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Abstract: In this article, we undertake a concise review of several milestone developments in classical
regression rate models of hybrid rocket motors. After a brief description of the physical processes
entailed in hybrid rocket combustion, Marxman’s diffusion-limited theory is re-constructed and
discussed. Considerations beyond the scope of basic convection-driven models, which address
disparate forms of the blowing correction, variable fluid properties, and pressure and radiation
effects, are also given. Finally, a selection of kinetically-limited models is presented, with the
aim of comparing the characteristics of several competing theories that become applicable under
particular circumstances.
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1. Introduction

In the early 1960s, the advent of the space race played a key role in renewing commercial
interest in hybrid rockets as a viable propulsion alternative. Previous experimentation in 1947 by the
Pacific Rocket Society had established that the chamber pressure of a hybrid rocket was not strongly
influenced by the exposed fuel surface area and that hybrid motors were insensitive to cracks in their
fuel grains [1]; this safety feature essentially nullified the risk of sudden deflagrations caused by defects
in motor fabrication and presented hybrids as an attractive alternative to the more universally-accepted
solid propellant systems. Nonetheless, several elements of the physical processes associated with the
operation of hybrid rockets remained elusive, including the details of the combustion process and the
effects of scaling on motor performance. The search for answers, both quantitative and qualitative, to
these fundamental questions was undertaken throughout the 1960s at the United Technology Center
(UTC) in California, where Marxman, Gilbert, Wooldridge, and Muzzy carried out several elegant
experimental and theoretical investigations into the nature of hybrid motor burning. Although this
group was, by no means, alone in its line of inquiry, its members established themselves at the forefront
of the field by conducting a series of landmark studies which are routinely cited to this day. For a more
thorough perspective on the efforts of this and other contemporaneous groups, the historical exposé
provided by Altman [1], who led the hybrid research group at UTC, is highly recommended.

The effort to describe the internal ballistics of hybrid motors continues to the present day,
especially as novel engine configurations that cannot be accurately described by the more traditional
models are becoming commonplace. Furthermore, the continuous growth in modern computing power
and numerical techniques has allowed for computational investigations into hybrid rocket combustion
in greater detail than ever before. The subject of classical diffusion-limited regression rate models is
cursorily reviewed in the introductory parts of various articles on hybrid rockets, but these treatments
are naturally not intended to elucidate the finer points of the models in question. Although other
comprehensive reviews of the subject matter exist [2,3], they tend to have a generally broader focus.
While their values remain unquestionable, they can require greater effort on the part of the reader to
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gather all the details necessary for the complete re-construction of Marxman’s model compared to the
present treatment.

This article is intended for researchers who have not been acquainted with the history of
analytical, boundary-layer-based regression rate modeling in hybrid rockets. It aims to complement
the existing literature by providing the reader with a concise, but sufficiently detailed, review of
classical diffusion-limited regression models, in order to set a solid foundation upon which future
related research could be based. In this vein, the starting point of this review will be a brief discussion
of the physical processes involved in hybrid rocket combustion.

2. Physical Processes in Hybrid Rockets

Hybrid rockets are thrust-producing chemical propulsion systems that store their fuel and
oxidizers separately in different phases; a typical hybrid rocket consists of a liquid oxidizer, which
is injected into a thrust chamber whose walls are composed of a solid fuel. Such a design concept
offers several unique advantages over traditional solid and liquid rocket configurations. Hybrids are
less complex and, therefore, less costly than liquids because they require half of the plumbing and
turbo-machinery. They offer the flexibility of throttling and are, thus, capable of non-destructive aborts,
which are out of reach for solid motors. Hybrid engines are capable of generating specific impulse
values that generally fall between those of solids and those of liquids. However, when designed
properly, hybrids can match the performance of some liquid systems, such as LOX-RP1 [4]. In addition
to their insensitivity to cracks during flight, hybrids offer unique safety advantages during all phases of
their life cycle, including fabrication, storage, and handling. On the other hand, the physical separation
of the fuel and oxidizer interfaces leads to a less vigorous combustion response, when compared to the
quasi-pre-mixed flame character observed in solid and liquid rocket engines.

Hybrid combustion depends on the balancing act of several aerodynamic, chemical, and thermal
processes. An illustrative sketch of a diffusion-limited hybrid flame is provided in Figure 1.

Figure 1. Illustrative sketch of the diffusion-limited combustion process in hybrid rockets.

When an oxidizer is injected uniformly into a combustion chamber, a turbulent boundary layer
forms as the ensuing flowfield sweeps over the solid fuel grain. It should be noted that, in nearly all
real hybrids, oxidizer injection is not uniform and injector effects dominate at the head end. These
effects tend to greatly increase the local regression rate and often demand special care be taken in
preventing burn-through of the grain and casing near the injectors. When injection is not uniform,
the boundary layer assumes its classical structure downstream of the flowfield generated by the
injectors. Heat from an ignition source reaches the wall and vaporizes a thin layer of fuel, which then
infiltrates the boundary layer region. At some small distance from the wall, the local mixture ratio,
due to species diffusion between the oxidizer and the fuel, proves conducive to combustion and so a
thin flame appears. This location is situated approximately 10–20% of the boundary layer thickness (δ)
from the wall and may be around 0.1δ thick [5].

