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Abstract: CubeSats are widely used by universities and research institutions all over the world. Their
popularity is generally attributed to the use of low-cost components, free student labor and simple
design. They have been shown to encourage Science, Technology, Engineering and Math (STEM)
students to become involved in designing, implementing and testing a real functioning spacecraft
system. Projects like this encourage students from different disciplines to team up to design and build
CubeSats, providing interdisciplinary work experience. Participating students vary in their expertise
in developing such systems. Some will work on the project for years while others are not willing
to spend two or three consecutive semesters developing a CubeSat project. Despite their simplicity
in design and low cost, CubeSats are considered great engineering systems for exploring space.
Nevertheless, a large number of CubeSat projects fail due to having an unclear mission, ambiguous
system requirements and a lack of documentation. Students need to have a clear vision of how to
build a real CubeSat system that can be launched and that can function in space. Thus, this paper
proposes engineering methodologies and tools to help students develop CubeSat systems. These
tools can help students with planning, collecting, eliciting and documenting the requirements in a
well-defined manner. This paper focuses on student-driven CubeSat projects designed by students
and faculty members. Additionally, data is presented in this paper to identify the challenges and
needs of CubeSat developers. Plans for future work are also discussed.

Keywords: CubeSat; student satellite projects; system engineering; software engineering;
COTS; STEM

1. Introduction

The idea of designing a small cube-shaped spacecraft was initiated by Bob Twigg and Jordi
Puig-Suari in 1999 [1]. CubeSats were initially designed for educational purposes: to help students
to become acquainted with the space environment [2] Swartwout termed these university-class
CubeSats [3]. Now, CubeSats are used not only for educational purposes but also for scientific,
governmental and commercial purposes. Thus, the number of launched CubeSats has dramatically
increased in the last eight years and is still expected to grow. Figure 1 shows the number of launched
CubeSats in 2018 and what types of CubeSats are most commonly used. It shows that 325 one-unit
(1U) CubeSats were launched from 166 educational institutions in 47 countries [4]. Despite this high
demand for CubeSat development, the failure of CubeSat systems is high. This is due to several
reasons including the tools used, the models and students’ levels of experience. Due to the use of
internal or self-generated requirements, stemming from an educational mission or for other reasons,
some universities and research institutions may predominately focus on the system and component
level design while neglecting the full elicitation of requirements needed beforehand.
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Figure 1. The number of launched CubeSats (based on [4]): Shows the number of launched CubeSats 
and their types between 2003–2018. The figure includes all CubeSat missions including, government, 
commercial and educational. 

This paper is designed to help students who are currently developing or will develop their first 
student-driven CubeSat system. It outlines the tools, methodologies and lessons learned from 
projects that have been developed by other universities. It also presents a CubeSat reference model 
to help schools meet their mission requirements. This model includes different tools that help in 
achieving verification and validation. Such tools include modeling, simulation, integration and 
analytical models. This paper further presents a system engineering methodology that supports rapid 
development and helps students save on time and budget for their project. 

2. Background 

CubeSats are miniature satellites that are widely used for exploring space in low-Earth orbit 
(LEO): orbits with an altitude between 100–1200 miles (160–2000 km). The idea of the CubeSat was 
developed in 1999 by Bob Twiggs of Stanford University and Jordi Puig-Suari of California 
Polytechnic State University [1]. These small satellites were initially designed for university 
education purposes: to teach college students how to design and build small systems that can 
efficiently be used for space education [4]. One-unit CubeSats with simple missions are mostly used 
by universities who are developing CubeSat projects for the first time. Despite their limited size, 1U 
CubeSats are capable of collecting data and communicating significant amounts of data to ground 
stations using commercial off-the-shelf (COTS) components, including phone cameras, radiometers 
or beacons [5]. In the past five years, however, universities have started developing more 3U and 
larger CubeSats. These missions typically include an advanced scientific goal in their mission design 
[6]. Figure 2 depicts a typical 1U CubeSat. 
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This paper is designed to help students who are currently developing or will develop their first
student-driven CubeSat system. It outlines the tools, methodologies and lessons learned from projects
that have been developed by other universities. It also presents a CubeSat reference model to help
schools meet their mission requirements. This model includes different tools that help in achieving
verification and validation. Such tools include modeling, simulation, integration and analytical models.
This paper further presents a system engineering methodology that supports rapid development and
helps students save on time and budget for their project.

