noises followed by validation, through an appropriate
screening technique. This helps to minimize the effect of measurement uncertainties on the fault
diagnostic result. Feature extraction starts from baseline establishment that represents a clean condition
operation. Since the measurement deviations could be due to load or ambient condition changes,
establishing the baseline requires correcting the measurements against these variations so that the
deviations due to the actual engine faults and sensor problems can be determined. Regardless of the
other effects, the measurement deviations due to performance degradation provide relevant information
about the nature of the fault signatures in engine gas-path fault diagnostics. Fault diagnosis is the
decision-making step in which algorithms are applied to detect, isolate and identify various faults.
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gas-path diagnostic steps: Ingestion of gas path degradation causes, performance deterioration,
measurement deviation, and fault diagnostics.

Fault detection is the very important step in the process of fault diagnostics. Trend shift detection
and binary decision approaches are the two commonly applied techniques [73]. This task is performed
based on the difference between the predicted and observed measurements or residuals (Figure 3).
Ideally, the residuals should be very close to zero when the engine is clean and deviate noticeably from
zero when a fault occurs in the system. However, in reality, due to measurement non-repeatability
and model uncertainty, a suitable threshold should be selected, to avoid false alarms. After having an
appropriate threshold selection, when the engine is running in a clean condition, all the measurement
residuals are expected to lie below the threshold. Conversely, when any kind of abnormal condition
occurs, one or more measurement residuals will probably deviate from the selected threshold(s). On the
other hand, in the case of the binary decision, the residual is considered as a signal which is zero when
the system is functioning properly and different to zero when some abnormal behavior is observed.
After a successful fault detection process, the location of the fault and its type should be determined.
This process may include separating different sensor faults [74], distinguishing sensor and actual
component faults, and classifying different component faults [62]. Like the detection, measurement
residuals can be used in the isolation process based on proper threshold selection [75] or the fault
isolation problem can be treated as a classification problem, as reported in [61,76,77]. However, the fault
detection and isolation activities do not provide quantitative information about the health status of the
engine. Hence, maintenance decision requires an understanding of the severity of the deterioration.
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Usually, a component’s isentropic efficiency and flow capacity deviations (health indices) are used to
represent the health status of engine gas-path components. Hence, the progressive deviations of these
parameters can be estimated using the measurement deviations. The review of the available literature
methods will be presented in the method review section.
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3.1. Challenges of Successful GT Fault Diagnostics

In performance analysis-based engine gas-path diagnostics, there are different factors influencing
the attempt to obtain sufficiently accurate and practically useful solutions. The most significant
challenges are summarized as follows.

1. Nonlinearity of the diagnostic problem. The relationship between dependent parameters
(measurements) and independent parameters (performance parameters) is highly non-linear.
The complexity of the nonlinearity of the diagnostics problem increases as two or more components
are affected simultaneously and/or sensor and component faults exist together. The diagnostic
system to be proposed should thus be capable of dealing with the non-linear nature of the
engine behavior.

2. Measurement uncertainty. In reality, the data obtained from real engine operation cannot be
error-free [78]. This error may come from the sensor itself (due to improper installation,
miscalibration or malfunctioning), the operating environment, or the operator itself.
Measurement uncertainties provide incorrect information about the nature of the fault signatures,
thereby causing misinterpretation during engine health assessment. Noise and bias are the two
categories of measurement uncertainty [79]. Noise is a measurement’s non-repeatability due
to the engine harsh operating environments. Whereas bias refers to a sensor fault which is the
difference between the average measurement and the actual value defined by the National Bureau
of Standards (NBS) [78]. It is a fixed error (can be higher or lower than the actual value) that
usually occurs as a result of a flaw in the sensor itself. Sometimes, the values of these uncertainties
may reach a level often comparable to the actual measurement deviations caused by component
deterioration. If this effect is ignored during the diagnostic method development, the solution
will be unrealistic. Conversely, engine fault diagnosis using uncertain measurements may give
an erroneous result, particularly, in MB methods. Therefore, either the sensor problem should be
treated and corrected prior to the component fault diagnosis or the component fault diagnostic
technique should tolerate these effects.
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3. Availability of limited sensors. GT engines are packed with different sensors for different
purposes such as process control, health monitoring, and diagnostics. Measurement parameters
which are essential for engine performance analysis are known as standard measurements [80].
For instance, these include pressure, temperature, fuel flow rate, and spool speed. The deviations
of these measurements provide relevant information about the nature and severity of components’
performance deterioration. A careful measurement selection is crucial for effective fault
diagnostics, especially in the case of MB methods. On the one hand, an accurate gas-path
analysis requires a large number of measurements since the engine model is developed based on
several instrumentation suites. In order to satisfy the requirement for a determinate equation,
the number of measurements (the dependent parameters) has to be at least equal to the number
of performance parameters (the independent parameters). On the contrary, in real engine service,
the number of instruments available are limited due to weight and bulk issues (particularly in
aircraft and marine applications), sensor noise and bias problems, the need of a reduced sensors’
installation and maintenance cost, and the absence of the gas generator turbine inlet sensors
(since they cannot withstand the very high operating temperature) [81,82]. It is also impractical to
measure the air flow rate due to the absence of the technology. Therefore, the diagnostic system is
accountable to give the required solution using the available limited information obtained from
the minimum sets of measurements.

4. Occurrence of multiple faults simultaneously: In harsh engine operating conditions, the occurrence
of multiple component/sensor faults is a likelihood. Hence, a single fault assumption can result
in an untrustworthy fault diagnosis in the presence of multiple faults. The probability of the
number of possible fault combinations grows exponentially depending on the available number
of engine components/sensors and as a result the complexity of the diagnostic problem increases.
The performance of a gas-path fault diagnostics scheme is highly influenced by the number of
simultaneous faults [83]. This is because, when two or more components/sensors are affected
together, there is a chance of producing similar or obscure fault signatures, thereby masking
or compensating for each other’s effects. For example, in the case of double component faults
(DCFs), when one of the components is lightly affected, the combined effect may result a confusing
pattern with that of a single component fault (SCF). Likewise, if both components are severely
affected, they may produce similar patterns with that of a triple component fault (TCF), and as a
result, the DCFs may wrongly be classified as TCF or vice versa [83]. In general, as a multiple
fault scenario, concurrent component faults, concurrent sensor faults, or concurrent sensor and
component faults possibly exist during the engine lifetime.

5. Operating condition variations. Due to load and/or ambient condition variations, the engine
operating point may not be fixed. Therefore, operating point changes should be taken into account
for practicability. A common way to avoid the influence of operating conditions variations is to
form a “baseline” model, compute measurement deviations, and use them as network inputs
instead of measurements themselves. Usually, this requires the model of the normal state to figure
out the “baseline” [74,84]. Different GTs have different baselines based on their configuration and
application environment. Hence, for a reliable fault diagnosis, an accurate baseline establishment
is critical.

6. Lack of standards in defining and representing fault diagnostic problems [85]. In the literature
there is no consistency in defining and representing GT fault diagnostic problems. The majority of
the available methods in the open domain are considered to be different platforms with different
levels of complexity and applied different performance evaluation metrics. This inconsistency
causes difficulties in exchanging diagnostic ideas, information fusion between fault diagnostic
results of different engine systems, and a one-to-one comparison of different techniques.
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7. Unavailability of data in the required type, quality and quantity. Fault diagnostic method
developers require relevant and reliable operational data, which can sufficiently represent the
healthy and unhealthy engine conditions, to demonstrate and verify new algorithms. However,
because of the very limited access to engine operational data (owing to proprietary and liability
issues) and lack of deteriorated engine data due to the frequent washing actions, it is difficult to
obtain the required data [81]. Performance data can be generated by either intentionally ingesting
different physical fault causes/contaminants into the operating GT or implanting artificial fault
patterns to the engine performance model [86]. The former alternative is not recommended since
it is not technically and economically feasible. Whereas the latter, which is the most widely used
alternative in this field, requires an accurate model.

8. Absence of Diagnostic Methods Validation Techniques: GT users need a practical tool to
evaluate the performance and effectiveness of a newly proposed algorithm in order to incorporate
to their plant. Up to now, there are no standards to effectively evaluate the technical and economic
feasibility of new algorithms [81]. The general procedures used by the research community so far
will be presented later in this paper.

3.2. Desirable Attributes of a Fault Diagnostic System

According to the previous studies on machinery health monitoring and diagnostics including
GTs [87–89], an effective fault diagnostic system is ideally expected to fulfill the following characteristics.
These desirable attributes could also be used as selection criteria or as standards of various
diagnostic approaches.

i. Fault diagnostic accuracy: For a correct maintenance decision, the fault diagnostics technique
should able to detect, isolate and identify gas-path faults successfully. A fault detection
task commits two types of errors: false alarms and missed detections. Both detection errors
are equally harmful. A false detection leads to an increased maintenance cost, which is the
opposite of the aim of fault diagnostics. Conversely, a missed detection may cause a significant
performance loss or even system/component failure. Hence, in the detection step, the so-called
normal class has to be distinguished from the abnormal class with reasonably acceptable
accuracy. This is very important to avoid unnecessary or unexpected downtimes and enhance
reliability. As well as fault detection, the diagnostic system should successfully determine
the fault type and location. In particular, a GT fault isolation algorithm is accountable to
separate sensor faults from actual engine component faults followed by classification of different
component faults. All the possible single and multiple sensor and/or component fault cases
are required to be isolated correctly using the minimum instrumentation suite. For a final
maintenance decision, an accurate fault-level estimation is highly desirable so that the operator
can make a strategic maintenance schedule of possible maintenance actions.

ii. Robustness: For a practical implementation, diagnostic systems are highly required to be
robust/tolerant against measurement uncertainties.

iii. Explanation facility: To support engine users in the maintenance decision process, the fault
diagnostic tool is required to be able to explain the nature of the faults (i.e., their root cause,
current situation, and propagation) and justification of the recommendations.

iv. Simplicity/user-friendliness: The method should be simple to use and easy to understand
by the operators so that an urgent decision can be made without the presence of any expert.
It should thus be capable of providing a user-friendly interface.

v. Adaptability: GT performance is sensitive to ambient condition changes or load variations.
Therefore, a performance-based GT fault diagnosis system should be able to adapt to those
variations so as to maintain its performance.
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vi. Memory and computational requirements: The storage capacity and computational
requirements (computational speed, time, and complexity) are the two basic features of
a GT fault diagnosis algorithm, particularly for online applications.

vii. Reliability. Concerns about the practicability of the method for an engine with limited numbers
of sensors and measurement errors. It should also be simple and cost-effective with minimum
downtime for repair and maintenance.

viii. Comprehensiveness. This is the measure of the ability of the method to incorporate
improvements when it is necessary and to be interfaced with other engine health
management systems through data fusion in order to obtain a complete condition-based
maintenance framework.

ix. Flexibility. It measures the degree of capability of the method, optimizing its configuration
and adapting/extending the system to work on different engines or on the same engine running
at different operating conditions. A low set-up time is desirable to implement this feature.

