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Abstract: In this study, we develop a rigorous tracking control approach for quadrotor unmanned
aerial vehicles (UAVs) with unknown dynamics, unknown physical parameters, and subject to
unknown and unpredictable disturbances. In order to better estimate the unknown functions, seven
interval type-2-adaptive fuzzy systems (IT2-AFSs) and five adaptive systems are designed. Then, a
new IT2 adaptive fuzzy reaching sliding mode system (IT2-AFRSMS) which generates an optimal
smooth adaptive fuzzy reaching sliding mode control law (AFRSMCL) using IT2-AFSs is introduced.
The AFRSMCL is designed a way that ensures that its gains are efficiently estimated. Thus, the
global proposed control law can effectively achieve the predetermined performances of the tracking
control while simultaneously avoiding the chattering phenomenon, despite the approximation
errors and all disturbances acting on the quadrotor dynamics. The adaptation laws are designed by
utilizing the stability analysis of Lyapunov. A simulation example is used to validate the robustness
and effectiveness of the proposed method of control. The obtained results confirm the results of
the mathematical analysis in guaranteeing the tracking convergence and stability of the closed loop
dynamics despite the unknown dynamics, unknown disturbances, and unknown physical parameters
of the controlled system.

Keywords: quadrotor UAV; type-2 fuzzy systems; tracking control; adaptive control; sliding
mode control

1. Introduction

Over the last decade, several robust approaches have been proposed for the control of unmanned
aerial vehicles (UAVs), most of which use intelligent and robust control approaches such as fuzzy
logic control (FLC), the H∞ technique, sliding mode control (SMC), the backstepping technique, and
adaptive control [1–8]. The quadrotor is among the most popular UAVs and is widely used in many
applications such as surveillance, air mapping, inspection, aerial cinematography, rescue missions,
search missions in hostile environments, etc. It presents many desirable features in comparison with
other UAVs such as high maneuverability, landing ability, vertical takeoff, and low cost.

The tracking control of quadrotors plays an important role in achieving accurate operations and
stable missions. However, realizing the desired objective of control is a very complicated task due
to the fact that the quadrotors are underactuated systems that are subject, in general, to undesirable
features such as aerodynamic friction force, high nonlinear dynamics, parameter variations, dynamics
with strong coupling, gyroscopic uncertain effect, unmodeled dynamics, wind gusts, and other
unpredictable and unknown disturbances which affect, in particular, the tracking response and the
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stability of the control system. To deal with some of these constraints of control, several robust
approaches have been developed. In [3], an adaptive tracking algorithm was developed to force a
quadrotor aerial vehicle to achieve a desired task despite modeling errors and disturbance uncertainties.
Additionally, in [9], the authors used both the SMC and terminal SMC to accomplish good tracking
control of a small quadrotor UAV despite external disturbances.

SMC is a robust method of control that is well appreciated by many researchers due to its capability
to reject the undesirable effects acting on the system dynamics such as uncertainties, unknown
disturbances, etc. However, the chattering phenomenon resulting from the fact that the SMC law is
discontinuous can be harmful to the actuators [10]. To eliminate or at least decrease the chattering,
higher order SMC (HO-SMC) and boundary layer techniques are usually adopted in the literature to
guarantee the desired objective of control [11–15]. However, these methods are only employed when
the upper bounds of the different kinds of disturbances that influence the control system are known,
which constrains their implementation in control systems. In [16], in order to ensure good tracking
control for a small quadrotor UAV, a second-order SMC was developed. Additionally, in [17], the
authors employed a second-order super twisting (SOST) algorithm to ensure the attitude tracking and
robustness of a quadrotor against bounded external disturbances. The second-order super-twisting
SMC (SOST-SMC) is a particular kind of HO-SMC that has been successfully implemented by several
researchers in various fields of systems control [18–20]. SOST-SMC was introduced by Levant [21] in
order to handle the chattering problem while simultaneously ensuring the convergence and stability
of the control system. However, the SOST-SMC algorithm requires a good estimation of the gains of its
control law which is one of its major problems in controlling systems.

On the other hand, due to the fact that fuzzy systems (FSs) are universal approximators [22],
intelligent algorithms using FSs have been extensively employed and successfully applied for the
control of uncertain nonlinear systems. In [23], a FS was used for an autonomous underwater vehicle
manipulator to track a desired trajectory in the presence of uncertainties and disturbances. In [24], the
authors used a fuzzy model to describe a wind turbine plant, and as a consequence, a fuzzy controller
was designed to achieve the desired task of control. Additionally, in [25], a proportional integral
derivative (PID) controller with a fuzzy logic mechanism was designed for a quadrotor with high
nonlinear dynamics and parameter uncertainty. However, type-1 (T1)-FSs (T1-FSs) have a drawback
when the linguistic information used to describe the system dynamics contains uncertainties. To cope
with this constraint, another kind of FS called type-2 (T2)-FS (T2-FS) was introduced into the modeling
and design of robust controllers for complex systems with uncertainties [26–30]. The capability of
T2-FSs to handle the problem of inaccurate linguistic information much better than T1-FSs is due to
the uncertainty property footprint incorporated into the membership functions (MFs) of T2 fuzzy
sets [31–33].