2. Background

CubeSats are miniature satellites that are widely used for exploring space in low-Earth orbit
(LEO): orbits with an altitude between 100–1200 miles (160–2000 km). The idea of the CubeSat was
developed in 1999 by Bob Twiggs of Stanford University and Jordi Puig-Suari of California Polytechnic
State University [1]. These small satellites were initially designed for university education purposes:
to teach college students how to design and build small systems that can efficiently be used for space
education [4]. One-unit CubeSats with simple missions are mostly used by universities who are
developing CubeSat projects for the first time. Despite their limited size, 1U CubeSats are capable of
collecting data and communicating significant amounts of data to ground stations using commercial
off-the-shelf (COTS) components, including phone cameras, radiometers or beacons [5]. In the past five
years, however, universities have started developing more 3U and larger CubeSats. These missions
typically include an advanced scientific goal in their mission design [6]. Figure 2 depicts a typical
1U CubeSat.
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Figure 2. A typical 1U CubeSat [7]. 

CubeSats can be used for different missions such as observing the atmosphere [8], detecting 
Gamma Rays [9], detecting magnetic fields [10] or tracking space debris [11]. What makes CubeSats 
so popular is their simple design, using open source hardware and software components. Using 
COTS components helps developers plan, design, build and test their CubeSats in a short 
development process. From 2003 to October 2018, 878 university-class CubeSats have been launched 
[4]. 

2.1. CubeSat Design and Developing Processes 

It is well-known that decisions made in the concept phase of a program can determine 
approximately 70% of the cost of a program [12]. The concept phase is where the CubeSat mission 
and goals are identified. This stage, however, may be neglected by some university students who are 
willing to accept higher risks of mission failure. Even with a simple CubeSat mission, students initiate 
their CubeSat design process by listing all the COTS components needed for the CubeSat subsystems. 
This includes the flight computer, communication components and sensors [13]. 

Having flexible hardware and software systems for their CubeSat is the major aim for many 
developers. This flexibility in major systems components can reduce the amount of time and budget 
spent on designing the CubeSat. Thus, many universities follow the CubeSat design specification 
documents when designing their CubeSat system [14] as well as vendor-supplied reference models. 
Additionally, developers should also consider designing the software architecture carefully. The 
primary goal is to design a robust and extensible piece of software. When designing a software 
system, an effective command set must be provided and major software components must pass 
environment and operational testing [15]. Nearly all satellites have at least one flight computer 
devoted to performing tasks related to communications and data handling. Many satellites have 
additional computers devoted to the operation of specific subsystems or tasks such as attitude control 
or their scientific or other payload. This allows for the simple delegation of operations and may 
provide a redundancy in the event of computer failure [16]. 

2.2. University Demand for CubeSats 
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CubeSats can be used for different missions such as observing the atmosphere [8], detecting
Gamma Rays [9], detecting magnetic fields [10] or tracking space debris [11]. What makes CubeSats so
popular is their simple design, using open source hardware and software components. Using COTS
components helps developers plan, design, build and test their CubeSats in a short development
process. From 2003 to October 2018, 878 university-class CubeSats have been launched [4].

2.1. CubeSat Design and Developing Processes

It is well-known that decisions made in the concept phase of a program can determine
approximately 70% of the cost of a program [12]. The concept phase is where the CubeSat mission
and goals are identified. This stage, however, may be neglected by some university students who are
willing to accept higher risks of mission failure. Even with a simple CubeSat mission, students initiate
their CubeSat design process by listing all the COTS components needed for the CubeSat subsystems.
This includes the flight computer, communication components and sensors [13].

Having flexible hardware and software systems for their CubeSat is the major aim for many
developers. This flexibility in major systems components can reduce the amount of time and budget
spent on designing the CubeSat. Thus, many universities follow the CubeSat design specification
documents when designing their CubeSat system [14] as well as vendor-supplied reference models.
Additionally, developers should also consider designing the software architecture carefully. The primary
goal is to design a robust and extensible piece of software. When designing a software system, an
effective command set must be provided and major software components must pass environment and
operational testing [15]. Nearly all satellites have at least one flight computer devoted to performing
tasks related to communications and data handling. Many satellites have additional computers devoted
to the operation of specific subsystems or tasks such as attitude control or their scientific or other
payload. This allows for the simple delegation of operations and may provide a redundancy in the
event of computer failure [16].
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2.2. University Demand for CubeSats

Universities and research institutions heavily rely on open-source software and hardware
components when designing their CubeSats. These components are defined by two well-known
organizations that set the definitions, regulations and license aspects of such open source systems.
The Open Source Hardware Association (OSHA) defines open-source hardware as any hardware of
which the design is made publicly available so that anyone can study, modify, distribute, make and sell
a design or hardware based on that design. The hardware’s source, the design from which it is made, is
available in the preferred format for making modifications to it [17]. The Open Source Initiative (OSI)
defines open-source software as software that can be freely used, changed and shared (in modified
or unmodified forms) by anyone. Many people make open-source software and distribute it under
licenses that comply with the Open Source Definition [18].