Interestingly, chemical combustion in the boundary layer of hybrids was observed in some early
experiments to occur at fuel-rich conditions [5–7], thus leading to flame temperatures that were
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considerably lower than the adiabatic flame temperature of the reacting propellants. This situation is
not universal and its report immediately generated significant debate [8] which, while informative
regarding the validity of diffusion-limited models, falls beyond the scope of this review. A fraction of
the vaporized fuel flows axially below the flame zone and, in some configurations, this fuel is mixed
with excess oxidizer in a post-combustion chamber in an effort to recover the full performance potential
of the hybrid motor. Once the motor is ignited, the combustion process becomes self-sustaining and
somewhat self-regulating. Increasing the oxidizer flow rate enhances the convective heat transfer to
the wall and, as such, the vaporization rate of the fuel. Naturally, the increased mass of fuel blowing
outwardly from the grain has a blocking effect on the inward convective heat transport across the
flame, thereby reducing the vaporization rate until an equilibrium state is achieved. For this reason,
and because increasing the oxidizer flow pushes the motor further away from an ideal oxidizer-to-fuel
ratio, throttling the oxidizer alone as a means of controlling a hybrid motor has proven to be more
complicated than throttling both propellants together as in a liquid rocket engine. Too much oxidizer
“too fast” will blow the engine out, as the overall mixture ratio shifts into a region that can no longer
support combustion; in the extreme case, residence times become insufficient for chemical reactions
to complete. Conversely, an insufficient amount of oxidizer can lead to flame extinction. Operating
just above the lower flammability limit can “cook” the motor, as low temperatures cause charring
instead of complete combustion, specifically when low heat-transfer and regression rates allow the
heat to penetrate deeper into the fuel grain to the extent of altering its mechanical properties. Although
pressure-sensitive chemical kinetics can be quite important in either of these extremes, combustion is
conventionally accepted to be a diffusion-limited process at the moderate operating conditions that are
typical of most hybrid motors.

3. Marxman’s Diffusion-Limited Model

We now turn our attention to a review of the regression rate model developed at UTC by Marxman
and his associates. Their model describes the heat transfer pathways within a hybrid motor and leans
heavily on the earlier work of Lees [9], who performed a similar analysis in a chemically reactive
environment with blowing. The model assumes that the flow is developing along the entire length of
the grain (i.e., the boundary layers on either side of the motor have not yet merged at the center-line
and a core flow of nearly pure oxidizer exists). Thus, the model does not accurately portray motors
whose flow becomes fully developed in the port or is dominated by injector effects over a large region
of the head end. The foundational relationship of Marxman’s model consists of an equivalence between
the heat transferred from the gas to the wall and the energy absorbed in vaporizing the solid fuel:

Q̇w = ṁ′′f hv = ρfṙhv, (1)

where Q̇w, ṁ′′f , hv, and ρf represent the total heat flux at the wall, the fuel mass flux leaving the surface,
the effective heat of gasification (which combines the heat of vaporization and melting, the heating
of the solid fuel grain, and the heat of reaction associated with polymer degradation), and the fuel
density, respectively. Note that the fuel is assumed to pyrolyze and vaporize, as is the case with most
polymers, and that Marxman’s model is not accurate for liquefying fuels (such as paraffin wax) that
characteristically form a low-viscosity melt layer at the surface. The grain regression rate is represented
by ṙ, in keeping with most other authors, despite some later simplifications that assume a planar
configuration. Implicit in the relation specified in Equation (1) is the assumption that there are no heat
losses through the grain to the motor casing or outside environment. Experiments and theories have
both shown that such conditions provide a reasonable portrayal of normal operations for most hybrid
motors, with the thermal waves penetrating only a short distance below the grain surface at moderate
regression rates [6]. Next, a more specific expression for the heat transferred from the gas to the wall is
given by

Q̇c = −
(

k
cp

∂h
∂y

)
w

, (2)
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where Q̇c, k, cp, h, and y represent the convective heat flux (including the effect of partial enthalpies
transport by species diffusion), thermal conductivity of the gas, specific heat of the gas, enthalpy of
the gas, and normal distance into the flow from the fuel surface, respectively. Here the subscript ‘w’
refers to properties evaluated at the wall. Equation (2) appears as a conductive expression, although it
is not explicitly labeled as such in Marxman and Gilbert’s [5] original paper. It should be noted that
applying such a simple conductive heat transfer relation to combusting flow implies the assumption
that Le = Pr = 1 and that the Reynolds analogy is valid for turbulent flow. As for the radiative
component of the total heat flux, it represents a smaller contribution than convection in most hybrids.
Whether the effect of radiation is small enough to be safely neglected, as in Equation (2), depends on
the propellants and motor operating conditions: Although the polymethyl methacrylate (PMMA)-O2

systems studied at UTC display a weak radiation dependence, several hybrid motors behave differently.
The importance of radiation is discussed at greater length in a later section.