The main contributions of this paper compared to the previous studies are

(1) An intelligent and sophisticated approach to full tracking control is developed for the quadrotor
UAVs, subject to the following constraints:

• All dynamics of the quadrotor are considered entirely unknown.
• No prior knowledge is required for the upper bounds of unknown and unpredictable

disturbances acting on the quadrotor dynamics, including aerodynamic perturbations
such as unpredictable wind gusts, time varying disturbances, gyroscopic effects, and other
unknown disturbances.

• The physical parameters of the quadrotor including the mass and the inertia moment are
considered entirely unknown and they suffer from time varying disturbances.

(2) By taking advantage of the properties of T2-FSs and adaptive control techniques in the design
of robust controllers, seven interval T2 adaptive FSs (IT2-AFSs) and five adaptive systems
are synthesized to better estimate the unknown dynamics and unknown parameters of the
studied quadrotor.
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(3) A new IT2-adaptive fuzzy reaching sliding mode system (IT2-AFRSMS) is introduced in order
to efficiently estimate the optimal values of the gains of a designed reaching sliding mode
control law (RSMCL) online. The output of this IT2-AFRSMS is an IT2-adaptive fuzzy RSMCL
(IT2-AFRSMCL), designed in such a way as to yield an optimal global control law that is capable
of dealing with approximation errors and all unknown and unpredictable disturbances that
perturb the quadrotor dynamics, and simultaneously coping with the chattering phenomenon.
Then, to tackle the underactuated constraint of the quadrotor control system, two virtual control
inputs terms are added to the control system.

(4) The parameters of the global developed control law are adjusted online by utilizing the stability
analysis theorem of Lyapunov. The proposed algorithm of control is stable in the sense of
Lyapunov, and the asymptotic convergence of the system state trajectories is established.

This paper is organized as follows. In Section 2, the IT2-FSs are described, and then, the problem
formulation and the proposed control design for the quadrotor UAVs are presented in Sections 3 and 4,
respectively. Finally, in Section 5, the simulation results for a quadrotor system are presented to show
the effectiveness of the designed control algorithm in accomplishing the desired objectives.

2. Interval Type-2 Fuzzy Systems

T2-FSs are used in control systems due to their excellent efficiency when directly handling the
measurement uncertainties and inaccurate linguistic information used to synthesize T2 fuzzy rules.
Thus, the fuzzy sets for a T2-FS are implemented in such a way that their associated MFs can easily
incorporate the above discussed uncertainties through their footprint of uncertainty property. In this
study, only IT2-FSs are adopted as approximator systems, on the one hand, because they do not require
a lot of computation which makes them more convenient to use in real applications in comparison
with other classes of T2-FSs, and on the other hand, due to their efficiency in capturing uncertainties.

The jth IT2 fuzzy rule of an IT2-FS which has n inputs and one output can be formulated as
follows [34]:

Rule(j): If x1 is Ẽ1
j and x2 is Ẽ2

j. . . and xn is Ẽn
j, then, y is θ̃ j, j = 1, . . . , M (1)

where Ẽj
i represents antecedent IT2 fuzzy sets, and θ̃ j represents consequent IT2 fuzzy sets;

x =
[

x1 x2 . . . xn

]
T ∈ Rn denotes the state vector; y ∈ R is the output of the system (1);

and M denotes the rule number.
In this study, the firing set can be given for the system (1), with the meet operation implemented

by the t-norm product, as follows:

W j(x) =
[
wj

l(x), wj
r(x)

]
(2)

where wj
l(x) = µL

Ẽj
1

(x1) × µL
Ẽj

2

(x2) × . . . × µL
Ẽj

n
(xn) and wj

r(x) = µR
Ẽj

1

(x1) × µR
Ẽj

2

(x2) × . . . × µR
Ẽj

n
(xn),

such that µL
Ẽj

i

(xi) and µR
Ẽj

i

(xi) denote, respectively, the left- and right-most values of the MFs associated

with the IT2 fuzzy sets Ẽj
i .