There is a high demand for CubeSats by universities due to their simple design, low cost and
inexpensive commercial-of-the-shelf components (COTS). Excluding launch costs, the components for
a traditional small satellite with a simple mission could significantly exceed $50,000 and require an
average of 7–10 years of developmental time, whereas building a student-driven 1U CubeSat with
a simple mission may cost less than $5000, with an average of less than two years of development
time [12,19]. CubeSats cost less because universities can use COTS and open-source software and
hardware parts donated from vendors. Additionally, the cost of labor is relatively inexpensive
compared to professional engineers at space agencies and commercial developers. Student-driven
CubeSats are developed by college students with different majors including aerospace, mechanical,
electrical and software engineering and computer science.

Another reason for CubeSats’ popularity is that they can be a great source for collecting data
from space once they are in orbit. Despite its small size, a CubeSat subsystem can handle significant
communication tasks such as the transmission of telemetry data to a ground station and the receipt
of commands [16]. Between 2003 and 2018, the total number of launched university-class CubeSats
reached 878 [4]. This number is expected to grow as the number of countries who show an interest
in this technology is rapidly increasing. However, the high demand for CubeSat systems does not
guarantee the success of their missions. Statistics show that, for all university-class missions between
1994 and 2017, roughly 40% of CubeSats failed to meet their mission objective [5]. Reasons for CubeSat
failure include an early loss or a launch failure or may remain unknown. Figure 3 shows the CubeSat
mission failure rate from 1994 to 2017.
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3. Investigating Reasons for Failure

This paper only focuses on the reasons of failure of the early stages of student-driven CubeSat
projects (i.e., before launching). Reasons of failure vary between CubeSats, depending on their mission
purposes. The reasons may include but are not limited to the following:

• Exceeding development time: where the approximate development time is 1–2 years, some
projects may exceed the time because the participants are inexperienced or graduate and leave
the project.

• Limited functionality of components: the cost of space-grade components may be expensive for
CubeSat projects. For instance, the average cost of GaAs solar cells is $3000 [20]. Thus, students
may, instead, choose less expensive COTS with a limited functionality for their project.

• Lack of system testing: this may be due to the lack of availability of testing tools. The testing time
may affect the project life-cycle.

• Requirements analysis: misunderstanding and communication issues between student developers
and stakeholders (i.e., principal investigator, developers and testers)

• Inexperienced team: students learn while working on the project through trial and error. Some
may be participating in the project only to receive an extra credit. Some may graduate and leave
school before completing the project [21].

• Lack of documentation: students may not have proper documentation for their project.

In order to ensure university-class CubeSat mission success and to reduce the rate of failure, a
systems engineering methodology can play a significant role. Nevertheless, students may implement
formal methodologies that suit traditional satellites but not CubeSats. For instance, CubeSats have
more severe constraints such as size, weight and power as compared to traditional satellites. A system
engineering methodology will not only help students drive their CubeSat project’s success but also
ensure the validation and verification of CubeSat mission success. However, CubeSat developers’
needs and challenges need to be investigated to identify the factors that are associated directly with
CubeSat mission success and failure.

A recent study of CubeSat mission failures pinpointed some factors associated with the failure of
CubeSat missions [22]. However, there are more than seven factors that are associated with CubeSat
mission success or failure. The listed factors were selected and identified based on the initial focus
group of CubeSat developers. The following factors were coded for statistical analysis as follows:

1. Testing time reduction (variable name: TTR): coded as 0 if it did not occur and as 1 if it occurred.
2. Design problems (variable name: DesPr): coded as 1 if the problems were related to tools, 2 if the

problems were related to the models and 3 if the problems were related to both.
3. Availability of model for modification (variable name: Mod): coded as 0 if not available and as 1

if available.
4. Ease of addition or deletion of components (variable name: AddDel): coded as 1 if easy and as 2

if difficult.
5. System design objectives met (variable name: SysMet): coded as 0 if not met and as 1 if they were.
6. Mission objectives met (variable name: MMet): coded as 0 if not met and as 1 if they were.
7. Whether one model was employed as a reference model for different missions (variable name:

Mission): coded as 0 if not employed and as 1 if it was.