The first of the two major hurdles in describing the heat transfer pathway has now been reached;
namely, the challenge of determining the amount of convective heat flux at the wall, based on the
known characteristics of the turbulent flow. The Stanton number is introduced, for this purpose, as it
represents the ratio of the heat transferred into a fluid to the thermal capacity of that fluid:

St =
Q̇c

ρbub∆h
, (3)

where the difference in gas-sensible enthalpy ∆h is evaluated between the flame zone, denoted by a
subscript b, and the gas at the wall. In the above, the axial velocity of the burned gas is designated as
ub. Writing the wall energy balance, Equation (1), in terms of the Stanton number, we have

ρfṙ =
Q̇c

hv
=

Q̇w

hv
= St ρbub

∆h
hv

, (4)

so that Q̇, which is unknown and difficult to estimate directly, is eliminated.
At this juncture, the Reynolds analogy may be invoked to establish an approximate relationship

between the unknown heat flux and the better-understood shear stress within the boundary layer.
In this process, the Prandtl and Lewis numbers between the wall and the flame zone are taken to be of
order unity. It should be noted that, since real hybrids often experience conditions that differ from the
idealized assumptions made here, the Chilton–Colburn analogy may replace the Reynolds analogy for
cases where Pr 6= 1 or in the presence of an axial pressure gradient. In fact, it may be shown that the
difference in the final regression rate relation is rather small when these effects are taken into account
(see Marxman [7]). Accordingly, the thermal and molecular diffusion mechanisms associated with the
energy and momentum transfers within the boundary layer may be assumed to be driven by similar
turbulent mixing processes. Subsequently, the Reynolds analogy may be written as an equivalence
between the ratio of the heat flux to the radial gradient of total enthalpy hT and the ratio of the shear
stress τ to the radial gradient of the axial velocity:

− Q̇
∂hT/∂y

=
τ

∂u/∂y
. (5)

This expression may be integrated from the wall to the flame zone, since the object of invoking
the analogy is to link properties at these two points. Direct integration yields

Q̇c

∆hT
=

τw

ub
. (6)

If no combustion occurs in the low-speed region below the flame, ∆h = ∆hT and dividing by ρbub
leads to an alternate expression for the Stanton number, in terms of the wall shear stress τw or the skin
friction coefficient C f , by
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St =
τw

ρbu2
b
=

1
2

C f
ρeu2

e

ρbu2
b

. (7)

Finally, substituting Equation (7) into Equation (4) enables us to write

ρfṙ =
1
2

C f ρeue
ue

ub

∆h
hv

. (8)

Note that Q̇ has now been replaced in the expression by C f , which is more straightforward to
estimate. The first hurdle has been cleared.

Next, the skin friction coefficient may be calculated using a suitable empirical relation. Marxman
used the well-known expression for turbulent flow over a flat-plate with no blowing (Schlichting [10]),

C f0

2
= 0.03Re−0.2

x , (9)

where the reference flat-plate value for the skin friction coefficient is given the zero subscript, in order
to distinguish it from the value applicable to the combusting flowfield. The local Reynolds number in
this expression is given in terms of the freestream properties at the boundary layer edge, denoted here
with a subscript ‘e,’ and the axial distance x from the grain leading edge, specifically

Rex ≡
ρeuex

µe
. (10)

Making use of this relation entails two principal assumptions: First, that the presence of blowing
does not change the nature of the flow so much that a standard value of the friction coefficient modified
by a correction factor would be invalidated and, second, that the result for a flat plate will adequately
describe the motion in a typical cylindrical and center-perforated grain. The validity of the first
assumption largely depends on the complexity or degrees of freedom offered by the correction factor
applied. The flat-plate assumption is generally accepted for axially-injected hybrid motors—the grain
curvature becomes inconsequential to the analysis in the absence of swirl (i.e., when the motion lacks a
significant tangential component). In such configurations, the boundary layer length-scales remain at
least one order of magnitude smaller than those associated with the radius of curvature, so that the
combustion process may be safely modeled using a flat-plate assumption. The combined effect of both
assumptions has been examined in the context of swirl-driven motors by at least one researcher [11].

Substituting the skin friction coefficient expression given by Equation (9) into the energy balance
in Equation (8) produces

ρfṙ = 0.03ρeueRe−0.2
x

C f

C f0

ue

ub

∆h
hv

. (11)

All that remains is to find a “blowing correction,” C f /C f0 = St/St0, that will account for
the difference in heat flux between the combusting (i.e., blowing) and non-combusting cases.
For convenience, the blowing parameter B is first defined as

B ≡ ue

ub

∆h
hv

, (12)

so that

ρ f ṙ = 0.03ρeue
C f

C f0

Re−0.2
x B. (13)

The blowing parameter, thus, appears as a thermochemical parameter, which depends on the
flame location within the boundary layer and which can be specified for a particular propellant
combination. While it is clear that the heat of gasification and difference in enthalpies are determined
by the propellants and mixture ratio, the dependence of the velocity ratio ue/ub, which is closely
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linked to the flame height, on these same parameters is less evident. This dependence may be verified
by integrating the oxidizer and fuel mass fluxes through a pair of control volumes separated by the
flame zone and comparing the results to the integral momentum equation. One obtains

ue

ub
=

Koxe +
(
O/F + Koxe

)
(∆h/hv)

(O/F) (∆h/hv)
, (14)

where Koxe is the oxidizer concentration in the free stream and O/F is the local oxidizer to fuel ratio
at the flame [6]. For the equi-diffusive case, the blowing parameter also proves to be a similarity
parameter of the boundary layer. In other words, when Le = Pr = 1 and B = const., the velocity,
species concentration, and enthalpy profiles become similar everywhere [2,6]. In a follow-up paper,
Marxman [7] derived the following expression for the blowing correction