Based on the center of sets technique, the outputs of IT2 fuzzy sets of the inference engine are
reduced to an IT1 fuzzy set. Then, by adopting the center of gravity method, the crisp output of the
system (1) can be given as [35]

y =
yl + yr

2
(3)
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where yl and yr can be expressed as

yl = min
wj

M
∑

j=1
θ

j
l wj

M
∑

j=1
wj

= θT
l ξl

yr = max
wj

M
∑

j=1
θ

j
rwj

M
∑

j=1
wj

= θT
r ξr

(4)

where ξl =
[

ξ1
l ξ2

l . . . ξM
l

]
T and ξr =

[
ξ1

r ξ2
r . . . ξM

r

]
T are the lower and upper vectors

of fuzzy basis functions, and they are obtained using Karnik–Mandel algorithm [36], with wj ∈ W j;
θl =

[
θ1

l θ2
l . . . θM

l

]
T and θr =

[
θ1

r θ2
r . . . θM

r

]
T being the left- and right-most conclusion

vectors of the system (1) (see [28] for more details).

3. Model Dynamics of the Quadrotor UAV and Problem Formulation

The quadrotor is a highly nonlinear underactuated system with multiple inputs and multiple
outputs and strong dynamic coupling, which is subject to aerodynamic forces, gyroscopic effects,
parameter variations, unmodelled dynamics, and unknown and unpredictable disturbances. In order
to overcome these constraints, a sophisticated robust tracking control algorithm is developed in this
paper for disturbed quadrotor UAVs with unknown dynamics and unknown physical parameters,
including the mass and the inertia moment.

A schematic configuration of a quadrotor UAV system is depicted in Figure 1, where E(oe, xe, ye, ze)

denotes an inertial frame and B(ob, xb, yb, zb) is a body frame fixed to the quadrotor; φ, θ and ψ are,
respectively, the roll, the pitch, and the yaw angles, such that −π

2 < φ < π
2 , −π

2 < θ < π
2 , and

−π < ψ < π.
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Figure 1. A schematic representation of the quadrotor unmanned aerial vehicle (UAV). Figure 1. A schematic representation of the quadrotor unmanned aerial vehicle (UAV).

For more information about the useful structural properties of the quadrotor UAV, see e.g., [17,37].

Let V =
[

Vx Vy Vz

]T
and Ω =

[
Ωϕ Ωθ Ωψ

]T
denote the linear and angular velocities

in frame B, respectively. In addition, let Φ =
[

φ θ ψ
]T

and P =
[

x y z
]T

denote the Euler
angles and the position of the quadrotor in frame E, respectively.
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The relation between the velocities (
.
P,

.
Φ) and (V, Ω) can be expressed as follows:

.
P = RV
Ω = N

.
Φ

(5)

where R =

 cos(θ) cos(ψ) sin(φ) sin(θ) cos(ψ)− cos(φ) sin(ψ) cos(φ) sin(θ) cos(ψ) + sin(φ) sin(ψ)
cos(θ) cos(ψ) sin(φ) sin(θ) sin(ψ) + cos(φ) cos(ψ) cos(φ) sin(θ) sin(ψ)− sin(φ) cos(ψ)
− sin(θ) sin(φ) cos(θ) cos(φ) cos(θ)


and N =

 − sin(θ) 0 1
cos(θ) sin(φ) cos(φ) 0
cos(θ) cos(φ) − sin(φ) 0

.

Using the Newton–Euler formulation, the model describing the quadrotor UAV dynamics can be
given as follows:

..
z = −g− kz

m
.
z + cos(φ) cos(θ)

m u1 + d1
..
φ =

(
Iy−Iz

Ix

) .
ψ

.
θ + 1

Ix
u2 + d2

..
θ =

(
Iz−Ix

Iy

) .
ψ

.
φ + 1

Iy
u3 + d3

..
ψ =

(
Ix−Iy

Iz

) .
θ

.
φ + 1

Iz
u4 + d4

..
x = u1

m u5 − kx
m

.
x + d5

..
y = u1

m u6 −
ky
m

.
y + d6

(6)

where Ix, Iy and Iz denote, respectively, the inertia parameters along the xb, yb, and zb axes; x, y
and z denote the quadrotor’s position in the earth-fixed frame E(oe, xe, ye, ze); di(i = 1, . . . , 6) are the
bounded unknown disturbances including gyroscopic effects, time varying disturbances, aerodynamic
perturbations such as unpredictable wind gusts, and other neglected and unmodeled dynamics;
g is the gravity acceleration; kx, ky, and kz denote theair drag coefficients along the xe, ye, and ze

directions, respectively; m is the mass of the quadrotor; u5 = cos(φ) sin(θ) cos(ψ) + sin(φ) sin(ψ) and
u6 = cos(φ) sin(θ) sin(ψ)− sin(φ) cos(ψ); and ui(i = 1, . . . , 4) are the control inputs of the system (6),
and they are defined as follows:

u1 = F1 + F2 + F3 + F4 = b(v2
1 + v2

2 + v2
3 + v2

4)

u2 = L(F4 − F2) = Lb(v2
4 −v2

2)

u3 = L(F1 − F3) = Lb(v2
1 −v2

3)

u4 = c
b (F2 + F4 − F1 − F3) = c(v2

2 + v2
4 −v2

1 −v2
3)

(7)

where L is the distance between the center of mass and the center of each rotor of the quadrotor; b and
c are the thrust factor and the drag factor, respectively; Fi(i = 1, . . . , 4) is the force generated by the
rotor i; and vi(i = 1, . . . , 4) denotes the angular velocity of the ith rotor.