A list of all the associated factors with their variable names and codes is included in Table 1.
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Table 1. The factors associated with CubeSat success/failure.

Factor Variable Name Code

testing time reduction TTR occurred (1), did not occur (0)
designing problems DesPr tools (1), models (2), both (3)

availability of modifications Mod yes (1), no (0)
adding/deleting components AddDel easy (1), difficult (0)

system design objectives SysMet yes (1), no (0)
mission objectives MMet yes (1), no (0)

using a reference model Mission yes (1), no (0)

A statistical analysis of these independent variables associated with the success or failure of
CubeSats is described subsequently. The participants in this study were students who have developed
or are currently working on CubeSat projects at their universities. The principal objective of this
study is to identify and assess factors associated with reducing the rate of CubeSat failure through the
application of a system engineering approach.

The survey was given to 120 individuals identified at the CalPoly CubeSat Workshop; however,
only 35 were fully completed. Approximately 48% of respondents reported experiencing tools failure,
such as communication problems with simplex and duplex radios, very high frequency (VHF) or
ultra-high frequency (UHF) transceivers failure and power failure. To avoid an interruption while
transmitting signals, satellites need full-duplex system radios. However, some groups included
transceivers in their CubeSat system that use half-duplex radio—especially groups that included
mobile devices into their system.

Twenty-four percent of respondents thought that the major challenges for them were caused by
the models they used. This included integration and analytical models (excluding flight software
models). Additionally, 28% stated that the problems they had were due to both the tools and models.
Of those responding, 57% reported that they had not considered techniques for reducing the system
testing time requirements, either because the testing was performed externally by vendors or because
they had never used methods that could facilitate a reduction in testing time. Required testing included
the testing of both hardware and software systems including thermal, radiation and vacuum testing.
The other 43% respondents reported enjoying a reduction in testing time through the use of qualification
testing and requirements analysis.

Model-based systems engineering (MBSE) has been proposed as a reference model and
methodology to help schools meet their mission requirements. MBSE includes different tools that
facilitate the realization of verification and validation. Such tools include modeling, simulation,
integration and analytical models. However, only 35% of respondents reported following one reference
model for different CubeSat projects, while 65% had never considered using one [22].

The factors listed in Table 1 are considered independent variables (IVs) contributed toward
CubeSat mission success or failure. A CubeSat’s mission success constitutes a dependent variable (DV).
All the IVs discussed above can be treated as being nominally independent of each other; they are
not hierarchically related. Therefore, in order to ascertain whether each one of the IVs is related to
another, chi-square tests of independence would be appropriate with mission success as the DV and
one IV for each test of independence. In addition, it is possible that two or more of the IVs can jointly
explain the success or failure of the mission, and for this, a logistic or binomial regression model can be
constructed with mission success as the DV and all the IVs.

The chi-square tests of independence were conducted first. These tests were performed with two
assumptions: Each variable should be categorical and independent of each other, and each level of
each variable should have an expected value of at least 5. Tables 2–8 present the statistical analyses for
the factors associated with the success/failure of CubeSat missions.
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Table 2. The chi-square test for testing time reduction.

Value df Asymptotic Significance
(2-Sided)

Exact Sig.
(2-Sided)

Exact Sig.
(1-Sided)

Pearson Chi-Square 1.020 1 0.313
Continuity Correction 0.431 1 0.512

Likelihood Ratio 1.018 1 0.313
Fisher’s Exact Test 0.481 0.255
Linear-by-Linear

Association 0.991 1 0.32

N of Valid Cases 35

Table 3. The chi-square test for designing problems.

Value df Asymptotic Significance
(2-Sided)

Exact Sig.
(2-Sided)

Exact Sig.
(1-Sided)

Pearson Chi-Square 0.326 2 0.849 1.000
Likelihood Ratio 0.333 2 0.847 0.904

Fisher’s Exact Test 0.432 1.000
Linear-by-Linear

Association 0.007 1 0.931 1.000 0.546

N of Valid Cases 35

Table 4. The chi-square test for the availability of modifications.