C f

C f0

=

[
ln(1 + B)

B

]0.8
[

1 + 13
10 B + 4

11 B2

(1 + B)(1 + 1
2 B)2

]0.2

, (15)

which he simplified, using curve fitting, into

C f

C f0

= 1.2B−0.77. (16)

Much academic debate has surrounded the proper representation of the blowing correction.
In his original presentation, Marxman [7] acknowledged the form derived in Lees [9] using thin-film
theory; particularly,

C f

C f0

=
ln(1 + B)

B
. (17)

Marxman concluded that, since mass addition is discounted in the construction of Equation (17),
it can only be expected to produce reasonable results for low values of the blowing parameter B.
Marxman [7] then derived the equations most often used in the context of hybrids—namely,
Equations (15) and (16)—using Prandtl’s mixing length hypothesis combined with von Kármán’s
momentum integral analysis. Details of this derivation may be found in Appendix A. These expressions
lead to better agreement with experiments at high mass injection rates. The improvement in accuracy
when moving from Equation (17) to Equation (15) is illustrated in Figure 2 using the experimental data
reported by Mickley and Davis [12] as well as Tewfick [13].

Figure 2. Comparison of blowing correction formulations expressed over a range of blowing parameters
at several Reynolds numbers. Data taken from [12,13].
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A decade later, Lengelle [14] revisited some of Marxman’s assumptions on eddy diffusivity
and developed a modified form of the blowing correction. Both derivations were later shown to
display inconsistencies with experimental measurements, as well as an exact solution developed
by Karabeyoglu [15] under similar conditions. Specifically, Marxman’s expression for the skin
friction coefficient did not reduce to the accepted value in the absence of blowing, although his
analysis yielded a blowing correction trend that stood in better agreement with experimental
measurements. Meanwhile, Lengelle’s expressions fell closer to the analytical solution for skin friction
but overestimated the blowing correction when compared to experiments. Based on this realization,
Karabeyoglu set about deriving a new expression that did not rely on the same assumptions drawn
from Prandtl’s mixing length hypothesis. He arrived at an expression for the blowing correction that
was nearly identical to Equation (15) of Marxman [7], albeit with a more self-consistent expression for
the skin friction coefficient. In the end, Karabeyoglu suggested the use of a simplified exponential
expression and pointed out that Altman [4] had already shown that a simple power-law relation
remained a more accurate representation than Equation (16) over a practical range of interest. This
relation is simply

C f

C f0

= B−0.68. (18)

Nonetheless, by substituting Marxman’s simplified blowing correction, Equation (16), into the
regression rate expression given by Equation (13), one gets

ρfṙ = 0.036ρeueRe−0.2
x B0.23, (19)

or, in terms of the mass flux G ≡ ρeue,

ρfṙ = 0.036G
(

Gx
µe

)−0.2
B0.23. (20)

We, thus, arrive at Marxman’s form of the local regression rate in the absence of radiation,
although a more commonly seen result may be obtained by consolidating the constant properties in
Equation (20) to produce the compact relation

ṙ = AG0.8x−0.2, (21)

where A remains approximately invariant for a given propellant. Note that the space-time
averaged equivalent of Equation (21) is often used by researchers reporting experimental
measurements, specifically,

ṙ = mGn. (22)

In the above, combining B with the other constants is justified by noting that, as long as ∆h/hv

does not change with Rex, then the distribution of the regression rate will be such that B remains
spatially uniform [6]. Even when this is not strictly the case, B is expected to display very small
variations along the length of the grain. The small exponent of B further ensures that even large
changes in ∆h or hv will have negligible effects on the overall regression rate. Another consequence of
this relation is that values of B calculated for one propellant can be extended, with reasonable accuracy,
to other propellants, so long as they share similar compositions and conditions that justify ignoring
radiation effects. The relation also suggests that any possible oxidative reactions at the fuel surface
that alter ∆h/hv from its idealized value will have a minor effect on the regression rate (see the reply
to Rosner’s comment in [7] for context and elaboration on the significance of this implication).

Before leaving this subject, it may be helpful to reflect on several regression rate characteristics
that may be gleaned from Equation (20). First and foremost, one notes the absence of any pressure
dependence in the expression for ṙ. While this behavior remains contingent on discarding radiative
effects, an assumption which will be later examined in more depth, it proves to be surprisingly
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accurate for many systems. Physically, the lack of a pressure dependence may be attributed to
the diffusion-flame burning response, which stands as the single most defining characteristic for
hybrids. In fact, one may argue that a mass flux-controlled motor offers distinct advantages over
a pressure-dependent solid motor. Designers are now permitted more freedom in choosing a
motor operating pressure which helps to achieve a desired target performance or meet certain
safety requirements, which can be particularly useful in research and adoption in academic settings.
Another feature captured in Equation (20) consists of the axial variation in regression rate, which
encompasses both a positive correlation with axial distance as fuel injection increases the local mass
flux (i.e., the flux increases at locations further downstream as more fuel mass is added to the flow),
and a negative correlation with axial distance, which may be associated with boundary layer growth
and the corresponding decrease in the skin friction coefficient and, thus, the heat flux, in conformance
with the Reynolds analogy. These competing factors result in an equilibrium location for the minimum
regression rate that shifts downstream with the passage of time.