4. State-of-the-Art: GT Gas-Path Diagnostic Methods

In the field of GT diagnostics, several methods have been devised by engine manufacturers
and the research community over the years [90]. As shown in Table 3, different authors categorized
these methods into different groups. In the present review, based on the type of information used in
modeling, the available methods are categorized into two main groups; MB and AI-based. Accordingly,
state-of-the-art gas-path diagnostic methods under each group has been undertaken. Different issues
related to their working principles, applications for gas-path diagnostics, capability of undertaking the
challenges (Section 3.1) and fulfilling the desirable attributes (Section 3.2), and their advantages and
limitations are reviewed and summarized.

Table 3. Categorization of fault diagnostic methods presented in literature.

Author Ref. Year Classification Categories

Dash et al. [87] 2000 MB and Data-driven (DD)
Li [91] 2001 MB, Artificial Intelligence (AI)-based, and Fuzzy logic

Venkatasubramanian et al. [89] 2003 Quantitative, Qualitative, and DD
Ogaji & Singh [5] 2003 Conventional and Evolving

Jew [85] 2005 MB, DD, and Hybrid
Jardine et al. [92] 2006 Statistical, MB, and AI-based

Stamatis [10] 2014 MB, AI-based, and Hybrid
Kong [93] 2014 MB and Soft Computing

Zhao et al. [94] 2016 MB, DD, and Knowledge-based
Tahan et al. [11] 2017 MB, DD, and Hybrid

4.1. Model-Based Diagnostic Methods

MB diagnostics methods are the first-generation GT CBM methods and they rely on the
thermodynamic model of the engine. According to this approach, the relationship between the
gas-path measurements and the performance parameters is determined by explicit mathematical and
thermodynamic equations. GPA and KF are the two most intensively investigated MB methods [91].
Engine manufacturers and military sectors have been using these methods for the past four decades [95].

4.1.1. Gas-Path Analysis

A GPA is a mathematical procedure that used to diagnose gas-path components based on the
measurement deviations. In this strategy, the diagnostic problem requires the search for a best match
between measurement changes and the associated performance parameter changes that cause the
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measurement changes. According to [96,97], the thermodynamic relationship between gas-path
measurements and components performance parameters can be expressed as:

⇀
Z = h (

⇀
X,

⇀
w) (1)

where,
⇀
Z ∈ RM is the measurable parameter vector and M is the number of measurement parameters,

⇀
X ∈ RN is component performance parameter vector and N is the number of performance parameters,
⇀
w is the ambient condition and power setting parameter vector (called input vector), and h( ) is a vector
valued function determining the relationship between the dependent and independent parameters,
usually non-linear.

If sensor noise (
⇀
v ∈ RM) and bias (

⇀
b ∈ RM) are considered:

⇀
Z = h (

⇀
X,

⇀
w) +

⇀
v +

⇀
b (2)

Linear GPA (LGPA)

LGPA was first introduced by Urban [96] upon the assumption of a steady state process with no
ambient condition and load variations and negligible measurement uncertainty effects (Equation (3)).
The relationship between the dependent and independent parameter changes was assumed to be linear.
Mathematically it can be expressed as:

∆
⇀
Z = ICM (∆

⇀
X) (3)

where ∆
⇀
Z is the vector of measurement deltas, ICM is the so-called influence coefficient matrix, and ∆

⇀
X

is the vector of performance parameter deltas.

The estimation of ∆
⇀
X is a reverse process performed using the inverse of the linear ICM which is

referred to as Fault Coefficient Matrix (FCM), as given in Equation (4).

∆
⇀
X = FCM · ∆

⇀
Z = H−1

· ∆
⇀
Z (4)

The relationship between ICM and FCM in matrix form can be presented as:
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Based on the number of dependent and independent parameters, the estimation of FCM will have
three different cases [81].

• Case 1. (When M = N): When the number of measurements and performance parameters are
equal, the number of unknowns and equations will be equal, and thereby the problem will be
determinable. In this case, the ICM is a square matrix and invertible.



Aerospace 2019, 6, 83 14 of 53

• Case 2. (When M > N): When the number of measurements is greater than the number of
performance parameters to be estimated, the problem will be over-determined. In this case,
the solution can be found applying the least square estimation method by replacing H−1 with the
so-called pseudo-inverse.

∆
⇀
X = (HT

·H)H−1HT∆
⇀
Z (5)

• Case 3. (When M < N): In the real situation of a GT operation neglecting the effect of sensor
noise and bias leads to an unrealistic solution. Conversely, considering all these issues including
model uncertainty would result in an undetermined set of equations. The suitable solution for
this problem scenario is given by Volponi [81].

After Urban, LGPA has been studied by several researchers like those in [41,98–100]. During the
early ages of gas-path diagnostics, it was used by engine manufacturers like Rolls-Royce [101]. It has
been shown that for deviation values higher than 1%, the LGPA provides an unreliable solution [102].
The reliability of this method highly influenced on the accuracy of the ICM, the level of noise and bias,
and the number of instrument suite considered [91].

Non-Linear GPA (NLGPA)

In a real GT engine health condition, the assumption of a linear relationship between measurements
and performance parameters becomes increasingly unrealistic, especially when the component’s
deterioration level exceeds the value assumed for LGPA and/or while the number of gas-path faults
increases [9]. The NLGPA scheme is capable of undertaking the nonlinearity of the engine behavior.
The thermodynamic relationship between the dependent and independent parameters for a non-linear
engine behavior is given as Equation (6) [81].

∆
⇀
Z = H · ∆

⇀
X (6)

where:

• ∆
⇀
Z is vector of measurement delta and can be expressed as:

∆
⇀
Z =

(
⇀
ZMeasured −

⇀
ZBaseline)

⇀
ZBaseline

× 100 =



∆Z1

∆Z2
...

∆Z j
...

∆ZM−1

∆ZM


• ∆

⇀
X is performance parameter delta vector and can be expressed as:

∆
⇀
X =



∆X1

∆X2
...

∆Xk
...

∆XM−1

∆XN
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for example

∆
⇀
X =



∆ΓComponent−1

∆ηComponent−1

∆ΓComponent−2

∆ηComponent−2
...

∆ΓCompressor−k
∆ηComponent−k

...
∆ΓComponent−N
∆ηComponent−N


• H is the ICM, which determines the relationship between ∆

⇀
Z and ∆

⇀
X. It is the percentage delta

in each measurement parameter for the corresponding percentage change in each performance
parameter. For an infinitesimal change in the independent parameters, the corresponding ICM is
the Jacobian.

H =



∂Z1
∂X1

∂Z1
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· · ·
∂Z1
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...
...

...
...
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∂X1

∂Z j
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· · ·
∂Z j
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· · ·
∂Z j
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∂Z j
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...
...

...
...

...
...

...
∂ZM−1
∂X1

∂ZM−1
∂X2

· · ·
∂ZM−1
∂Xk

· · ·
∂ZM−1
∂XN−1

∂ZM−1
∂XN

∂ZM
∂X1

∂ZM
∂X2

· · ·
∂ZM
∂XM

· · ·
∂ZM
∂XN−1

∂ZM
∂XN


Then, the corresponding performance change can be computed using the equation:

∆
⇀
X = H−1

· ∆
⇀
Z (7)

To consider the non-linear behavior of the engine, an iterative Newton–Raphson method could be
applied to the LGPA until the solution converges [99]. This is done by minimizing the error objective

function (Equation (8)), which is the difference between the predicted measurement vector (
_
⇀
Z) and the

actual measurement vector (
⇀
Z). For the first iteration, a small delta on the component performance

is introduced and the corresponding ICM is generated. The FCM is then determined by inverting
the ICM. The performance parameter deviation vector is computed by multiplying the FCM with the
deteriorated engine measurements. From the calculated results, a new ICM and FCM are generated
and the procedure is repeated until the solution converges. The output of the first iteration is the
baseline for the second iteration, the output of the second iteration is the baseline for the third iteration
and so on, until the last iteration.

Objective function = (OF) =
∑

j

f

‖⇀Z j −

_
⇀
Z j‖

 (8)
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The convergence of the solution can be evaluated using the error root mean square (RMS) value
as given in Equation (9) [103]. When the RMS value reaches the target value, the iteration will be
terminated. The iterative procedure is illustrated in Figure 4.

RMS =

√√√√√√ M∑
j=1

(
Z j,predicted−Z j,actual

Z j,actual

)2

M
(9)
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The NLGPA approach was introduced by Escher [99]. Since then, several diagnostic algorithms
with some improvements have been contributed by other authors [9]. Its effectiveness is highly
influenced by the number and location of measurements on the gas-path. Ogaji et al. [86] used this
approach to investigate the effect of measurement selection on engine fault diagnostic accuracy and
suggested the best measurement sets corresponding to different fault scenarios. Recently, Li [105]
developed a novel GT performance and health status estimation method for a single-shaft aero
turbojet engine using adaptive GPA. He used nine gas-path measurements to assess five performance
parameters. The test results showed that the proposed method is capable of identifying gas-path
faults accurately even in the presence of measurement noise. The diagnostic effectiveness of three
different GPA methods have been investigated using different test fault cases for the double shaft GT
engine by Stamatis [106]. Similarly, the fault diagnostics effectiveness of GPA and AI approaches have
been compared and their pros and cons identified based on case studies by Kong [93]. Larsson [107]
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developed a systematic design procedure to construct non-linear MB fault diagnosis method for
industrial GTs. In another study, Jasmani et al. [80], devised a new measurement parameter selection
scheme by combining analytical approach and measurement subset concept. Likewise, Chen et al. [108]
proposed an approach that can select the optimal number of engine measurements for engine GPA
purpose. However, GPA techniques can diagnose GT faults if, and only if, noise and bias does not
exist [93].