The state vector is defined to be X =
[

XT
.

X
T
]T

and assumed to be available for measurement,

with X =
[

X1 X2 X3 X4 X5 X6

]T
=
[

z φ θ ψ x y
]T

being the first element of the
state vector. Then, system (6) can be reformulated as:{ ..

Xi = fi + giui + di
Yi = Xi

, i = 1, . . . , 6 (8)

where f1 = −g− kz
m

.
z, f2 =

.
θ

.
ψ
(

Iy−Iz
Ix

)
, f3 =

.
φ

.
ψ
(

Iz−Ix
Iy

)
, f4 =

.
φ

.
θ
(

Ix−Iy
Iz

)
, f5 = − kx

m
.
x, f6 =

− ky
m

.
y and (g1, g2, g3, g4, g5, g6) =

(
cos(θ) cos(φ)

m , 1
Ix

, 1
Iy

, 1
Iz

, u1
m , u1

m

)
; Yi and ui are, respectively, the ith

output and the ith input of system (8), where u5 and u6 are virtual control inputs to be designed later.
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In this study, fi and gi are unknown nonlinear continuous functions. In addition, it is assumed
that the system (8) is controllable. So, we consider that g−1

i exists.

4. Control Law Design

The main objective of control is to steer state X to a desired reference

Xd =
[

Xd
1 Xd

2 Xd
3 Xd

4 Xd
5 Xd

6

]T
=
[

zd φd θd ψd xd yd

]
T .

As the system (8) describes a quadrotor UAV with unknown dynamics that is subject to unknown
and unpredictable disturbances, a new robust IT2-AFRSMS was designed to deal with such constraints
while ensuring the best tracking performance and avoiding the chattering phenomenon.

The system (8) has four independent inputs to control its six outputs; it is an underactuated
system. Therefore, in order to overcome this constraint, two virtual control inputs, u5 and u6, are
introduced to generate the desired φd and θd angles to achieve the desired longitudinal and lateral
position tracking.

The desired φd and θd angles are determined according to the following equation:

u5 = cos(φd) sin(θd) cos(ψ) + sin(φd) sin(ψ)
u6 = cos(φd) sin(θd) sin(ψ)− sin(φd) cos(ψ)

(9)

After some rearrangement, we get

φd = arcsin(u5 sin(ψ)− u6 cos(ψ))

θd = arcsin
(

u5
cos(ψ)
cos(φd)

+ u6
sin(ψ)

cos(φd)

) (10)

In order to better estimate the unknown nonlinear functions of the system (8), the IT2-FS defined
in (3) is used to substitute fi and g1 with their IT2-AFS approximators f̂i and ĝ1, respectively, as given
in the following equation:

f̂i = ξT
f (i)θ f (i)

ĝ1 = ξT
g (1)θg(1)

, i = 1, . . . , 6 (11)

where ξT
f (i) = 1

2

(
ξ f (i)

T
l + ξ f (i)

T
r

)
and ξT

g (1) = 1
2

(
ξg(1)

T
l + ξg(1)

T
r

)
such that ξ f (i)l =[

ξ f (i)
1
l ξ f (i)

2
l . . . ξ f (i)

Mi
l

]
T , ξ f (i)r =

[
ξ f (i)

1
r ξ f (i)

2
r . . . ξ f (i)

Mi
r

]
T , ξg(1)l =[

ξg(1)
1
l ξg(1)

2
l . . . ξg(1)

Mg
l

]
T and ξg(1)r =

[
ξg(1)

1
r ξg(1)

2
r . . . ξg(1)

Mg
r

]
T are, as

described in (4), the vectors of fuzzy basis functions; θ f (i) =
[

θ1
f (i) θ2

f (i) . . . θ
Mi
f (i)

]
T and

θg(1) =
[

θ1
g(1) θ2

g(1) . . . θM
g (1)

]
T are adaptive parameter vectors; and Mi and Mg denote the

number of fuzzy rules of the IT2-AFSs f̂i and ĝ1, respectively.
In order to estimate the rest of the unknown terms gi(i = 2, . . . , 6), the following adaptive systems

are designed as
ĝi = θg(i)
ĝ5 = θg(5)u1

ĝ6=θg(6)u1

, i = 2, 3, 4 (12)

where θg(j), j = 2, . . . , 6 are adaptive parameters.

4.1. Sliding Mode Control Law Design

The SMC is considered to be among the most robust methods of control and is capable of steering
the system state trajectories towards the desired dynamics.
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Let e =
[

e1 e2 e3 e4 e5 e6

]T
= Xd − X be the tracking error. Then, the sliding surface

can be defined as [38]

s(X, t) =
[

s1 s2 s3 s4 s5 s6

]T

=
(

∂
∂t + λ

)(p−1)
e

=
p−1
∑

j=0

(p−1)!
j!(p−j−1)!