4. Radiation

Up to this point, several pressure-dependent mechanisms that can influence the regression rate
in a hybrid motor have been ignored. Foremost among them is radiative heat transfer, which can
contribute significantly to the overall fuel regression behavior, depending on the motor operating
conditions and fuel composition. Although some researchers have found that the purely convective
heat transport equations remain the most reliable for hydrocarbon fuels [16], Marxman and Gilbert
recognized the potential importance of radiative heat transfer immediately and included a crude
treatment of the subject in their initial investigation [5], specifically by adding a grey-body radiation
term to the regression rate expression described above. They wrote

ρfṙ = 0.036G
(

Gx
µe

)−0.2
B0.23 +

σεw
(
εgT4

b − T4
w
)

hv
, (23)

where εg denotes the emissivity of the gas, while εw refers to the emissivity of the wall and σ stands for
the Stefan-Boltzmann constant. However, since this expression neglects the strong coupling between
radiation and the blocking effect, it does not agree well with experiments. Marxman et al. [6] addressed
this coupling by representing the radiative contribution in two equivalent ways: On one hand, applying
a correction factor to the blowing parameter in Equation (20) results in the modifier (Brad/B)0.23 that
accounts for the entire effect of radiation in one simple term:

ρfṙ = 0.036G
(

Gx
µe

)−0.2
B0.23

(
Brad

B

)0.23
. (24)

On the other hand, the effect of radiation may be included more explicitly by recognizing that,
to account for coupling, Equation (23) need only be adjusted by modifying the blowing correction in
the convective term, such that

ρfhv ṙ = Q̇c

(
Brad

B

)−0.77
+ Q̇rad, (25)

where

Q̇c = 0.036GhvRe−0.2
x B0.23 and Q̇rad = σεw

(
εgT4

b − T4
w

)
.

Combining Equations (24) and (25) leads to the correction factor

Brad
B

= 1 +
Q̇rad

Q̇c

(
Brad

B

)0.77
. (26)
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Although this equation cannot be solved explicitly, its solution can be approximated adequately
using an expression provided in [6],

Brad
B

= exp
(

1.3Q̇rad

Q̇c

)
, (27)

which, when substituted back into Equation (25), yields a simple, closed-form approximation,
specifically

ρfṙ =
[
Q̇c exp

(
−Q̇rad/Q̇c

)
+ Q̇rad

]
/hv. (28)

If more accuracy is desired, a three-term asymptotic approximation may be used; namely,

Brad
B

= exp

[(
Q̇rad

Q̇c

)
+ 0.27

(
Q̇rad

Q̇c

)2

+ 0.06768
(

Q̇rad

Q̇c

)3]
. (29)

Equation (29) proves to be in closer agreement with the exact solution than Equation (27).
If simplicity is desired, an alternate one-term approximation may be used that remains more accurate
than Equation (27) as long as radiation contributes no more than two-thirds of the convective heat flux.
This expression is

Brad
B

= exp
(

1.13727Q̇rad

Q̇c

)
. (30)

In the interest of clarity, the different solutions for the radiation correction are plotted in Figure 3
along with the numerical solution to Equation (26). Note that each approximation has its own
merits: While being the least accurate, Equation (27) remains adequate over the entire domain and
results in unitary coefficients, as per Equation (28). Equation (29) remains the most accurate over
the entire domain, and Equation (30) remains nearly indiscernible from the numerical solution for
smaller radiative contributions while remaining simple to apply, as long as Q̇rad/Q̇c ≤ 2/3. All these
expressions, however, correspond to Marxman’s curve-fitted model for the blowing correction given
by Equation (16). Naturally, a different form of C f /C f0 would lead to a slightly dissimilar set of
expressions for Brad/B.

(a) (b)

Figure 3. Comparison of different expressions for the radiation correction shown (a) over a wide range
of heat flux ratios, and (b) over a more practical range.

For systems with low values of Q̇rad/Q̇c, Marxman et al. [6] note that the tradeoff between the
new terms in Equation (28) is “nearly exact, and ṙ can be calculated with little error by using Q̇c

alone”. If Q̇rad = Q̇c, then Equation (28) predicts that approximately three quarters of the heat actually
transferred to the wall will be due to radiation but that ṙ will be only 35% higher than the case with
no radiation. While useful for illustrative purposes, this result should be treated with care: If the
majority of heat transferred is radiative, the dependencies on geometry will no longer be the same as
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those already considered for the purely convective case. Furthermore, the accuracy of Equation (28)
degrades rapidly once radiative heat flux overtakes that due to convection, as evidenced in Figure 3.

In a paper published three years later, Marxman [17] added further insight into the radiation
problem. He proceeded to classify three general situations where radiation becomes appreciable:

1. Grains containing particles that react incompletely in the flame to the extent of producing solid
or liquid products (e.g., metallized fuels);

2. grains that naturally produce solid or liquid products beyond the flame (e.g., carbon-heavy or
sooty fuels); and

3. propellants whose gas-phase combustion products produce appreciable radiation.