Value df Asymptotic Significance
(2-Sided)

Exact Sig.
(2-Sided)

Exact Sig.
(1-Sided)

Pearson Chi-Square 1.225 1 0.268 0.541 0.306
Continuity Correction 0.232 1 0.630

Likelihood Ratio 1.177 1 0.278 0.541 0.306
Fisher’s Exact Test 0.541 0.306
Linear-by-Linear

Association 1.190 1 0.275 0.541 0.306

N of Valid Cases 35

Table 5. The chi-square test for adding/deleting components.

Value df Asymptotic Significance
(2-Sided)

Exact Sig.
(2-Sided)

Exact Sig.
(1-Sided)

Pearson Chi-Square 0.122 1 0.726 1.000 0.525
Continuity Correction 0.000 1 1.000

Likelihood Ratio 0.121 1 0.728 1.000 0.525
Fisher’s Exact Test 1.000 0.525
Linear-by-Linear

Association 0.119 1 0.730 1.000 0.525

N of Valid Cases 35

Table 6. The chi-square test for the system design objectives.

Value df Asymptotic Significance
(2-Sided)

Exact Sig.
(2-Sided)

Exact Sig.
(1-Sided)

Pearson Chi-Square 3.512 1 0.061 0.079 0.067
Continuity Correction 2.267 1 0.132

Likelihood Ratio 3.477 1 0.062 0.139 0.067
Fisher’s Exact Test 0.079 0.067
Linear-by-Linear

Association 3.412 1 0.065 0.079 0.067

N of Valid Cases 35
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Table 7. The chi-square test for the mission objectives.

Value df Asymptotic Significance
(2-Sided)

Exact Sig.
(2-Sided)

Exact Sig.
(1-Sided)

Pearson Chi-Square 0.015 1 0.901 1.000 0.591
Continuity Correction 0.000 1 1.000

Likelihood Ratio 0.015 1 0.901 1.000 0.591
Fisher’s Exact Test 1.000 0.591
Linear-by-Linear

Association 0.015 1 0.903 1.000 0.591

N of Valid Cases 35

Table 8. The chi-square test for using a reference model.

Value df Asymptotic Significance
(2-Sided)

Exact Sig.
(2-Sided)

Exact Sig.
(1-Sided)

Pearson Chi-Square 0.015 1 0.901 1.000 0.591
Continuity Correction 0.000 1 1

Likelihood Ratio 0.015 1 0.901 1.000 0.591
Fisher’s Exact Test 1.000 0.591
Linear-by-Linear

Association 0.015 1 0.903 1.000 0.591

N of Valid Cases 35

It can be observed that the p value of the Pearson Chi-Squared (χ2) test statistic is 0.313, which is
higher than the 5% significance level (p = 0.313). Therefore, no significant relationship between TTR
and mission success or failure can be asserted.

A Fisher’s exact test statistic would be more appropriate since some cells had expected counts of
greater than 5. It can be observed that the test does not assert a significance since the p-value is much
higher than the 5% significance level (p = 1.000). Therefore, no significant relationship between the
design problems faced and mission success and failure can be asserted.

It can be observed that the Fisher’s exact test statistic does not indicate a significance due to the
p-value being higher than 0.05 (p = 0.541). This indicates that no significant relationship between the
availability of modifications and mission success and failure can be asserted.

It can be observed that the Fisher’s exact test statistic does not indicate a significance due to the
p-value being higher than 0.05 (p = 1.000). This indicates that no significant relationship between the
ease of addition or deletion of components and mission success and failure can be asserted.

As shown in the table, the Pearson chi-square test statistic as well as the Fisher’s exact test statistic
were significant at the 10% level, with p-values less than 0.1 (p = 0.06 and p = 0.079, respectively).
This indicates that there was a significant relationship between the system objectives met and mission
success and failure.

The chi-square test was not significant at the p < 0.10 level (p = 0.9). This indicates a lack of
demonstration of a significant relationship between mission objectives being fulfilled and mission
success/failure.