4.1.2. The Kalman Filter

KF is a MB iterative algorithm that uses a set of equations and consecutive data inputs to estimate
the true value of the system parameter being measured when the measured values contain a certain
amount of uncertainty. It was initially developed by Rudolf Kalman [109], in 1960, and is basically
a predictor-corrector technique by which the state of a system is determined at time tk using only
the state at previous time step tk−1. The discrete time KF [109] and the continuous time KF [110]
are the two types of KF algorithms [111]. The complete KF procedure is composed of two phases;
the prediction phase and the correction or measurement update phase. In the prediction phase, the KF
produces estimates of the current state variables, along with their uncertainties. Once the outcome
of the next measurement is observed, in the correction phase, these estimates are updated using a
weighted average, with more weight being given to estimates with higher certainty. Figure 5 represents
the block diagram of the discrete time KF method.
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The problem is defined mathematically as follows: 
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The problem is defined mathematically as follows:

System equation : Xk+1 = Φk+1Xk + Gkuk + wk (10)

Measurement equation : Zk = HkXk + vk (11)

where X ∈ RN is the system state vector, k is the time index, Φ ∈ RN×N is the transition
matrix/measurement matrix, u ∈ RM is the control vector, G is the input translation matrix, wk is the
system error matrix, Z ∈ RM is the measurement vector at time k, vk ∈ RM is the measurement error
(noise) matrix, and Hk ∈ RM×N is the model matrix.

The aim of the KF is to estimate the system
_
Xk+1 of Xk+1 based on prior system knowledge and the

available noisy measurement, as a linear combination of all observations up to time k. The following
assumption should be satisfied:

# Initial condition

E[X(0)] =
_
X0 (12)

E
[(

X0 −
_
X0

)
·

(
X0 −

_
X0

)T
]
= P0 (13)
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E[wk] = 0 (14)

E[vk] = 0 (15)

where E[•] represents the expectation operator.
# The initial system state, system noise, and measurement noise are uncorrelated
# The system noise and measurement noise are white, independent, and Gaussian distributed with

known covariance matrices.

Although the predicted state is given by:

_
Xk+1/k = Fk

_
Xk/k + Gkwk (16)

Pk+1/k = FkPk/kFT
k + Gkuk (17)

According to [100,113], a complete discrete KF scheme to solve this problem consists of the
following five equations:

1. State estimate extrapolation:
_
X(k+1/k) = Φ(k+1)

_
Xk (18)

2. Covariance of the estimation error (State Covariance Extrapolation):

P(k+1/k) = Φ(k+1)PkΦT
k+1 + Θk (19)

3. Kalman Gain (KG) Computation:

K(k+1) = P(k+1/k)H
T
k+1

[
Hk+1P(k+1/k)H

T
k+1 + Rk+1

]−1
(20)

4. State Estimate Update

_
X(k+1) =

_
X(k+1/k) + Kk+1

[
Zk+1 −H(k+1)

_
X(k+1/k)

]−1
(21)

5. Error Covariance Update

P(k+1) = P(k+1/k) −Kk+1Hk+1P(k+1/k) (22)

where:

- X(k/k−1): An estimate of X at a time k based on data up to sample time k − 1

-
_
Xk+1/k: System state vector at time k + 1 based on time k

-
_
Xk: System state vector at time k

- Φk+1|k: Transition matrix at time k + 1 based on time k
- Pk+1|k: System state vector at time k + 1 based on data up to sample time k
- Kk+1|k: Kalman gain matrix at time k + 1 based on time k
- Pk+1|: Prediction covariance at time k + 1
- Hk+1|: System sate vector at time k + 1 based on time k
- Θk: System error covariance at time k
- Rk+1: Measurement noise matrix at time k + 1
- X̂k: Estimation error at time k
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Equations (18) and (19) represent the prediction part of the algorithm, while Equations (20)–(22)
represent the correction part of the algorithm. The prediction part simply consists of the dynamic
model, which predicts the next data of the system (at time k + 1) based on the last data (at time
k − 1) or the current data (at time k). The correction part takes the error between the current estimate
and the predicted output and uses it to correct the state estimates to obtain the best estimate of the
system state Xk based on an old observation data at the time k. The mixture of the prediction and
correction is determined by the Kalman Gain. It is the ratio of the error in the estimate divided by
the sum of the errors in the estimate and in the measurement. This Gain determines the extent to
which the filter follows the model or the measurement. The overall result is the best guess of the
parameter to be determined, which is obtained by combining these two different sources of information.
The adjustment to the previous estimate to come up with the new estimate depends upon the Gain.
Based on the previous estimate, the Gain will decide the relative weightage of the new measured
value and the previous estimate to update the new estimate. Once the current estimate is determined,
the error in the estimate should be determined so as to use in the next time round.

KF methods were introduced as a fault isolation and assessment technique in the late 1970s,
and the overall architecture is shown in Figure 6 [114]. It was brought it into practice with an aim
to overcome the two most GPA limitations: poor robustness against measurement uncertainties and
the underdetermined problem due to the presence of limited numbers of measurements. The success
attained in these early programs encouraged the use of these techniques in subsequent years [97,100,115].
The linear KF (LKF) has reliability limitations on non-linear gas-path diagnostic problems. However,
the modified versions of this method (or the nonlinear KF (NLKF)) such as extended KF (EKF) and
Iterated EKF (IEKF), can solve the problem by linearizing the current mean and covariance using Taylor
series expansion [116,117]. The well-known engine manufactures (General Electric, Pratt & Whitney,
and Rolls-Royce) have been utilized modified KF based fault diagnostic methods since 1987 [100]. It is
also integrated with the currently available GT gas-path diagnostic tools such as Auto Analysis, MAPIII,
TEAMIII, a self-tuning onboard real-time model (STORM), a state variable engine model (SVM), GEM,
COMPASS, an engine health management (EHM) and ADEM [9,111]. KF based fault diagnostic
techniques are effective for engine problems where performance influence coefficients are available
as the model [111]. However, those methods have reliability limitations. Most MB techniques which
are relatively coping with measurement noise and bias are developed utilizing this technique [118].
The potential of KF for a single gas-path component fault isolation was evaluated by Volponi et al. [113].
Multiple KF models were used for sensor and actuator fault detection and isolation purpose together
with a component fault detection in an aircraft engine by Takahisa et al. [119]. The effectiveness
of KF on sensor selection for a reliable engine performance diagnostics was also investigated by
Simon and Rinehart [120] in comparison with a maximum a posteriori (MAP). They considered a
liner engine model affected with single component faults and sensor biases. The fault detection and
classification performance of the method using seven, eight, and nine sensors associated with eight
health parameters were tested. Borguet et al. [121] attempted to dealt with one of the difficulties of
MB methods, i.e., the existence of model biases, using simulated transient data. A modular KF based
single and double fault FDI algorithm was proposed by Meskin et al. [122] for a jet engine application.
Recently, the sensor FDII performance of multiple hybrid KF based system was investigated by
Pourbabaee et al. [66]. In this method, nonlinear mathematical model of the system and multiple
piecewise linear (PWL) models are combined to accomplish the sensor FDI task followed by estimating
the fault level using modified generalized likelihood ratio (GLR) method. The capability of EKF to solve
underdetermined engine diagnostic problems was also evaluated by Lu et al. [123]. They compared
the performance of three different EKF estimators; basic EKF, underdetermined EKF, and resultant
EKF. The test results indicated that the method was able to solve the underdetermined problem with a
promising accuracy and robustness than the conventional linear KF scheme.
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4.1.3. Advantages and Limitations of MB Methods

Every method has its own advantages and limitations. Table 4 describes advantages and limitations
of GPA and KF methods related to GT fault diagnostics. In general, MB methods have more advantages
in terms of early fault detection and online fault diagnostics. They can also perform both quantitative
and qualitative fault diagnosis with an adequately good accuracy. Moreover, they apply the real
gas-path physics and have low model complexity and computational time. Nevertheless, they suffer
from model uncertainties, measurement noise, and sensor bias (even if this problem is partially
addressed by KFs), and smearing effects which may lead to a misinterpretation and false alarms.
They require a large number of measurements on the gas-path to provide accurate diagnostic solutions.
Installing additional sensors is almost impossible due to the reasons mentioned in Section 3.1. Besides,
since a very limited information is available on the public domain due to proprietary issues, an accurate
GT performance model is very difficult to obtain.
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Table 4. Advantages and limitations of GPA and KF related to GT diagnostics.

Method Advantages Limitations

GPA

- Qualitative and quantitative assessment of the health status of
gas-path component(s) is possible using measurement
deviations [9,105].

- It is capable of diagnosing multiple faults.
- It is the most appropriate method for measurement parameter

selection [86].
- It helps to understand the physical, thermal, and aerodynamic

nature of the engine behavior.
- It is a cost-effective method with good early fault detection

capability [11].
- It has high computational speed [91].

- Reliability of GPA-based methods depends on the accuracy of the ICM. An accurate ICM
requires knowledge about component characteristic changes due to different faults.

- The reliability of a Linear GPA (LGPA) is highly influenced by the magnitude of the fault
and there may also be solution convergence problem for large fault values [5].

- A large number of sensors are desired [1]. This requires installation of additional sensors
which do not exist in practice, thereby increase sensor related problems [72].

- It does not address measurement uncertainty [91].
- It has a lack of access to modeling information due to proprietary issues.
- It needs a detailed knowledge of the behavior of each component on the gas-path.
- The diagnostic accuracy relies on the accuracy of the engine performance model [62].

KF

- It can provide sufficiently accurate estimation results for
linear problems.

- It has relatively low computational complexity.
- It has low storage and computing requirements.
- Since MB, the physical knowledge of the gas-path system can

be applied to solve the diagnostics problem.
- Unlike GPA, the concern of measurement uncertainty is

undertaken. The actual sensor noise can be represented by
white Gaussian distribution, as it is desired by KF. They are
good at outlier reduction and noise minimization [111].

- It is coping with sensor noise and bias [9]
- Unlike GPA, it has the potential to solve an underdetermined

diagnostic problems [123].

- Even the extended KF (EKF) based methods can only handle problems with a limited
amount of nonlinearity. The estimates for a nonlinear diagnostic problems are often biased
and suboptimal [124].