All three cases may be described by similar expressions, with the primary difference being in
how the number density of radiating particles must be treated. Furthermore, the heat transfer in
all three cases becomes dependent on the chamber pressure through the particle number density.
Marxman noted that, for the first two cases, the most appropriate effective optical path length will
likely be the distance from the surface to the flame zone, since the particle phase absorptivity will be
high beyond that point. For the third case, he posited that the optical path length will depend on a
characteristic chamber dimension, such as the diameter. Although Marxman’s group worked primarily
with PMMA-O2 systems with negligible radiation, other experiments with hydroxyl-terminated
polybutadiene (HTPB) grains have confirmed that radiation effects indeed become significant at higher
motor pressures and lower oxidizer mass fluxes. To further illustrate this behavior, Figure 4 is used to
display the radiation dependence obtained in one such investigation by Chiaverini et al. [18]. Note
that test 15 was performed at a higher pressure than test 17 and thus displayed a stronger variance
from the values predicted by Marxman’s diffusion-limited, convection-driven model. Both data sets
agree with the theory at higher mass fluxes, where convection dominates the heat transfer process to
the extent of justifying the use of a non-radiative model.

Figure 4. Effect of thermal radiation on hydroxyl-terminated polybutadiene (HTPB) regression-rate
behavior. Data taken from [18].

5. Other Non-Ideal Considerations

In his 1965 paper, Marxman [7] provided a derivation for the regression rate, which parallels that
of Marxman et al. [6], just described in detail, where the fundamental work of Lees [9] was revisited by
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relaxing the assumption that Pr = 1 to that of Pr = const. In this case, the thermochemical parameter
B becomes different from the aerodynamic similarity parameter B′, according to

B = B′Pr0.67; (31)

at the outset, Equation (20) becomes

ρfṙ = 0.036G
(

Gx
µe

)−0.2
B0.23Pr−0.15. (32)

As Pr is close to unity for most gases, even at high temperatures, the effect of Pr−0.15 remains
sufficiently small to render the correction unnecessary in most cases. The same study by Marxman [7]
separately addressed the assumption of uniform gas density between the flame and the wall by using
a Howarth–Dorodnitsyn variable transformation to relate the actual, variable-property turbulent
boundary layer to an equivalent incompressible boundary layer, through

ρfṙ = 0.036G
(

ρ0

ρe

)0.6 (Gx
µe

)−0.2
B0.23, (33)

where the reference state ratio ρ0/ρe is determined from a semi-empirical relation, described in terms
of previously defined parameters and the boundary layer thickness δ, which must be measured
experimentally. Due to the added complexity, the variable-density correction is seldom used.

6. Kinetics-Limited Models

The importance of kinetics, both homogeneous and heterogeneous, has long been the subject of
debate. As previously mentioned, Marxman [7] received criticism for neglecting heterogeneous surface
reactions but argued that the effects of reactions below the flame on the values of ∆h and hv remained
of secondary importance. However, several researchers have developed models and correlations in
which kinetics played a major role. A selection of these, loosely grouped according to their dominant
physical mechanism, is overviewed here as a starting point for further reading. This cursory coverage
is not intended to be comprehensive, in scope nor in detail.

The first group of researchers are those who were primarily concerned with gas-phase kinetics.
For example, Wooldridge et al. [19] studied pressure sensitivity at low pressures in an attempt
to characterize the stability characteristics of hybrids. This effort entailed the development of an
analytical expression for the regression rate as a function of several kinetic parameters and length-scales.
Miller [20] developed a model that incorporated both the fuel diffusion rate and the chemical reaction
rates, which he used to successfully correlate data taken by Smoot and Price [21–23]. Kosdon and
Williams [24] later noted that Miller’s analysis was only applicable to systems with low pressure
and moderate oxidizer fluxes and derived a new expression that incorporated a flame zone of
finite thickness. Wooldridge and Muzzy [25] examined the effects of scaling and pressure on motor
performance in the context of throttling. In his 1972 article, Muzzy [26] pointed out that even simple
PMMA-O2 motors behaved differently at low pressures and that as the motor approached a flooding
condition, combustion likely became kinetically-limited. By reviewing existing test data, he formed
an explicitly pressure-dependent correlation which could be likened to that of Wooldridge et al. [19],
specifically

ṙ ∝ P0.5G0.3x−0.2. (34)

Another group of researchers focused more on heterogeneous surface reactions as the source of
kinetics dependence. Smoot and Price [21–23] performed numerous tests using a slab burner and
found that, above a threshold value of G, the regression rate became nearly independent of G and
instead varied with P and the oxidizer composition. These researchers defined a low mass flux regime
where the normal G0.8 dependence held, an intermediate mass flux regime where both P and G played
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a role, and a third regime at very high mass fluxes where the regression rate varied with pressure, as in
the case of a solid rocket propellant; namely,

ṙ ∝ Pn. (35)

Kumar and Stickler [27] cited discrepancies in hybrid test data and pyrolysis tests in an inert
environment for PMMA to support their hypothesis that heterogeneous reactions must play a
significant role in regression rate estimations. They additionally argued that the gas-phase kinetics
could not be sufficiently slow to play a consequential role. They developed a correlation that
normalized the regression rate by its maximum value before pressure effects appeared in a manner
to make it possible to predict whether a particular set of conditions was kinetically or diffusively
limited, in addition to successfully matching experimental data. More recently, Favaro et al. [28]
performed experiments designed to illuminate the role of heterogeneous reactions, thus leading to the
development of a semi-empirical model.