(
∂
∂t

)(p−j−1)
λje

(13)

where λ = diag(λ1, λ2, λ3, λ4, λ5, λ6) is a matrix of diagonal slopes λi(i = 1, . . . , 6), and p denotes the
system order.

The quadrotor (8) is a second-order system (p = 2). Therefore, Equation (13) becomes

si =
.
ei + λiei, i = 1, . . . , 6. (14)

Considering the system defined in (8), the time derivative of the sliding surface can be obtained as

.
si =

..
ei + λi

.
ei

=
..
X

d
i − ( fi + giui + di) + λi

.
ei

. (15)

The desired dynamics are obtained when the following condition is verified: si =
.
si = 0.

The optimal parameters of f̂i and ĝi can be expressed as

θ∗f (i) = argmin
θ f (i)

(
sup

∣∣∣ f̂i − fi

∣∣∣)
θ∗g(i) = argmin

θg(i)

(
sup|ĝi − gi|

) , (i = 1, . . . , 6). (16)

The minimum approximation error of fi and gi is then given by

εi = f ∗i − fi + (g∗i − gi)ui (17)

where f ∗i = ξT
f (i)θ

∗
f (i) and g∗i = θ∗c (i) are the optimal approximations of fi and gi, respectively, with

θ∗c (i) =


ξT

g (1)θ∗g(1) i = 1
θ∗g(i) i = 2, 3, 4
θ∗g(i)u1 i = 5, 6

.

The control law synthesized to satisfy the desired objective of control is expressed as

ui = ĝ−1
i

(
..
X

d
i − f̂i + λi

.
ei − usm(i)

)
, i = 1, . . . , 6 (18)

where usm(i) is a RSMCL.
The RSMCL usm(i) is introduced in order to maintain the desired dynamics (si =

.
si = 0) by

ensuring that the effects of the approximation errors and all disturbances that affect the quadrotor
dynamics are eliminated or at least reduced. Therefore, to guarantee the sliding mode, the expression
of usm(i) is given as

usm(i) = −ηihi(si)− αi

tr
i∫

0

sign(si) dt − µisi, i = 1, . . . , 6 (19)
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where hi(si) =

{
ρisign(si), si ∈ Ω
sign(si)

log2|si |
, si /∈ Ω

, with Ω = { si| |si| ≥ Ni
2 , 0 < Ni ≤ 1}, and ρi =

1
log2

(
Ni
2

) to make

sure that the hi(si) function is continuous everywhere; ηi, αi, and µi are positive reaching control gains;

tr
i =

{
t |si| > ϑi

tϑi |si| ≤ ϑi
is the convergence time of the sliding surface si to a vicinity ϑi of si = 0.

The adaptation laws of the IT2-AFSs defined in (11) and the adaptive systems given by (12) are
expressed as 

.
θ f (i) = −γ f (i)siξ f (i) , i = 1, . . . , 6
.
θg(1) = −γg(1)s1u1ξg(1)
.
θg(i) = −γg(i)siui , i = 2, 3, 4
.
θg(i) = −γg(i)siuiu1 , i = 5, 6

(20)

where γ f (i) and γg(i) are positive learning parameters.

Theorem 1. Using the IT2-FS approximators defined in (11), the adaptive systems presented in (12) and
the adaptation laws expressed in (20), the control law (18) developed for the underactuated quadrotor (8) is
stable in the sense of Lyapunov and the asymptotic convergence of the tracking error is established despite
unknown dynamics, unknown physical parameters, and all unknown and unpredictable disturbances that affect
the control system.

Proof 1. Use the following augmented Lyapunov function candidate:

vi =
1
2

s2
i +

1
2

θ̃T
f (i)θ̃ f (i) + qi, i = 1, . . . , 6 (21)

where θ̃ f (i) = θ f (i)− θ∗f (i); qi =
1

2γg(i)

{
θ̃T

g (1)θ̃g(1) , i = 1
θ̃2

g(i) , i = 2, . . . , 6
, such that θ̃g(j) = θg(j)− θ∗g(j),

j = 1, . . . , 6;
The time derivative of the above equation is

.
vi = si

(
..
X

d
i − fi − giui − di + λi

.
ei

)
+

1
γ f (i)

.
θ

T
f (i)θ̃ f (i) +

.
qi (22)

where
.
qi =

1
γg(i)


.
θ

T
g (1)θ̃g(1) , i = 1

.
θg(i)θ̃g(i) , i = 2, . . . , 6

.