- Prior knowledge and Tuning: The effectiveness of KF is affected by the unknown
performance deterioration and measurement noise covariance matrices. Choosing the
appropriate covariance matrix (called tuning) for an optimized KF performance, based on
prior knowledge, is a random and challenging task [125].

- “Smearing” effect: although in practice, most of the time, only a limited number of
gas-path components and sensors are affected, the KF oppositely leans to spread of
(“smear”) the faults over multiple components’ performance parameters and measurement
parameters. An attempt to estimate all component faults and sensor faults together using
the available measurements results a highly nondeterministic problem [95].

- Solution convergence problem due to model uncertainty and large sensor noise [126].
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4.2. AI based Methods

The drawbacks of the MB methods forced the research community to focus on AI methods.
According to Konar [127], AI is defined as “the simulation of human intelligence on a machine,
in order to make the machine efficient to identify and use the right piece of “Knowledge” at a given
step of solving a problem”. There are many different AI methods such as ANN, DL, BBN, ES, FL,
and GA. The most powerful and popular types of fault diagnostic algorithms are from AI methods [12].
Demonstrating and validating AI based algorithms requires operational data with appropriate quality,
quantity, and type or model simulation data, in the absence of operational data. Figure 7 illustrates the
conceptual framework of AI-based engine fault diagnostics. It has two parts; developing the diagnostic
mechanism and its implementation. The task of developing the method includes acquisition of the
required data and preprocessing of it, training the algorithm using the processed data, and evaluating
its performance by applying the appropriate evaluation approach, for instance, using a blind test case
data as proposed by Simon [128]. The potential of AI methods on GT FDII have been widely studied
over the past several years. A comprehensive survey of these methods including their strengths and
weaknesses is presented hereafter.
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4.2.1. Artificial Neural Networks

An ANN is an artificial structure that processes information like a biological neuron does,
except this paradigm is mathematical instead. Its model contains sets of neurons connected to each
other in layers. Knowledge is acquired from input information (examples) through a learning process,
and weights of connections between neurons are used to store the acquired knowledge. There are
three popular ANN learning paradigms, namely supervised, unsupervised and self-supervised [125].
If the training is taken place using input and output examples it is called supervised, if it is performed
using the information derived from input data only it is called unsupervised, and if it is done utilizing
the same input and output information the learning is named self-supervised. There are various ANN
algorithms in literature such as multilayer perceptron (MLP), autoassociative neural network (AANN),
radial basis function network (RBFN), probabilistic neural network (PNN), and self-organizing map
(SOM). These methods have been applied to solve different engineering problems including prediction,
pattern recognition/classification, and clustering [129]. They are capable of providing efficient and
reliable models if a sufficient amount of data is available [90]. ANN is a powerful tool in GT modeling
for performance prediction and diagnostics due to its capability to undertake the nonlinearity of the
engine behavior [130]. This is done without the need of the complex thermodynamic equations that
relate the dependent and independent parameters.

Multilayer Perceptron

A MLP network is a feed-forward neural network consisting of input and output layers with one
or more hidden layers in between [131]. It is called feed-forward because information from the input
neurons is passed to the next layer neurons and then they compute an output based on the logistic
equation and pass it to the next layer of neurons and so on until the end. The general architecture of
an MLP consists of an input layer, one or more hidden layers, and an output layer. The first layer is
the input layer that the input data goes in while the output layer, located at the end, computes the
output value using the information coming from the hidden layers. The optimal number of hidden
layers and neurons is determined based on a convergence criterion and the input-output mapping
relationship characteristics.

Over the past decades, several studies have been done on GT diagnostics based on an MLP [113].
An ANN-based user friendly GT fault identification system was provided by Kong et al. [132].
A multiple fault detection system was developed by Matuck et al. [133] using this approach which is
trained on simulation data. They considered single, double, and triple component faults together with
sensor noise. However, this work was limited to fault detection only. Fast et al. [90] proposed a GT fault
diagnostic schemes using MLP in order to optimize the compressor washing schedule. They have also
indicated that ANN is a suitable approach to develop a performance prediction and fault diagnostic
techniques if an operational data is available in the required quality and quantity. To answer the
question of why neural networks are more popular than the other AI methods, Patan et al. [134]
conducted a research work on two different feed-forward MLP algorithms taking into account the
nonlinear behavior of the GT together with modelling uncertainty. It was pointed out that those
fault diagnostic algorithms were having better early detection ability with smaller false alarms,
higher fault classification rate, and more efficient fault identification than the other AI techniques.
Recently, Tayarani-Bathaie et al. [135], Mohammadi et al. [136], Kiakojoori and Khorasani [137],
and Vanini et al. [62] proposed a dynamic neural network (DNN) fault diagnostic techniques for aircraft
engine applications More recently, an ensemble GT fault diagnosis system was devised by Amozegar
and Khorasani [138] using different types of MLP networks. Nested MLP networks were also used to a
fault detection and isolation application by Tahan et al. [139]. However, these methods are limited to
single and double faults only. Moreover, they used efficiency and flow capacity deltas separately as
a single component fault or in a pair as a double component fault although different studies on GT
performance degradation like [19,21], indicated that deterioration can be most significantly represented
by changes of these parameters together.
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Autoassociative Neural Networks

AANNs, also known as auto-encoder, bottleneck, replicator network, or sand-glass type
network [140], are an important family of ANNs with three hidden layers; a mapping layer, a bottleneck
layer, and a de-mapping layer (Figure 8). They can reduce high dimensional data to a lower dimension
with an insignificant information loss based on the concept of principal component analysis (PCA).
Usually, the input and output layers contain equal numbers of neurons. The bottleneck layer is the
middle layer with the smallest number of neurons, where the important features of the input data
are captured. The number of hidden neurons associated with each hidden layer depends on the
problem type and system complexity. In this regard, more detailed information is available in [141].
Compression and decompression are the two sub-networks of the general AANN structure, where the
former used to compress a high dimensional input data to a low-dimensional feature and the latter
tries to reconstruct the original data from the compressed version with minimum information loss.
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AANNs are widely used and very suitable for sensor data validation applications. Kramer [142]
introduced an AANN based technique for sensor validation that is capable of coping with the
nonlinearity of the data. He used the network residuals to detect and estimate sensor faults.
An AANN based sensor validation technique for a turbofan engine was proposed by Guo et al. [143].
Lu et al. [144,145], evaluated the performance of AANNs for sensor noise reduction and bias detection
and correction. While training the noise filtering networks, they used noisy data as an input and
noise-free data as an output. The networks, therefore, tried to provide an output as close to the desired
noise-free data as possible. Besides, the effect of the number of measurements on the accuracy of
the proposed methods was tested using 4 and 9 parameters and achieved almost similar success
rates. AANNs are better at outlier removal and noise reduction than the conventional filtering
techniques [111]. A multiple sensor fault detection and isolation method using a bank of AANNs
together with a MLP based fault identification technique was developed by Zedda and Singh [118] for
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a low-bypass-ratio turbofan engine purpose. It has been shown that AANNs are capable of successful
sensor failure diagnosis, even in the presence of component faults. The effectiveness of using multiple
hierarchical AANNs to diagnose single and double sensor faults in a 2-shaft industrial GT engine was
analyzed by Ogaji et al. [74]. They used three networks: the first one to separate faulty and fault-free
measurements, the second to differentiate sensor and component faults and the last to estimate and
accommodate the amount of sensor faults. This kind of diagnostic task division is important to
share diagnostic tasks, which may improve the accuracy significantly. A combined discrete wavelet
transform and AANN based diagnostic system was also developed by Tamiru et al. [146] for oil
system, vibration system, control system diagnostics purpose. Recently, an AANN was used for
single and double sensor and component fault diagnosis by Vanini et al. [75]. However, the sensor
validation performance of AANN based techniques is influenced by the amount of the noise-level and
the threshold characteristics. Minimizing the number of false alarms and missed detections is equally
important, but they have opposite correlation (i.e., decreasing the number of false alarms by increasing
the threshold level may oppositely increase the rate of missed detections) [111].

Probabilistic Neural Network

Probabilistic neural network (PNN) is a statistical pattern classification multilayer feed-forward
network based on the Bayes pattern classification strategy (based on radial basis functions (RBFs)) [147].
The architecture of a typical PNN, as shown in Figure 9, consists of three layers; an input layer, a pattern
layer and an output/summation layer. The input layer passes the input patterns to be classified to
each of the nodes in the pattern layer. This layer contains individual neurons corresponding to each
pattern/example in the training data set. The neurons in the pattern layer compute their responses
based on Equation (23) and feed into the output layer neurons (Equation (24)). The output neurons
stand for the desired output groups that the network is expected to classify the input patterns into.
Thus, all the connection weights between output layer and pattern layer have a value of 1. PNN can
be characterized as: they are simple in design, have a similar training nature with backpropagation
algorithm, have quite a significant pattern layer, and low computational speed [124].
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If Xij ε RMN (i = 1, 2, . . . M and j = 1, 2, . . . N) is the input vector with N number of input
parameters and M cases and K is the number of target classes, for an input pattern x and assuming
Gaussian probability density function (PDF), the pattern layer and output layer neurons’ outputs can
be computed, respectively, as [148]:

Ψi j(x) =
1
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2β M
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where β is the smoothing parameter.
The capability of PNN for GT fault diagnostics was checked for the first time by Eustace

and Merrigton [149] by implementing it to a GE low-bypass F404 military engine. Romessis and
Mathioudakis [150] also used this method for sensor fault diagnosis in a deteriorated engine
condition. In another study, PNNs were used for sensor fault diagnostics in a jet engine for on-board
application [151]. Like the other ANNs, PNN applies the concept of pattern recognition technique for
fault isolation and identification tasks [152]. It uses a probabilistic measure to decide the type and
location of the fault and to assess its magnitude. Nested PNNs have been used by Ogaji et al. [83]
for sensor and component fault diagnostics in a 2-shaft aircraft engine. For this purpose, five PNN
nets are used: the first is to separate the fault and no-fault patterns; the second is dedicated to
sensor and component fault classification. The remaining three nets are used for component fault
classification. Then, sets of radial basis networks are integrated to quantify the magnitude of the faults.
The results revealed that the proposed scheme was capable of diagnosing all the considered fault
scenarios with sufficiently high accuracy. Recently, the fault classification performance of PNN was
compared with MLP and RBF by Loboda and Robles [153], and obtained similar accuracies. In general,
as per this review, most of the previous PNN based GT diagnostic techniques were utilized for fault
classification tasks.