Despite the number of investigations into kinetically-limited operating regimes, Marxman’s model
and the assumptions that it prescribed have become the de facto standard for normal applications.
This does not mean, however, that experts in the field have reached a definitive agreement on how
to properly model regression in all situations. While modern computational studies are increasingly
contributing to the understanding of diffusion-limited combustion in ways that may be less restrictive,
Marxman’s model is still commonly used to guide the design of hybrid systems and as a basis for
the development of further analytical treatments of geometrically or thermophysically more complex
hybrids, such as those incorporating swirl or liquefying fuels.

7. Summary

The key points that would be useful to remember by those interested in hybrid rocket regression
rate modeling and its practical implementation may be summarized as follows:

• Marxman’s theory is based on the assumption that the diffusion of oxidizer and fuel into the
flame establishes the rate-limiting process in hybrid combustion and leads to adequate predictions
at the moderate pressures and mass fluxes that accompany the steady-state operation of most
hybrid motors.

• For classical, non-metallized hybrids, the fuel regression rate depends on G0.8, but not on pressure.
• Radiation appears as a secondary correction, but should not be neglected at low mass fluxes or

for metallized or other heavily sooting fuels.
• Most of the improvements to the initial diffusion-limited model, besides radiation treatment, lead

to rather small corrections to the end result and may typically be ignored.
• Numerous alternate regression rate models have been formulated to be more accurate for

kinetically-limited operating conditions.

For those seeking more information or a deeper understanding of regression rate models,
the seminal reviews of the subject by Netzer [2] and Chiaverini [3] are suggested, along with Marxman’s
1965 paper [7]. Improvements and extensions to regression rate models in novel and emerging
hybrid configurations continue today and it is hoped that this cursory review will prove useful
to researchers entering the field and seeking to describe the internal workings of these new and
exciting hybrid motors.
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Nomenclature

A Constant coefficient
B Blowing parameter
C f Skin friction coefficient
cp Specific heat at constant pressure
G Mass flux
h Enthalpy
hv Heat of gasification
k Thermal conductivity
K Species concentration
Le Lewis number
m Coefficient in space-time averaged regression rate expression
ṁ Mass flow rate
ṁ′′ Mass flux
n Exponent in space-time averaged regression rate expression
O/F Oxidizer to fuel ratio
Pr Prandtl number
Q̇ Heat flux
ṙ Regression rate of solid fuel
Rex Reynolds number defined with respect to axial distance
Reδ Reynolds number defined with respect to boundary layer thickness
St Stanton number
T Temperature
x Axial distance from grain leading edge
y Radial distance inward from grain surface

Greek Symbols

δ Boundary layer thickness
ε Emissivity or turbulent eddy diffusivity
η Nondimensional radial distance in boundary layer
θ Momentum thickness of boundary layer
µ Dynamic viscosity
ρ Density
σ Stefan–Boltzmann constant
τ Shear stress
φ Nondimensional axial velocity in boundary layer

Subscripts

b Burned gas (flame zone) value
c Convective
e Boundary layer edge (core flow) value

f Solid fuel value
ox Oxidizer value

rad Radiative

T Total
w Wall value

0 Reference value
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Appendix A. Derivation of the Blowing Correction

Close to the wall, u ≈ 0 and ∂u/∂x ≈ 0, so that continuity becomes ρv = ρwvw and, in the absence
of an axial pressure gradient, the momentum equation can be written as

τ = τw + ρwvwu. (A1)

Substitution of B = 2(ρwvw)/(ρeueC f ) and τw = 1
2 C f ρeu2

e into Equation (A1) leads to

τ = τw (1 + Bφ) , (A2)

where φ ≡ u/ue. Next, we equate Equation (A2) to the definition of shear stress for a turbulent
boundary layer; namely,

τ = (µ + ρε)
∂u
∂y

, (A3)

where ε represents the turbulent eddy diffusivity. This produces

τw (1 + Bφ) = (µ + ρε)
∂u
∂y

. (A4)

At this juncture, switching to non-dimensional forms may be achieved using Reδ ≡ ρeueδ/µ,
η = y/δ, φ, and τw. We get

1
2

C f (1 + Bφ) = Re−1
δ

(
1 +

ρε

µ

)
∂φ

∂η
. (A5)

According to Prandtl’s mixing length concept, ε ∝ η2∂φ/∂η, where, for the purpose of estimating
ε, a power law profile (such as φ = ηn) may be used for the range of Reynolds numbers typical of
hybrid motors [15]. Then, ∂φ/∂η may be approximated as nηn−1. Furthermore, since n is usually small
(∼ 1/7), the eddy diffusivity becomes

ε ≈ cη1+n ≈ cη, (A6)

where c represents a constant that is proportional to the mixing length—its exact value proves
immaterial to this analysis. Substituting Equation (A6) into Equation (A5) yields

1
2

C f (1 + Bφ) = Re−1
δ

(
1 +

ρ

µ
cη

)
∂φ

∂η
. (A7)