From (18), we get
..
X

d
i = f̂i + ĝiui + usm(i)− λi

.
ei. (23)

Substituting (23) into (22) gives

.
vi = si

(
f̂i − fi + (ĝi − gi)ui + usm(i)− di

)
+ 1

γ f (i)

.
θ

T
f (i)θ̃ f (i) +

.
qi

= si

(
( f̂i − f ∗i ) + ( f ∗i − fi) + (ĝi − g∗i )ui + (g∗i − gi)ui

)
+ si(usm(i)− di) +

1
γ f (i)

.
θ

T
f (i)θ̃ f (i) +

.
qi

= siξ
T
f (i)θ̃ f (i) + si θ̃cui + si(usm(i)− ∆i) +

1
γ f (i)

.
θ

T
f (i)θ̃ f (i) +

.
qi

=

(
siξ

T
f (i) +

1
γ f (i)

.
θ

T
f (i)

)
θ̃ f (i) + Φg(i)θ̃g(i) + si(usm(i)− ∆i)

(24)
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where ∆i = di− εi such that |∆i| ≤ δi and δi ≥ 0; θ̃c = θc− θ∗c , with θc(i) =


ξT

g (1)θg(1) i = 1
θg(i) i = 2, 3, 4
θg(i)u1 i = 5, 6

;

and Φg(i) =


siuiξ

T
g (1) +

1
γg(i)

.
θ

T
g (1) , i = 1

siui +
1

γg(i)

.
θg(i) , i = 2, 3, 4

siuiu1 +
1

γg(i)

.
θg(i) , i = 5, 6

.

Substituting (20) into (24) gives

.
vi = si(usm(i)− ∆i). (25)

Substituting usm(i) by its expression gives

.
vi = −si

ηihi(si) + αi

tr
i∫

0

sign(si) dt + µisi

− si∆i. (26)

Consider the following inequality:

− si

ηihi(si) + αi

tr
i∫

0

sign(si) dt + µisi

 ≤ si∆i. (27)

If the following condition is assured:

µi|si|+ αitr
i + ηi|hi(si)| ≥ δi, i = 1, .., 6 (28)

Then the inequality (27) is verified, and therefore, the
.
vi functions defined in (26) are negative.

Thus, Proof 1 is established. �

In order to ensure the above inequality (28), the values of parameters µi, αi, and ηi should be
well chosen. However, in practice, choosing the right values of these parameters, which ensures the
desired tracking objective while simultaneously avoiding the chattering, remains one of the major
problems in systems control. The large values generate a large amount of chattering, and the small ones
affect the robustness of the controlled system against uncertainties and disturbances and deteriorate
the performance of the tracking control. Therefore, in order to overcome this control constraint, in
this study, we propose the introduction of a rigorous IT2-AFRSMS in order to efficiently estimate
the optimal values of parameters µi, αi and ηi online to ensure both the desired performance of
tracking control of the quadrotor (8) by guaranteeing the condition shown in (28), and avoiding the
chattering phenomenon.

4.2. Proposed Adaptive Fuzzy Sliding Mode Control Design Method

In order to efficiently estimate the optimal gains of the RSMCL usm(i) defined in (19), a new
IT2-AFRSMS similar to the IT2-FS defined in (3) and characterized by the following properties
is introduced:

• The sliding surface s(X, t) is the input vector of the IT2-AFRSMS;
• The outputs of the IT2-AFRSMS are the online estimations of the terms uη(i) = −ηihi(si), uα(i) =

−αi

tr
i∫

0
sign(si)dt, and uµ(i) = −µisi of the RSMCL usm(i).
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Thus, uη(i) = −ηihi(si), uα(i) = −αi

tr
i∫

0
sign(si)dt and uµ(i) = −µisi are substituted, respectively,

by their IT2-AFS estimators, as follows:

ûη(i) = ξT
η (i)θη(i)|hi(si)|

ûα(i) = ξT
α (i)θα(i)tr

i
ûµ(i) = ξT

µ (i)θµ(i)|si|
, i = 1, . . . , 6 (29)

where ξα(i) = 1
2 (ξα(i)l + ξα(i)r) =

[
ξ1

α(i) ξ2
α(i) . . . ξM

α (i)
]

T , ξη(i) = 1
2

(
ξη(i)l + ξη(i)r

)
=[

ξ1
η(i) ξ2

η(i) . . . ξM
η (i)

]
T and ξµ(i) =

1
2

(
ξµ(i)l + ξµ(i)r

)
=
[

ξ1
µ(i) ξ2

µ(i) . . . ξM
µ (i)

]
T are,

as described in (4), the vectors of fuzzy basis functions;θα(i) =
[

θ1
α(i) θ2

α(i) . . . θM
α (i)

]
T , θη(i) =[

θ1
η(i) θ2

η(i) . . . θM
η (i)

]
T and θµ(i) =

[
θ1

µ(i) θ2
µ(i) . . . θM

µ (i)
]

T are the online adjustable
parameter vectors; M is the number of rules.