Radial Basis Function Networks

Radial basis function networks (RBF), also called a kernel function, is a multivariate approximation
function whose value depends only on the distance from the origin or center c, i.e., the Euclidean
distance [152]. It performs a nonlinear transformation over the input vector before it is fed for
classification. By using such a nonlinear function, it is possible to convert a linearly non-separable
problem to a linearly separable one. RBF increases the dimensionality of the feature vector. The most
commonly used types of RBFs include Gaussian, multiquadric, and inverse multiquadric [154].

As shown in Figure 10, the general structure of an RBFN composed of three layers: an input layer,
a hidden layer, and an output layer [131]. Like other ANNs, the number of nodes of the input layer is
equal to the dimension of the input vector. The task of the hidden layer neurons is to project the input
vector into a higher dimensional vector. Hence, the number of neurons in the hidden layer must be
greater than the input layer. This is because if the feature vectors are linearly non-separable in the
input dimensional space, then it is more likely that those feature vectors will be linearly separable
when we cast them into a higher dimensional space. Once the feature vectors are linearly separable in
the M-dimensional space of the hidden layer, the linear combination of the outputs of the hidden layer
is likely to give the class it belongs to. The class combination is decided by the connection weights
from the hidden layer nodes to the output layer nodes. In general, in this process, there are two
important tasks: determining the receptor and the distribution of the function and the connection
weights. Every neuron in the hidden layer represents an RBF. Due to its useful analytic properties,
in addition to localization, the Gaussian function is more commonly used [154]. The number of nodes
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at the output layer is the same as the number of desired classes. Like the other MLP nets, RBF output
units use linear summation functions.Aerospace 2019, 6, 83 28 of 54 
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Although RBF networks can perform different tasks like function approximation,
pattern classification, and dynamic system modelling, they have been widely used in function
approximation [125]. RBFs are capable of approximating any arbitrary function of the network layers
utilizing the training input dataset. The use of RBFs involves many advantages over backpropagation
based feedforward neural networks, for example, rapid training, very low computational expense,
and very good at interpolation, generality and simplicity [125]. They are highly localized and need a
huge quantity of training data, thereby creating a large amount of nodes that allows for rapid training.
In addition, they work better than any other training technique and are able to approximate any
continuous function [155]. However, after training, their computational speed to perform classification
or approximation is low.

The Euclidean distance is computed from the point being evaluated to the center of each neuron,
and an RBF is applied to the distance to compute the weight for each neuron [152]. The further a
neuron is from the point being evaluating the less influence it has. Leonard et al. [156] suggested a
K-means clustering technique to determine cluster centers, a K-nearest heuristic technique to determine
the width of the RBF and multiple linear regressions to determine connection weights of the layers.

Assume a set of training feature vectors and suppose C number of classes are required, for Gaussian
function the network output can be computed as [157]:

yk(X) =
M∑

j=0

wkj exp

−‖X − µ j‖
2

2σ2
j

 (25)

where yk is the kth output, wkj is the weight of the connection between the jth hidden unit and the
kth output unit, µ is the receptor/center of the function, σ (as shown in Equation (26)) is the standard
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deviation of the function that decides what the spread of every RBF looks like, X is an M-dimensional
input vector, and ‖X − µ j‖ is the Euclidean norm.

σi =

√√√√1
p

p∑
j=1

r∑
n=1

(
µni − µnj

)2
 (26)

where p is the nearest number of RBF classes, r is the number of entries, µki and µkj represents the
receptors of the ith and jth hidden units of the nth entries.

Previously, a RBFN was often used for data cleaning prior to a fault diagnosis [157]. In this
study, it has also been shown that their proposed RBFN based noise filtering technique reduced
the measurement noise by 75–81%. This performance is much better than the conventional linear
filters. The problem of measurement outliers and noise was undertaken by Roy et al. [158] using a
RBFN. The result showed that from 59–73% of the data outliers and noises were removed, which is
much better than the traditional filtering methods. Ogaji et al. [5] used sets of RBFNs for gas-path
components fault approximation application. The proposed method comprises of three steps: fault
detection, fault isolation, and fault identification. The first two tasks were performed using sets of
PNNs. After the detection and isolation stages, RBFN based techniques were applied to estimate
the level of component faults using their corresponding fault patterns coming from the associated
isolation networks. The applicability and performance of RBFN for a GT fault identification were
compared with a MLP by Loboda et al. [159]. They concluded that the RBF network resulted in a
little more accurate results than the conventional MLP network, however, the former requires much
more storage capacity and computational time. Recently, a similar work has been conducted using
RBFs [160]. As per [158], RBFNs work better than many other training techniques and require much
less training computational time and cost than backpropagation based algorithms.

Self-Organizing Map

A self-organizing map (SOM) is an unsupervised learning neural network algorithm that
transforms high-dimensional input data into one or two-dimensional outputs [161]. As seen in
Figure 11, its structure typically consists of an input layer and a Kohonen layer connected with a set of
weights. The colored groups on the feature map indicate the neighbor nodes arranged according to
their similarity. While training, the weights are adjusted based on the input data samples, with no
target vector available, in an unsupervised manner. The detailed mathematical expression of an
SOM model and its learning mechanism can be found in [162]. Previously, it was mainly utilized
for data clustering/classification and visualization [161,163]. It has also been applied for many other
practical applications including rotating machinery diagnostics [164–166] and industrial and medical
diagnostics [167–169].

Due to the lack of labeled engine operational data, implementation of such unsupervised learning
networks in the process of gas turbine fault diagnostics may yield significant benefits. Roemer [170]
proposed a modular mechanism that can detect and classify developing engine faults in a Rolls-Royce
F405 gas turbine. He integrated both supervised and unsupervised (SOM) neural network learning
paradigms for life, vibration and performance monitoring purposes of the target engine. A SOM-based
clustering technique was devised by Kim et al. [171] that was used to diagnose three different faults
(combustor liner burn through, bleed band leakage, and EGT sensor failures) in a mid-sized jet
propulsion engine utilizing measurement residuals from three sensors (core speed, exhaust gas
temperature, and fuel flow). Come et al. [172] applied SOM for aircraft engines data visualization in
combination with two other modules, one to normalize the effect of ambient condition variations on the
measurements (based on a linear regression approach) and the other for fault detection (based on the
joint use of a recursive least squares (RLS) and GLR algorithms). In another study, Cottrell et al. [173]
used SOM to visualize an aircraft engine health evolution based on preprocessed data through a
General Linear Model (GLM). A fault diagnostic algorithm for gas turbine fuel systems was also
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introduced by Cao et al. [162] based on an improved SOM approach. In this analysis, eight different
fault cases were taken into account, which may cause the failure of three components: oil gauge,
needle valve, and delivery valve. The performance of a hierarchical clustering (HC) and SOM based
fault detection and diagnosis method has been evaluated by Zhang et al. [64] using measurement
deviations obtained from a group of 19 and 16 sensors of a single shaft industrial gas turbine.
As demonstration case, fault scenarios, sensor faults, bearing tilt pad wear, and early-stage pre-chamber
burnout were considered. It has been stated that their developed tools are being used as part of a
practically incorporated engine health monitoring systems for industrial gas turbine engines operating
across the globe.
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4.2.2. Deep Learning

Deep learning (DL) is a sub-field of machine learning (ML) that is used to learn feature hierarchies
of data through many layers of non-linear information processing [174]. The learning can be supervised,
unsupervised or hybrid [174]. In the past few years, DL has attracted remarkable research attention with
proven computational performance in several application domains including signal and information
processing [175], big data analysis [176], speech recognition [177], medical image analysis [178],
biomedicine [179], system health management [180] and others [181].

Despite its success in the other domains, few studies have been published on the application of
DL for gas turbine fault diagnostics. A combined autoencoder and Gaussian distribution based engine
gas-path anomaly detection algorithm was proposed by Luo and Zhong [182] for civil aircraft engine
applications. The autoencoder is used to denoise data uncertainties and extract the important features
for the Gaussian distribution-based anomaly detection module. In this assessment, measurement
deviations from 15 sensors are used in order to detect anomalies from the target engine gas path
components, although no information is given about the fault scenarios considered. Yan and Yu [183]
introduced a DL-based anomaly detection technique for a heavy-duty industrial gas turbine combustor.
In their proposed method, stacked denoising autoencoder (SDAE) [184] is used as a data processor to
avoid measurement noise and extract features for the combustor fault classification. Then extreme
learning machine (ELM) neural network-based classifier is developed based on the features learned from
the SDAE module. Recently, Xuyun et al. [185] used multiple convolutional denoising autoencoders to
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develop a fault detection technique for aircraft engines. The reported results in the above-discussed
studies encourage more utilization of DL techniques for gas turbine fault diagnostics than the
conventional approaches.

4.2.3. Bayesian Belief Network

A Bayesian Belief Network (BBN) is a graphical representation of a probability distribution AI
based method that represents the cause and effect relationships among predisposing factors, faults and
symptoms [125]. The graph consists of nodes which represent a set of random variables and directed
edges indicating their dependencies. The degree of relationship between the variables is expressed
in terms of conditional probability. In Figure 12, an example of a BBN structure referred to a gas
turbine fault diagnostic is presented. In this structure, the parent nodes are dedicated to the engine
performance parameters and the child nodes to the measurement parameters. The given performance
parameters and the measurement parameters of the case engine are related through sets of directed
connections along with their associated probability values. According to the BBN approach, the engine
gas path diagnostic problem can be expressed mathematically as:

P(x/z) =
P(z/x)P(x)

P(z)
(27)

where P(x/z) is the probability of x given z, P(z/x) is the probability of z given x, x is the independent
parameter (performance parameter), z is the dependent parameter (measurement parameter), P(x) is the
probability of the independent parameter x, and P(z) is the probability of the dependent parameter z.
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The application of BBN for gas turbine diagnostics was started in the early 1990s by Breese et al. [187].
Their proposed technique relies on a model-based method that integrates a BBN with an expert system.
It was implemented to assess failures on the engine oil cooling system, bearing, and bearing temperature
sensors. A few years later, Palmer [188] developed a BBN based fault diagnostic system for the CF6
engine application, although model details were not provided. A more detailed BBN based aircraft
engine gas path fault diagnostic procedure was provided later by Kadamb [186], Romessis et al. [189],
Mathioudakis et al. [190], and Romessis and Mathioudakis [191] with the aid of an engine performance
model. They also showed the capability of their proposed method dealing with engine diagnostic
problems with measurements less than the performance parameters to be assessed. Lee et al. [192]
suggested hierarchically arranged multiple BBN models based on an offline fault diagnosis method
for industrial gas turbine engines under steady-state operating conditions. It has been reported that
the proposed method is capable of carrying out both qualitative and quantitative diagnostics under
measurement’s uncertainty.