Note that integration from the wall to the boundary layer edge (i.e., from 0 to 1 for both η and φ), leads
to an expression for the skin friction coefficient as a sole function of Reδ and B:

1
2

C f = g (Reδ)
ln (1 + B)

B
. (A8)

Marxman [7] argued that, since the Reynolds number and blowing parameter dependencies can
be distinctly separated in the expression for C f , the functional form of g (Reδ) may be obtained by
comparing Equation (A8) to known results in the absence of blowing; namely,

1
2

C f0 = g (Reδ) = 0.0225Re−0.25
δ , (A9)

where a suitable empirical expression from Schlichting [10] is used. To generalize, we have

1
2

C f = 0.0225Re−0.25
δ

ln (1 + B)
B

. (A10)
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Evaluating Equation (A10) for the case of no blowing enables us to write

C f

C f0

=

(
δ0

δ

)0.25 ln (1 + B)
B

, (A11)

where (δ0/δ) accounts for the thickening effect of mass addition and differentiates Marxman’s
expression from that of Lees in Equation (17).

At this point, one is left with the task of determining a relation to describe δ in terms of B in
Equation (A11). Such a relation may be obtained by performing a control volume analysis of the
boundary layer to deduce an appropriate momentum integral expression. A sketch of a suitable control
volume is provided in Figure A1. In this context, a statement of mass conservation (per unit thickness)
across the control volume leads to

Figure A1. Sketch of the control volume for the momentum integral analysis.

∆ṁ +
∫ δ1

0
ρu1dy−

∫ δ2

0
ρu2dy + ρwvw∆x = 0. (A12)

Similarly, a statement of axial momentum conservation yields

ue∆ṁ +
∫ δ1

0
ρu2

1dy−
∫ δ2

0
ρu2

2dy− τw∆x = 0. (A13)

Re-arranging and non-dimensionalizing different terms may be used to produce

Mass: ∆ṁ +
1
2

C f ρueB∆x = ρueδ2

∫ 1

0
φdη − ρueδ1

∫ 1

0
φdη

∆ṁ
ρue∆x

+
1
2

C f B =
δ2 − δ1

∆x

∫ 1

0
φdη. (A14)

Momentum: ue∆ṁ +
1
2

C f ρu2
e∆x = ρu2

eδ2

∫ 1

0
φ2dη − ρu2

eδ1

∫ 1

0
φ2dη

∆ṁ
ρue∆x

− 1
2

C f =
δ2 − δ1

∆x

∫ 1

0
φ2dη. (A15)

By combining the expressions for conservation of mass, Equation (A14), and momentum,
Equation (A15), we collect

δ2 − δ1

∆x
=

1
2

C f
1 + B∫ 1

0 φ (1− φ)dη
=

1
2

C f
1 + B

β
, (A16)
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where β =
∫ 1

0 φ (1− φ)dη is related to the momentum thickness of the boundary layer by β = θ/δ.
In the limit as ∆x → 0, the control volume becomes infinitesimal, such that

dδ

dx
=

1
2

C f
1 + B

β
. (A17)

Substituting the expression for the skin friction, found earlier as Equation (A10), into
Equation (A17), we get

dδ

dx
= 0.0225Re−0.25

δ

(1 + B) ln (1 + B)
βB

= 0.0225
(1 + B) ln (1 + B)

βB

(
ρue

µ

)−0.25
δ−0.25. (A18)

Subsequent integration over the boundary layer yields

δ

x
=

[
0.02813

(1 + B) ln (1 + B)
βB

]0.8
Re−0.2

x , (A19)

and so
δ0

δ
=

[
β

β0

B
(1 + B) ln (1 + B)

]0.8
. (A20)

Finally, combining Equation (A20) with Equation (A11) leads to an expression for the blowing
correction in terms of the blowing parameter, specifically

C f

C f0

=

[
β

β0

B
(1 + B) ln (1 + B)

]0.2 ln (1 + B)
B

=

[
β

β0

1
(1 + B)

]0.2 [ ln (1 + B)
B

]0.8
, (A21)

where β depends on the velocity profile φ, which may be approximated relatively easily. Starting from
Equation (A4), it is trivial to show that

∂φ

∂η
=

τwδ

ue (µ + ρε)
(1 + Bφ) = f (y, B) (1 + Bφ) . (A22)

When β = 0, we may again assume a power law profile φ = ηn such that ∂φ/∂η = nηn−1, which
simplifies the unknown function f (y, B) to the assumed form f (B) nηn−1 with the requirement that
f (0) = 1. For n = 1/7, Equation (A22) becomes

∂φ

∂η
= f (B) η−6/7

(
1 + Bη1/7

)
. (A23)

Integrating Equation (A23) and evaluating the result at the boundaries, as with Equation (A7), leads to

φ =
η1/7

(
1 + 1

2 Bη1/7
)

1 + 1
2 B

. (A24)

Finally, the expression for φ allows for the evaluation of β from its definition:

β =
7
(

1 + 13
10 B + 4

11 B2
)

72
(

1 + 1
2 B
)2 . (A25)
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It is clear that, in the case with no blowing (B = 0), β reduces to β0 = 7/72, such that

β

β0
=

(
1 + 13

10 B + 4
11 B2

)
(

1 + 1
2 B
)2 . (A26)
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