We define the optimal parameters of the IT2-AFSs ûη(i), ûα(i), and ûµ(i) as

θ∗η(i) = argmin
θη(i)

(
sup

si

∣∣ûη(i)− uη(i)
∣∣)

θ∗α(i) = argmin
θα(i)

(
sup

si

|ûα(i)− uα(i)|
)

θ∗µ(i) = argmin
θµ(i)

(
sup

si

∣∣ûµ(i)− uµ(i)
∣∣)

. (30)

The global proposed control law is designed as follows:

ui = ĝ−1
i

(
..
X

d
i − f̂i + λi

.
ei − ûsm(i)

)
, i = 1, . . . , 6 (31)

where ûsm(i) = ûη(i) + ûα(i) + ûµ(i) is the designed IT2-AFRSMCL.
The adaptation laws designed for the estimators defined in (29) are given as:

.
θη(i) = −γη(i)si|hi(si)|ξη(i)
.
θα(i) = −γα(i)sitr

i ξα(i).
θµ(i) = −γµ(i)s2

i sign(si)ξµ(i)

(32)

where γη(i), γα(i) and γµ(i) are positive learning parameters.

Theorem 2. Using the IT2-AFSs defined in (11) and (29), the adaptive systems defined in (12), the adaptation
laws given by (20) and (32), the global control law (31) developed for the underactuated quadrotor (8) is stable in
the sense of Lyapunov, and the asymptotic convergence of the tracking error is established despite the unknown
dynamics, unknown physical parameters, and all of the unknown and unpredictable disturbances that affect
quadrotor dynamics.

Proof 2. Use the following new augmented Lyapunov function candidate:

vi =
1
2

s2
i +

1
2

θ̃T
f (i)θ̃ f (i) + qi +

1
2

θ̃T
η (i)θ̃η(i) +

1
2

θ̃T
α (i)θ̃α(i) +

1
2

θ̃T
µ (i)θ̃µ(i), i = 1, . . . , 6 (33)

where θ̃η = θη − θ∗η , θ̃α = θα − θ∗α , θ̃µ = θµ − θ∗µ.
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Considering Equations (21), (25), and (31), the time derivative of (33) gives:

.
vi = si(usm(i)− ∆i) +

1
γη(i)

.
θ

T
η (i)θ̃η(i) +

1
γα(i)

.
θ

T
α (i)θ̃α(i) +

1
γµ(i)

.
θ

T
µ(i)θ̃µ(i). (34)

Let û∗η(i) = ξT
η (i)θ∗η(i)|hi(si)| = −η∗i hi(si), û∗α(i) = ξT

α (i)θ∗α(i)tr
i = −α∗i

tr
i∫

0
sign(si)dt, and

û∗µ(i) = ξT
µ (i)θ∗µ(i)|si| = −µ∗i si be, respectively, the online optimal estimations of uη(i), uα(i) and

uµ(i) that ensure the best tracking control performance of the quadrotor (8) by providing optimal gains
in η∗i , α∗i , and µ∗i for the RSMCL usm(i), which allows the perturbations ∆i to be efficaciously rejected
through verification of the condition shown in (28) while simultaneously avoiding the undesired
chattering. Then, by introducing the optimal IT2-AFRSMCL u∗sm(i) = u∗η(i) + u∗α(i) + u∗µ(i) into (34),
we get:

.
vi = si((ûsm(i)− u∗sm(i) + u∗sm(i)− ∆i) +

1
γη(i)

.
θ

T
η (i)θ̃η(i) + 1

γα(i)

.
θ

T
α (i)θ̃α(i) + 1

γµ(i)

.
θ

T
µ(i)θ̃µ(i)

= si

(
ξT

η (i)θ̃η(i)
∣∣∣hi(si)

∣∣∣+ξT
α (i)θ̃α(i)tr

i + ξT
µ (i)θ̃η(i)

∣∣∣si

∣∣∣) + si(u∗sm(i)− ∆i)+

1
γη(i)

.
θ

T
η (i)θ̃η(i) 1

γα(i)

.
θ

T
α (i)θ̃α(i) + 1

γµ(i)

.
θ

T
µ(i)θ̃µ(i)

=

(
si

∣∣∣∣hi(si)

∣∣∣∣ξT
η (i) +

1
γη(i)

.
θ

T
η (i)

)
θ̃η(i) + (sitr

i ξT
α (i) +

1
γα(i)

.
θ

T
α (i)

)
θ̃α(i)+(

s2
i sign(si)ξ

T
µ (i) +

1
γµ(i)

.
θ

T
µ(i)

)
θ̃µ(i) + si(u∗sm(i)− ∆i)

(35)

Substituting
.
θη(i),

.
θα(i), and

.
θµ(i) by their expressions defined in (32) gives

.
vi = si(u∗sm(i)− ∆i)

= si

(
−η∗i hi(si)− α∗i

tr
i∫

0
sign(si)dt− µ∗i si

)
− si∆i

= −|si|
(
η∗i |hi(si)|+ α∗i tr

i + µ∗i |si|
)
− si∆i

. (36)

If the following inequality is guaranteed,

µ∗i |si|+ α∗i tr
i + η∗i |hi| ≥ δi, i = 1, .., 6. (37)

Then, the values of
.
vi defined in (36) are negative.