In the presence of large data samples, BBN can be trained in a supervised or unsupervised learning
manner, although the majority of the past attempts focused on the supervised one [193]. However,
developing a BNN classifier based on expert knowledge is highly complex and time consuming, and it
is subject to errors as it requires a classified training data sample based on the expert’s prior knowledge
that can be used to model the BBN structure and generate its conditional probability table (CPT).
In many gas turbine applications, it is difficult to obtain the required large data samples with the
fault class information. For isolation of engine fault classes with a data that has no labels assigned to,
the unsupervised learning-based BBN might thus be preferable. Different algorithms exist for this
purpose such as the score-based, constraint-based, and a hybrid of these two [194].

4.2.4. Expert Systems

Expert systems (ESs) are software programs which are used to capture human expert knowledge
in the form of facts and rules to solve problems or give advice as a human expert [91]. The architecture
of ESs (Figure 13) comprises of four basic elements: user interface (used to acquire information and
display results), inference engine (deals with all the reasoning operations of the system based on known
facts and rules), knowledge base (contains facts and rules about the problem to offer the appropriate
decision) and developer (stores information about current education) [93].
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The knowledge from the expert is first prepared in the form of a knowledgebase by a knowledge
engineer or programmer. The knowledge base contains data and facts in that specific area of application
or knowledge domain. The information in the knowledgebase is intended to replace the human expert.
The user interface presents questions to users, accepts information from them and then provides
answers and sometimes the reasoning for those answers too. The interface engine has the job of
matching the user’s input from the user interface with the data contained in the knowledgebase to
find appropriate answers. This is done using interface rules, which describe how different items from
data relate to each other and sometimes using probabilistic rules. ESs are programmed with a series of
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logical rules to find a solution. Very basic ESs use Boolean logic or decision trees. Boolean logic has two
possible values, true and false, yes or no, etc. The problem is that Boolean logic has only two values,
making it difficult to represent real life problems. To avoid the problem of decision trees, ESs typically
use inference rules and chaining to reach conclusion. Inference rules are written as IF-THEN statements
which describe rules for a knowledge domain.

Numerous studies have been done using ESs in previous years, and many different ES based
GT diagnostic techniques are available in the open literature [91,195,196]. They can be broadly
categorized into rule-based, MB, and case-based techniques [91]. The earlier forms of ESs-based
GT gas-path diagnostics applied pattern recognition/matching techniques by comparing patterns
of measurement deltas with performance parameter deltas/fault signatures obtained from original
equipment manufacturers (OEM) [9]. As listed in [91], enormous ES based tools specific to different
GT models and configurations were introduced by GT manufacturers and researchers such as
TEXMAS (Turbine Engine EXpert Maintenance Advisor System), HELIX (HELicopter Integrated
eXpert), XMAN (A Tool for Automated Jet Engine Diagnostics), TIGER (Testability Insertion Guidance
Expert System), IFDIS (Interactive Fault Diagnosis and Isolation System), and SHERLOCK. However,
knowledge from domain specific experts is usually inexact and reasoning on knowledge is often
imprecise. An ES dealing with uncertainty and proved to be very efficient in fault diagnosis is Bayesian
Belief Network (BBN). However, these systems require precise inputs and rely entirely on knowledge
of experts and extensive database of rules.

4.2.5. Fuzzy Logic Methods

Fuzzy logic (FL) is a nonlinear mapping of an input feature vector into a scalar output [197]. It is
one of the most widely used AI methods to approximate the relationship between dependent and
independent parameters based on a set of IF-THEN statements. The general FL approach consists of
four basic components: Fuzzy Rules (sets of IF-THEN statements), Fuzzifier (the mechanism which
maps numbers of input signals into the fuzzy set), Inference Engine (the technique used to determine
the ways in which the fuzzy sets are combined with each other) and Defuzzifier (the mechanism used
to calculate the output values) [93]. The schematic representation of a rule-based FL system is shown
in Figure 14. For gas turbine diagnostics, sets of measurement parameter deltas are used as an input to
the FL system in order to compute the performance parameter deltas.
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After the earliest use of FL by Fuster et al. [198] in 1997, several FL based gas turbine diagnostics
techniques have been devised by other researchers. Among these, Marinai [124,199] contributed a
diagnostic model for a Rolls-Royce Trent 800 engine that can isolate both single and multiple component
faults in the presence of sensor noise and bias. Simulated data for clean and faulty GT cases were
used to test the fault detection performance of the model and the results showed that the detection
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based on filtered data was very accurate with negligible missed alarms and no false alarms. However,
the investigation of the method for multiple fault diagnosis was limited to dual component faults
only. Similarly, Ganguli [200], developed GT measurements’ trend shift detection mechanism using
median filters and FL. The test results revealed that the detection based on filtered data was very
accurate with negligible missed alarms and no false alarms. In order to undertake the problem of
availability of limited numbers of sensors on a real GT service, Ganguli [197] developed a FL based
single fault isolation system for a jet engine using only four commonly available sensors. The proposed
method can isolate 95% of the faults successfully. The accuracy increased with the number of sensors
and reached 100% for eight sensors. He has also stated that FLs can work with poor quality data.
In another study, Ogaji et al. [201] proposed a diagnostic system for a modern military turbofan engine
that can identify single component faults with an accuracy of 92.5%. Recently, Kyriazis et al. [202]
developed a FL based GT compressor fault diagnostic system. Its effectiveness was compared with
pattern recognition and PNN methods. The results showed that the FL method has as good generality
and effectiveness in fault diagnostics as the other two methods.

4.2.6. Genetic Algorithm

A genetic algorithm (GA) is a method which mimics nature on the basis of Darwin’s evolutionary
theory of “survival of the fittest” [197]. It begins with the population of randomly generated structures
where each structure encodes a solution to the task attempt and proceeds to evolve generations.
In each generation, the quality of every individual within the population is assessed by its fitness,
multiple individuals are selected from the current population (based on their fitness) and modified
(recombined and possibly randomly mutates). Since the fitness is a function of the objective function
(OF) to be optimized, the optimum solution is reached when the OF is approaching zero and the best
fitness is associated with the value of one. It is an iterative procedure, each of which consists of three
operators; selection, crossover and mutation [203]. During each generation, the GA improves the
structures in its current population by performing selection followed by crossover followed by mutation.
It is looking for best solutions rated against fitness criteria. Thus, it avoids local optima and searches
for a global fitness. During selection, it duplicates higher fitness structures and deletes structures
with lower fitness. Crossover results in good components of good structures combining to yield
the better structures, and then recombines elements of good chromosomes from different genomes.
Mutation creates new structures that are similar to current structures with a small pre-specified
probability. Figure 15 shows the schematics of the cyclic process of the three GA operators.

GAs differ from the traditional optimization techniques through the following three significant
points [204]. Firstly, since they search parallels from a population of points, they have the ability to
avoid being trapped in local optimal solution. Secondly, GAs work on the chromosome which is an
encoded version of potential solution parameters rather than optimizing the parameters themselves.
Thirdly, GAs use fitness score which is obtained from object functions (OFs) without an artificial over
engineer black-box mathematics. In the end, like the other methods, the user typically choses the best
structures of the last population as the final solution. A more detailed description of this method can
be found in [205].

GA is often applied as an effective optimization tool to obtain a set of component parameters
that produce a set of predicted dependent parameters, through a nonlinear GT model that leads to
predictions that best match the measurements [91]. The solution is obtained when the OF (which is
the measure of the difference between predicted and measured values) achieves the minimum value.
A simplified illustration of GA based GT fault diagnostics strategy is given in Figure 16.
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According to Zedda and Singh [118] and Singh [1], when measurement noise is assumed to be
Gaussian distribution, the suitable OF to be optimized is given as:

J(x) =
M∑

j=1

[
z j − h j(x, w)

]2[
zodj(w)•σ j

]2 (28)

Or, if the absolute deviation is considered (this is suitable when measurement error distribution
is assumed to be other than Gaussian distribution and when modeling errors are inevitably present)
Equation (29) is more suitable.

J(x) =
M∑

j=1

z j − h j(x, w)

zodj(w)•σ j
(29)

where J is the OF, M is the number of measurements, zj is the value of the jth measurement, h is a
vector valued function, w is power setting parameters, zodj is the value of the jth measurement in the
off-design clean condition, σj is the standard deviation of the jth measurement (noise value).

The application of GAs for a GT fault diagnosis was started in 1999 by Zedda [95], and has been
investigated by several scholars since then [206]. The problem of obtaining an accurate MB GT fault
diagnosis method in the presence of a limited number of measurements, far less than the number of
performance parameters, is undertaken by Zedda and Singh [118] using GA. The performance of this
method was evaluated and tested on Rolls-Royce (RR) RB-199, RR RB-211 and ICR-WR21 engine types.
For this purpose, the performance models for each case engine were developed utilizing the well-known
GT engine performance code TURBOMATCH. Sampath et al. [203], developed a GA-based sensor
and component fault diagnostic scheme that can deal with the nonlinearity nature of the diagnostic
problem, for a double shaft GT engine application. In this work, the effects of sensor noise and bias
and the number of sensor and component faults on the accuracy of component fault diagnosis were
analyzed using simulation data from a GT performance modelling tool, called Rolls-Royce Aerothermal
Performance (RRAP). Six gas-path components (inner and outer Fans, high-pressure compressor (HPC),
high-pressure turbine (HPT), low-pressure turbine (LPT), and Nozzle), when affected individually or in
pair (as a single component fault (SCF) and double component fault (DCF) cases), were analyzed using
16 gas-path measurements in the presence of two and four concurrent sensor faults. For this purpose,
six SCF and 15 DCF classes were considered. A GA based GT fault diagnosis method was used to find
an optimal combination of a set of performance parameters and the corresponding set of best match
measurement parameters, through a non-linear performance simulation model [108]. A generalized
GA based GT fault classification method was proposed by Loboda et al. [207] using a thermodynamic
model that is applicable to multiple operating point conditions for both steady state and transient
cases. Li and Pilidis [103] and Li et al. [208] applied GA for a GT performance adaptation in order to
assess the engine’s health status. For this purpose, the information from the measurements was used
to estimate the component faults at a specified design point and off-design operating condition.