It can be observed that no significant relationship is demonstrated between the use of one reference
model and mission success/failure (p = 0.9). The chi-square tests, therefore, demonstrated that only
system objectives being met formed a critical factor (at the 10% significance level) that contributed
to mission success. While the above tests indicated whether each factor contributed individually to
mission success, their combined impact was also be investigated, in combinations and all together [22].
The prior study shows that system design objectives being met has a significant relationship with the
CubeSat success/failure mission. The majority of students (60%) indicated that they think that they
have not met their CubeSat mission objectives. This is due to satellite power or launch failure or to no
communications being received from their satellite.
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On the other hand, 38% of students believed that they had met their CubeSat mission objectives [22].
Despite the limited set of survey responses, the results indicate that, in general, successful missions
have a lower testing time compared to failed missions. The data also shows that successful missions
have less issues with tools comparing the implementation to models. Additionally, such missions have
less models available for modification. Also, it was observed that the addition/deletion of components
was less applicable to successful missions and that the ratio of mission objectives met to those not met
was higher for such missions. Also, a reference model was used more in successful missions than in
failed ones.

Additionally, other challenges such as a lack of experience as a CubeSat developer, the size of the
team and the project budgeting/scheduling may also exist in university-class CubeSat projects. There
are also constraints in university-class CubeSat designs that limit the functionality and performance of
the CubeSat system. For example, size, mass and power are dominant constraints. Additionally, the
cost and testing processes of hardware components are also significant constraints. Labor, materials,
environmental testing and travel are also common costs of university CubeSat projects [13]. Students
may be mainly concerned with the tools or models that lead to project failure, whereas project scopes,
goals, methodology and standards may never be discussed among the project team. Thus, a further
investigation is needed to analyze these problems. However, it may be easier to track CubeSat mission
success than to track mission failure. Some repository databases of SmallSat systems (including
CubeSats) can help CubeSat researchers with statistical figures and valuable data. These databases
may include Swartwout’s CubeSat Database [23], DK3WN SatBlog [24] and Erik Kulu’s Database [4].

4. Student-Driven CubeSat Practices

Universities implement different methods and concepts into their CubeSat projects depending
on their desired mission. Some universities apply tools and models to enhance the design process of
their CubeSats; others may provide workshops to their STEM students before developing the actual
CubeSat. In general, university students from different disciplines divide up into small teams to work
on designing and developing their CubeSat project. For example, aerospace students may work on
environmental analyses and control systems, mechanical engineering students might work on the
structures and layout mechanisms, computer science students can test and develop software for data
communication, and electrical engineering students can design and test the electrical power subsystem
(EPS) and other electrical systems.

Universities apply different engineering models and tools for CubeSat system development.
For instance, the University of North Dakota used model-based systems engineering tools to simplify
and expedite requirements elicitation and specifications. They designed quality-attribute (QA) scenarios
to document the nonfunctional requirements (NFR) of the CubeSat [25]. Figure 4 is an example of a
scenario of availability usage.

With this tool, once a project has been created, specific attribute scenarios can be added. Each
of these attributes must fall under a specific category. These categories are general quality attributes
which are decided upon by the project lead (such as availability and maintainability). At California
Polytechnic State University, students used the consortium requirements engineering (CoRE) method
for their PolySat project [26,27]. Implementing the CoRE method can help in providing descriptions of
the acceptable software behaviors. It also provides a clear understanding of the software requirements
by using familiar terms and measured quantities. The visual representation of the CoRE behavioral
model shows the relationship between the variables derived from the requirements (REQ) and variables
from the environment or nature (NAT). The CoRE behavioral model is illustrated in Figure 5.
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The Technical University of Munich team, on the other hand, designed 3-D printed prototypes for
better representations of their CubeSat and to aid in recruiting team members. The team implemented
a 3-D printed CubeSat (MOVE-II) at an early stage to help students validate and verify CAD models to
avoid potential design deficiencies [28]. Additionally, students at Universidad del Valle de Guatemala
investigated the risk factors that might lead to a CubeSat failure. They designed a tool (risk matrix) to
mitigate risk factors during the design phase of their project [29].
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5. Engineering Methodology for University-Class CubeSats