Recently, the fault diagnosis effectiveness of an NLGPA and a GA based method was compared
by Kong et al. [209], applied on a 2-spool turbofan engine. They showed that the diagnostic MB on GA
is better than the NLGPA, particularly when sensor noise and bias are considered. In a similar manner,
Kong [93] investigated the diagnostic effectiveness of GA in comparison with NLGPA and fuzzy-neuro
techniques taking in to account measurement uncertainty and sensor fault effects. The test results
indicated that the GA based method showed a reliable accuracy than the NLGPA, especially in the
presence of sensor noise and bias.
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4.2.7. Hybrid AI Methods

In spite of the fact that it is impossible to find a single-technique which can undertake all the
concerns of diagnostics, it would be fascinating to combine two or more methods in an attempt to
offset the limitations of one with the advantages of another [1]. With regard to this, many combined AI
techniques are proposed by different authors including Genetic-neural network, Genetic-fuzzy logic,
fuzzy–neural networks (FNNs), and neural–fuzzy systems [210,211]. Green and Allen [212] discussed
the benefits of combining ANN with other AI methods for diagnostics and prognostics. GA is applied
as an effective optimization tool to obtain a set of component parameters that produce a set of predicted
dependent parameters, through a non-linear GT model that leads to predictions which best match the
measurements [91]. In FL-based techniques, the optimal selection of fuzzy sets with the appropriate
membership functions (MFs) is essential. However, in the conventional FL applications, there is no
defined function to determine the number of fuzzy sets and MFs [111]. It is indicated in here that GAs
are capable of selecting the optimal number of fuzzy sets and MFs automatically, thereby enhancing
the performance of the FL. Kobayashi and Simon [213] investigated the effectiveness of a MB hybrid
neural network GA technique for a turbofan engine application. The neural network scheme was
utilized to diagnose GT component faults while the GA scheme is used for sensor fault evaluation.
The sensor and component fault diagnostic potential of a hybrid ANN and GA based model was
also developed and implemented on advanced cycle Intercooled Recuperated (ICR) WR21 engine
by Sampath and Singh [211]. In this model, the task of the ANN module was to pre-process and
validate the GT data, whereas the GA module was to isolate and identify faults. It has been shown
that the accuracy, reliability, and consistency of the results obtained from the hybrid technique are
better than ANN and GA based algorithms. A RBFN was applied for a GT fault identification purpose,
integrated with a MB KF fault diagnosis scheme by Simani and Fantuzzi [155]. In this algorithm,
the KF based scheme was accountable to detect and isolate the faults using measurement residual,
while the RBFN quantified the magnitude of the faults based on pattern recognition approach.

4.2.8. Advantages and Limitation of AI Methods

Table 5 presents a summary of the advantages and limitations of AI-based methods reviewed
above. This may help beginners of this field in selecting the appropriate diagnostic approach for
variety of engine diagnostic problems. In general, unlike MB methods, AI-based methods can handle
the effect of sensor noise and bias, the possible existence of multiple faults simultaneously, the fault
identification problem using a limited number of instrumentation suite, and the nonlinear relationship
between the measurement parameters and the performance parameters. However, most AI-based
techniques cannot give confidence limits on the output. In addition, they are not capable of diagnosing
faults outside the domain of the data to which they have been exposed during training.

4.3. Strengths and Weaknesses of the Gas-Path Diagnostic Methods

Table 6 presents the summary of these methods regarding their capability of undertaking the
challenges discussed in Section 3.1 and fulfilling the desirable attributes of an effective diagnostic system
stated in Section 3.2. It gives a clear view of the pros and cons of the aforementioned diagnostic methods,
and it is important to choose an appropriate diagnostics system for a particular diagnostics problem.
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Table 5. Advantages and limitations of AI-based methods regarding GT diagnostics.

Method Advantages Limitations

ANN

- They can deal with the nonlinear nature of the engine performance.
- They are capable of learning with time.
- They are very good in data fusion [1].
- Training can be done by means of information extracted from performance data without knowing the

details of the gas-path system.
- They can handle multiple fault problems [83].
- They can deal with measurement uncertainty (noise and bias) [9].
- They can be applied for onboard applications due to their high computational speed [11].
- They are able to deal with large component faults in the presence of sensor faults [83].
- They are more appropriate to handle diagnostics problems with limited numbers of measurements [1].
- They are relatively easy to implement for both engine performance modeling and diagnostics [214].

- Since they are unable to perform reliably outside the range of the
data they are trained on, a huge amount of data that can sufficiently
represent the entire life of the engine condition is required.

- They require high computational time (during training).
- If operational data is used to develop the methods, retraining will be

required during engine overhaul and/or its operating condition
changes [5].

- Diagnostic error increases with an increase in the number of
operating points. But this problem can be solved by correcting the
data towards ambient condition and load variations [5].

- The process in the hidden layers is not visible (they are black-box
models).

FL

- Like other AI methods, they are model-free, can handle diagnostic problems which are difficult to be
described and solved mathematically.

- Fuzzy rules are derived from the available GT data for training. This makes them particularly suited for
finding solutions to problems for which there are no exact solution, but only with a large number of
examples [124].

- They are capable of generalizing from examples [124].
- They can handle multiple fault problems partially [9].
- They are able to deal with the non-linear nature of gas-path problems [11].
- They are coping with measurement noise and sensor bias [91].
- Like ANNs, FLs could perform data-fusion [2].
- Like ANN, FL-based systems could be utilized for online diagnosis application due to the fast

computational capability in inference mode [11].

- Fuzzy rules depend on the knowledge of subject expert and
diagnosis accuracy depends on the available rules.

- Large quantity of rules and training data sets are required [2].
- They are not as effective in quantitative fault diagnostics as ANN [5]
- Like other AI systems, they are poor at recognizing new datasets that

the model does not see during training [124]. Hence, for a better
accuracy, a massive amount of data is necessary.

- Does not admit model robustness.
- Difficult to define exact queries that identify specific faults.

GA

- It is able to deal with measurement noise and bias.
- It provides good results when integrated with other MB as well as DD systems [1].
- Like ANN, it can deal with engine diagnostic problems with limited instrumentation suites available.
- It can optimize the engine performance functions without the need to solve complex equations like the

other mathematical optimization approaches [208].
- It can perform both qualitative and quantitative diagnostics [5].
- It can perform simultaneous fault analysis [215].
- It can deal with the non-linear nature of the engine behavior [208].

- It requires long computational time than traditional optimization
techniques, especially as population and generation numbers grow
[105].

- As the number of simultaneous faults increases, the convergence
time increases [125].

- In order to check the consistence in the GA optimization results,
multiple runs are often required [5].
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Table 5. Cont.

BBN

- It is graphical, and it is easy to visualize the model variables and its diagnostic results.
- It is capable of performing multiple simultaneous fault analysis [188].
- It can perform data fusion [2].
- It can provide better, more flexible and robust diagnostic solutions [191].
- Unlike ANN, it requires a short retraining time because gas turbine model hardware changes can be easily

entered [124].
- Unlike ANN, BBN can include generic faults that are not considered during the training process of the

diagnostic system [188].
- After completing the BBN model utilizing a gas turbine simulation model, it does not need to run the

model gaining in computational speed [124].
- It is more realistic to make diagnosis expressing the probability of whether a fault occurred or not, than

expressing a deterministic answer [10].

- High computational requirement [186].
- Gathering the required information for setting a BBN model is

tedious and time consuming [125].
- It requires a well-trained developer to set it up [188].
- As the number of nodes and edges increase the model complexity

and computational and storage requirements increase [216].
- Measurement uncertainties and operating condition variations affect

its accuracy [217].

Expert
System

(ES)

- It is preferable when the diagnostic problem is well understood, stable, and human experts are available
to develop the knowledgebase.

- It is relatively simple to develop and easy to understand.
- It is a more suitable technique for stable and predictable GT operating conditions, if potential faults can be

defined easily.
- The knowledgebase does not represent only a single human expert knowledge, rather a group as a whole.

This helps to eliminate biases from individuals [59].
- It is more important for applications in remote areas that maintenance experts cannot be found in nearby

distance [59].

- The knowledge base may suffer from measurement uncertainties and
incomplete or missing data. This problem could have a significant
effect on reliability and accuracy of answers provided by the system.

- Like any software program, the inference engine running missing
rules or incorrect data process influences its accuracy and reliability.

- It is highly dependent on the knowledgebase, which covers only a
small amount of knowledge, and are incapable of dealing with
problems outside this domain. If experts are wrong, the output will
also be wrong. Thus, it requires up-to-date knowledge of the human
experts along with a significant set of rules.

- The knowledge acquisition task is time consuming.
- It requires high establishment cost due to luck of human experts [59].



Aerospace 2019, 6, 83 39 of 53

Table 6. Comparative summary of the major diagnostic methods concerning their capability towards the desirable attributes.