In order to have an efficient development process, implementing a systems engineering
methodology for a university’s CubeSat project is necessary. Systems engineering is an interdisciplinary
approach and a means to enable the realization of successful systems [30,31]. Students form into
teams of developers, testers and designers with different backgrounds, desires and levels of experience.
A systems engineering model developed by the Space Systems Working Group (SSWG) serves as an
excellent starting point. The SSWG is a group of NASA staff, engineers, consultants, professors and
students. This group developed a CubeSat systems reference model (CSRM) to guide students with
steps and processes throughout their CubeSat project life-cycle. The CSRM model is a representation
of a logical architecture design of a standard CubeSat system (see Figure 6). SSWG defined the
CubeSat Reference Model CSRM as SysML model elements that can be populated to specify the
logical architecture and design of a CubeSat’s space and ground systems. The logical architecture
decomposes the system into components that interact to satisfy system requirements. The components
are abstractions of the physical components that perform system functionality but without imposing
implementation constraints. CSRM applications and nomenclature were developed based on the roles
and responsibilities of stakeholders (listed in Figure 6). The initial process has been initiated by the
Object Management Group (OMG) to provide the CSRM as an OMG normative specification. For this,
it must be SysML-compliant and implementation-free. It is a template model that provides building
blocks that can be specialized to support MBSE CubeSat design.Aerospace 2019, 6, x FOR PEER REVIEW 12 of 18 
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For a project to develop its reference model based on CSRM, which in turn would form the basis for
its mission-specific CubeSats, developers need to import the CSRM XML file into a graphical modeling
tool. Then, they can update the model to accommodate the project stakeholder needs relative to project
phases, standards, engineering processes and design artifacts. The stakeholder accommodation can be
used to transition stakeholders from traditional systems engineering and document-based design to
MBSE. Next, an independent review team will validate that the CRM complies with standard SysML
modeling guidelines. OMG is responsible for establishing the CRM as a specification. OMG review
and approval of the CRM will validate that the CRM is qualified to be a specification. The SSWG group
is hoping that their CSRM model can help students with the challenges and needs that might occur
during the developing processes, including addressing requirements, design, analysis, and validation
and verification [32,33].

A university-class CubeSat project’s life-cycle will include multiple phases and steps. However,
some of these steps may be less critical than others and can be skipped or can receive less time for
development. Figure 7 shows a sequential approach of a university-class CubeSat project life-cycle [31].
The agile methodology can be used for an experimental 1U CubeSat project. With this approach, the
phases of a project life-cycle can be divided into small iterative steps and design testing scenarios so
that they can detect errors at an early stage of the project and fix them quickly. Nevertheless, some
students may still prefer to implement traditional methodologies, such as the v-model or waterfall
methodologies for their CubeSat projects [34]. Others may also consider the spiral-model when they
think of risk analysis as a significant factor [29].Aerospace 2019, 6, x FOR PEER REVIEW 13 of 18 
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The time required for each phase will vary. The concept phase, for instance, may take up to six
months, whereas developing and testing the ground station may take a whole year. Figure 8 shows a
notional timeline for project phases [13]. Some phases can, and typically do, run concurrently.
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A university-class CubeSat contains different subsystems such as an onboard computer (OBC),
communication, EPS, attitude determination and control system (ADCS), data handling and payload.
A block diagram of the CubeSat subsystem components is depicted in Figure 9. Each subsystem may
be designed and developed separately by students before being combined with all of the components.
Based on the priority of system requirements, the software developers, for instance, can take one
requirement, code and test it and then work on the next requirement. Similarly, when it comes to
designing the software for the system, the software team can divide up this process into small iterations
instead of building all the system requirements at once (see Figure 10). Small iterations, each with four
to five steps, can provide flexibility to the team to think freely and to detect errors at early stages. It can
also help stakeholders to identify and add more requirements into the development process easily.

Aerospace 2019, 6, x FOR PEER REVIEW 14 of 18 

Aerospace 2019, 6, x; doi: FOR PEER REVIEW www.mdpi.com/journal/aerospace 

iterations instead of building all the system requirements at once (see Figure 10). Small iterations, 
each with four to five steps, can provide flexibility to the team to think freely and to detect errors at 
early stages. It can also help stakeholders to identify and add more requirements into the 
development process easily. 

 
Figure 9. A block diagram of a CubeSat subsystem’s components. 

 
Figure 10. An iteration cycle in the software design phase [31]. 

6. CubeSat Software Requirements 

It is highly desirable to create code that is reusable and fault-tolerant for both CubeSats and 
ground stations [35]. Typically, the team of students will need to develop software that can send and 
receive data, read sensors and operate mission payload if the COTS software is not available for some 

Figure 9. A block diagram of a CubeSat subsystem’s components.



Aerospace 2019, 6, 54 14 of 17

Aerospace 2019, 6, x FOR PEER REVIEW 14 of 18 

Aerospace 2019, 6, x; doi: FOR PEER REVIEW www.mdpi.com/journal/aerospace 

iterations instead of building all the system requirements at once (see Figure 10). Small iterations, 
each with four to five steps, can provide flexibility to the team to think freely and to detect errors at 
early stages. It can also help stakeholders to identify and add more requirements into the 
development process easily. 

 
Figure 9. A block diagram of a CubeSat subsystem’s components. 

 
Figure 10. An iteration cycle in the software design phase [31]. 

6. CubeSat Software Requirements 

It is highly desirable to create code that is reusable and fault-tolerant for both CubeSats and 
ground stations [35]. Typically, the team of students will need to develop software that can send and 
receive data, read sensors and operate mission payload if the COTS software is not available for some 

Figure 10. An iteration cycle in the software design phase [31].

6. CubeSat Software Requirements

It is highly desirable to create code that is reusable and fault-tolerant for both CubeSats and
ground stations [35]. Typically, the team of students will need to develop software that can send and
receive data, read sensors and operate mission payload if the COTS software is not available for some
or all of these functions. To do this, the team must first set their CubeSat mission objectives and their
goals for the project. To do this, in the requirements analysis, they need to gather as much information
from stakeholders as they can and to document all of the needed specifications for the software they
are designing. Next, during the design phase, the team must select the programing language and data
storage and handling mechanism they are going to use in addition to implementing a selected design
methodology to specify all aspects of the software system. Then, of course, they must build the actual
code and verify that the software meets all given specifications.

With the limited budgets of CubeSat projects developed by university students, developers
are not able to use hardware components with a high intelligence, where components can handle
large operations and independently adjust when orbiting in space. Instead, components are directly
connected to the flight computer to provide functionality and to manage operations, as illustrated in
Figure 9.

Students must make numerous decisions during the design phase of the project. The team must
analyze the requirements and develop testing scenarios. The team also needs to analyze and elicit
requirements to make sure they are consistent and unambiguous. For instance, the following is an
example of a functional requirement:

F-R: The system shall measure the temperature of the spacecraft within a specific range of −40 to
40 ◦C.

Testing scenarios must be created based on the given requirements. Assuming the testing team is
following black box techniques, where the primary goal is to make sure that the system is functioning
correctly without dealing with the low-level design (white box testing), the testers now play the role of
end users. This means the testers test the application with input data then compares the output data
with the expected values. According to the requirement above, if the temperature field only accepts
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values between −40 and 40 ◦C, then—except any midrange special cases that must be assessed for
other reasons—the tester only needs to design three test cases, one valid class and two invalid ones as
follows:

• Valid: a number is between −40 and 40
• Invalid:

o a number is greater than or equal to 41
o the number is less than or equal to −41

Reducing the number of test cases, can also reduce the time required for testing and can help the
developers to follow their iteration cycles and to swiftly jump to implementing the next requirement.
Failed test cases are sent to the developers to fix. On the other hand, simple function calls such
as PowerOn(), PowerOff() or GetTemp(), can be used for higher level software “black box” testing.
The black box can be used to hide the details of the requirements where testers do not need to know the
internal structural design. Since most students are willing to use open-source software and hardware,
with simple mission objectives, they may be more interested in focusing on the behavioral structure of
the system. They can do this by providing inputs and test and by comparing it to outputs.

7. Conclusions and Future Work

Lessons learned from university CubeSat projects are valuable for students who are newly
exposed to this field. CubeSat mission success can be easily tracked and documented, to students’
benefits, whereas tracking a mission failure is not as important. This research, though, has focused on
investigating reasons for a mission failure from students’ perspectives. Their challenges and needs
provided insights into framing a CubeSat engineering methodology and designing the CubeSat project
phases to ease the development process in student-driven CubeSats. The primary purpose of this
project is to begin to create a software system engineering methodology for university-class CubeSat
projects. This engineering methodology is designed to be used as a reference model for university
projects. Thus, it is hoped that future projects will save time and cost instead of having to build one
from scratch.

The challenges and needs of student developers need further investigation so that this methodology
can be as valuable of a tool in the CubeSat project life-cycle. The university-class CubeSat life cycle can
include different phases and steps divided into small iterations for rapid development. In many cases,
the expected lifespan of a university CubeSat project is less than two years. In this study, however,
only the first phases of the CubeSat projects are covered.

The main focus of this work was on how the CubeSat is developed according to systems
requirements before launch. Thus, a further investigation of previous and current university CubeSat
projects is needed. Such investigations can help in identifying the primary objective of university
CubeSat designs and the tools and models, different systems aspects of structure, behavior, requirements
and parameters they use. Future work will also include a statistical analysis that will measure the
predicted success or failure of a CubeSat design, using systems complexity metrics.
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