Method Category Coping with Noise & Bias
[9,91]

Ability to Deal with Problem
Non-Linearity [9,91]

No. of Sensors
Required [9]

Data Fusion Ability
[2,9]

Computational
Speed [2,91]

SFI Capability
[9]

Ability to Provide
Quantitative Solutions [2]

LGPA MB No Incapable M ≥ N L H Capable Capable

NLGPA MB No Capable M ≥ N L FH Capable Capable

LKF MB Partial Incapable N < M AA H Capable Capable

NLKF MB Partial Capable N < M AA H Capable Capable

ANN DD Yes Capable N < M FH H Capable Capable

GA MB/AI Yes Capable N < M FH L Capable Capable

FL DD Yes Capable N < M H H Capable Partial

BBN DD Yes Capable N < M H L Capable Capable

ES DD Yes Capable N < M Fairly high FH Capable Capable

Method System
Complexity [91]

MFII
Capability [9,87] Explanation Facility [87] Adaptability

[87]
Memory

Requirement [9,87]
Online/Offline
Application [9]

User Friendly
Interface [11] Flexibility [2]

LGPA L Capable - NF L Offline F H

NLGPA L Capable - NF L Offline F H

LKF FL Capable NF NF L Both F AA

NLKF Mm Capable NF NF L Both F AA

ANN FH Partial NF F H Both F L

GA FH Partial - F H Offline NF AA

FL H Partial - F H Both F A

BBN H Partial NF F H Offline F F

ES H Partial NF F H Offline F A

L, low; Mm, medium; AA, above average; FL, fairly low; FH, fairly high; H, high; F, favorable; NF, not favorable; N, number of performance parameters; M, number of
measurement parameters.
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5. GT Diagnostic Methods Validation Techniques

In the field of GT diagnostics, method validation is a critical issue. GT users need a practical tool
to evaluate the performance and effectiveness of any algorithm before they decide to incorporate into
their plants. However, there are no standardized commercial tool for this purpose. The evaluation
approaches that the research community was using until now are:

1. Performance Metrics Approach: Performance metrics can be used to measure the detection,
isolation, and identification performance of a fault diagnostics algorithm [218]. The detection
metric measures how accurately the detection algorithm detects abnormal operating conditions.
The isolation metrics evaluates how successfully the isolation part of the diagnostic framework
distinguishes the fault types and their locations. Also, the identification metrics measures
how accurately the diagnostics system estimates the magnitude of the faults. A more detailed
description about this concern together with sample performance metrics is available in [219].
The majority of the fault diagnostic methods available in the open domain are evaluated based
on this approach. A fault diagnostics performance metric associated with the fault detection and
isolation reliability of four different methods for aircraft engines is presented by Simon et al. [220].

2. Benchmark Fault Cases Approach: The generally accepted and implemented solution to obtain
the required performance data for diagnostic method development and validation is implanting
fault cases corresponding to the possibly existing faults into the GT performance model [113,221].
However, there exists some inconsistencies concerning the range of the performance parameter
losses that different gas-path faults are represented by [222]. The issue of using benchmark fault
cases has also been thoroughly studied by the OBIDICOTE (On Board Identification, Diagnosis and
Control of GT Engines) Project conducted by the European research community [223]. The project
identified a set of benchmark fault cases, which have been used by several researchers so far to
evaluate their engine fault diagnostic methods [191,211,224]. The effectiveness of using some sets
of benchmark fault cases to evaluate the performance of a diagnostic system is further investigated
by the engine health management industry review (EHMIR) established under The Technical
Cooperation Program (TTCP) [224]. TTCP is a collaboration forum for defense science and
technology (DST) between five nations, namely, UK, USA, Canada, Australia and New Zealand.
The effort of this forum resulted in a reference engine problem, together with a recommendation
of an evaluation environment for different diagnostics algorithms. Based on the recommendation
of the aircraft engine health monitoring community, recently, NASA’s research team developed
a public benchmark gas-path fault diagnostics techniques’ performance evaluation software
referred to as the Propulsion Diagnostic Method Evaluation Strategy (ProDiMES), applicable to
aircraft engines [220]. In this software, four different methods are included; Weighted Least
Squares, PNN, Performance Analysis Tool, and Generalized Observer/Estimator. Moreover,
the field GT condition monitoring and diagnostics has been studied for many years by the research
team of the Laboratory of Thermal Turbomachines of the National Technical University of Athens
(LTT/NTUA) [12] and Cranfield University (CU) [1] and proposed many different techniques.
These groups showed the effectiveness of using benchmark fault cases to develop and evaluate
the performance of diagnostic algorithms.

3. Comparison of Methods Approach: As a third alternative, there are also some self-conducted
comparative evaluation (a one-to-one comparison of methods) based research works to assess
the diagnostic performance of different themes [113,221]. In this category, previously published
papers are used as benchmark methods to compare the performance of the newly developed
algorithm. However, this approach has limitations due to the reason that most of the available GT
diagnostic methods targeted different engine problems and degree of complexity under variety of
diagnostic conditions (i.e., operating modes, measurement system, deterioration profile etc.) [224].
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6. Conclusions and Future Research Directions

Gas turbine (GT) gas-path fault diagnostics is a key element of an overall engine condition-based
monitoring (CBM) system providing enhanced safety, reliability, and availability along with optimal
operation and maintenance costs. In consideration of this role, an effective and reliable gas-path
diagnostic technique is critical. This paper was devoted to discussing various issues related to
gas-path diagnostics including engine physical faults, challenges and desirable attributes of a
gas-path diagnostics, state-of-the-art methods, and verification and validation approaches. The past
efforts on gas-path diagnostics have focused on the aspects of data filtration, sensor validation,
and component fault diagnostics. Variety of methods associated with these aspects, beginning with the
conventional methods to the most sophisticated artificial intelligence (AI) based ones, were reviewed.
Due to their remarkable capability of handling the available challenges and meet the majority of the
desirable attributes, recent efforts paid more attention to AI methods. Particularly, artificial neural
networks (ANNs) have been widely used for both qualitative and quantitative diagnostic applications,
although the majority of the investigations were limited to single sensor fault and/or single component
fault analysis. However, in order to avoid the barriers between system developers and engine users and
get their interest to invest and incorporate gas-path diagnostic technologies into their plants, there are
two main issues that the gas-path diagnostics research community should give attention to: improving
the effectiveness and reliability of the available fault diagnostic systems and developing practical tools
to evaluate the effectiveness of the proposed techniques. With that in mind, the following further
studies should be carried out.

• The need for a standardized gas-path diagnostic problem definition. According to this survey,
there is no consensus between researchers in defining and representing gas-path diagnostic
problems (terminologies, component fault representation, ranges of sensor/component faults,
and the number and type of faults corresponding to different engine configurations that possibly
exist in the engines lifetime). This inconsistency may confuse young researchers of the field,
create barriers in exchanging gas-path diagnostic related ideas/solutions and performing a
one-to-one comparison of different algorithms.

• The review on GT performance deterioration revealed that the degradation profile corresponding
to each gas-path’s faults is not consistent. This may lead to an incorrect representation of
components deterioration, and thereby unreliable fault diagnostic results. Hence, there should be
more investigations in this regard.

• Most of the devised techniques for simultaneous fault analysis were restricted to qualitative
solutions (i.e., detecting and isolating without estimating the level of the fault, which is a very
important step in the maintenance decision). Moreover, the accuracy of the available limited
quantitative approaches requires improvement for multiple fault scenarios. Development of an
effective gas-path diagnostic system that can perform both qualitative and quantitative diagnostics
of both single and multiple fault scenarios thus needs further investigation.

• Development of efficient hybrid methods. Most of the available gas-path diagnostic methods are
single-technique-based and it is difficult to find single-technique which can address all gas-path
diagnostic related challenges along with providing accurate diagnostic results. It is recommended
to combine two or more methods based on their merits.

• Development of integrated platforms. Although a large number of diagnostic methods have been
devised so far, the majority of those methods considered different platforms with different levels
of complexity and applied for different engine system monitoring (such as sensor, component,
vibration, controller, and fuel and oil systems). Integration of verity of methods into a diagnostic
tool being capable of addressing the entire GT system problems is required.

• Establishment of a practical approach to verification and validation. Engine users need practical
tools to objectively assess the effectiveness (i.e., the technical and economic feasibility) of newly
proposed solutions and determine its advantages over the existing maintenance practices before
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incorporating into their plants. However, there are no internationally accepted standards or
unified frameworks that can be applied for this purpose. Hence, the establishment of practical
verification and validation approaches requires attention in this field.

• Development of user-friendly gas-path diagnostic software. Regarding engine performance
simulation, there are some powerful commercial software available. Conversely, other than the
traditional techniques, there are no advanced software tools based on AI methods. Therefore,
user-friendly gas-path diagnostic software that can acquire, preprocess and validate performance
data, assess the condition of engines and suggest the appropriate maintenance actions is required.
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Nomenclature and Abbreviations

AANN Auto-associative neural network
AI Artificial intelligence
ANN Artificial neural network
BBN Bayesian belief network
CBM Condition-based maintenance
CCPP Combined cycle power plant
CPT Conditional probability table
DB Data based
DCF Double component fault
DD Data driven
DL Deep learning
DNN Dynamic neural network
DOD Domestic object damage
DST Defense science and technology
EGT Exhaust gas temperature
EHM Engine health monitoring
EHMIR Engine health management industry review
EKF Extended Kalman filter
ELM Extreme learning machine
ES Expert system
FCM Fault coefficient matrix
FDD Fault detection and diagnostics
FDI Fault detection and isolation
FDIA Fault detection, isolation and accommodation
FDII Fault detection, isolation and identification
FDIR Fault detection, isolation and recovery
FL Fuzzy logic
FOD Foreign object damage
GA Genetic algorithm
GLR Generalized likelihood ratio
GPA Gas-path analysis
GT Gas turbine
HC Hierarchical clustering
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HELIX HELicopter Integrated eXpert
HPC High pressure compressor
HPT High pressure turbine
IATA International air transport association
ICM Influence coefficient matrix
IEKF Iterated extended Kalman filter
IFDIS Interactive Fault Diagnosis and Isolation System
KF Kalman filter
LCC Life cycle cost
ICR Intercooled recuperated
LGPA Linear gas-path analysis
LKF Linear Kalman filter
LPT Low pressure turbine
MAP Maximum a posterior
MB Model based
MF Membership function
ML Machine learning
MLP Multiple layer perceptron
MLPNN Multiple layer perceptron neural network
MRO Maintenance repair and overhaul
MSE Mean square error
NBS National bureau of standards
NLGPA Nonlinear gas-path analysis
NLKF Nonlinear Kalman filter
NTUA National technical university Athens
OBDICOTE On board identification, diagnosis and control of gas turbine
OEM Original equipment manufacturer
OF Object function
PCA Principal component analysis
PNN Probabilistic neural network
PR Pressure ratio
PWL Piecewise linear
RBF Radial basis function
RBFN Radial basis function network
RMS Root mean square
RRAP Rolles-Royce aerothermal performance
SCF Single component fault
SDAE Stacked denoising autoencoder
SOM Self-organizing map
STORM Self-tuning onboard real-time model
SVM State variable engine model
TCF Triple component fault
TEXMAS Turbine Engine EXpert Maintenance Advisor System
TIGER Testability Insertion Guidance Expert System
TTCP The technical cooperation program
XMAN A Tool for Automated Jet Engine Diagnostics
Γ Flow capacity
η Isentropic Efficiency
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