Additionally, since η∗i , α∗i , and µ∗i are the online optimal estimations of ηi, αi, and µi that ensure
the condition shown in (28) is satisfied while simultaneously avoiding chattering. Thus, the condition
shown in (37) is verified. Therefore, Proof 2 is established. �

The control design method developed in this paper is represented in Figure 2.
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5. Simulation Results

In order to validate the effectiveness of the developed tracking control method for the quadrotor
system (8), we present the simulation results in this section.
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The quadrotor parameters used for simulation are listed in Table 1 below.

Table 1. Physical parameters of the quadrotor UAV.

Parameters Values Units

m 2.8 kg
L 0.25 m
Ix 1.98× 10−2 kg·m2

Iy 1.92× 10−2 kg·m2

Iz 2.94× 10−2 kg·m2

kx, ky, kz 0.24 (N·s)/m
g 9.8 m/s2

All unknown disturbances that affect the quadrotor system (8), including gyroscopic effects and
aerodynamic perturbations, are represented by

d1 = 1.5 sin(t/2)
d2 = D(t)− 0.15

.
φ

d3 = D(t)− 0.15
.
θ

d4 = 1.5 sin(t/2)− 0.15
.
ψ

d5 = D(t)
d6 = D(t)

With the function D(t) being represented in Figure 3 below.
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The mass and the inertia moment of the quadrotor (8) are unknown and present the following
time varying disturbances:

dm = 1.2 sin(t)(kg)
dIx = 0.7 sin(t)·10−2(kg·m2)

dIy = 0.7 sin(t)·10−2(kg·m2)

dIz = sin(t)·10−2(kg·m2)
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The main objective of control is to steer the state X to the desired reference, Xd =[
zd φd θd ψd xd yd

]T
=
[

0.5 + t
7 φd θd 0 2 cos( π

20 t) 2 sin( π
20 t)

]T
. The angles φd

and θd are determined according to Equation (10).
Since the studied quadrotor (8) has unknown dynamics and unknown physical parameters

and because it is subject to unknown and unpredictable disturbances and suffers from time varying
perturbations, we can use the developed control law (31) to obtain the intended objectives of control.

The initial positions and angle values are X(0) =
[

0.4 0 0 0.2 1.8 0.2
]T

.

The sliding surfaces are set to s1 =
.
e1 + λ1e1, s2 =

.
e2 + λ2e2, s3 =

.
e3 + λ3e3, s4 =

.
e4 + λ4e4,

s5 =
.
e5 + λ5e5, and s6 =

.
e6 + λ6e6, such that e1 = zd − z, e2 = φd − φ, e3 = θd − θ, e4 = ψd − ψ,

e5 = xd − x, and e6 = yd − y are the tracking errors.
It is assumed that φ and θ belong to

[
−π

2
π
2

]
and ψ belongs to

[
−π π

]
.

The IT2-AFSs f̂1, f̂5 and f̂6 have, respectively, the inputs
.
e1,

.
e5 and

.
e6; f̂2 has two inputs,

.
e3 and

.
e4;

f̂3 has two inputs,
.
e2 and

.
e4; and f̂4 has two inputs,

.
e2 and

.
e3. All of these inputs are defined by three

MFs, as depicted in Figures 4–7.
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The MFs used by the IT2-AFRSMCL ûsm(i), (i = 1, . . . , 6) are represented in Figure 9 below.Aerospace 2018, 5, x FOR PEER REVIEW 17 of 28 
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ûsm(i).

In order to confirm the effectiveness of the proposed tracking control method (PTCM), a
comparison was carried out with its counterpart method that uses T1-AFSs instead of T2-AFSs and
uses a SOST-SMC to reject the undesired effects caused by unknown disturbances and approximation
errors. Henceforward, the abbreviation CMTC refers to this method of tracking control.

The control law used by CMTC is given by Equation (38):

Vi = ĝ−1
i

(
..
X

d
i − f̂ i + λi

.
ei − vST(i)

)
, i = 1, . . . , 6 (38)

where f̂ i and ĝ1 are T1-AFSs, and ĝj(j = 2, . . . , 6) are adaptive systems and they are designed in the

same way as those defined in (12), vST(i) = −αi

tr
i∫

0
sign(s1)dt− βi|si|0.5, such that αi and βi denote the

gains of the reaching SOST control term vST(i).
The MFs used by the T1-AFSs f̂ i and ĝ1 are depicted in Figures 10–14.
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The constant parameters of the two compared tracking control approaches are given in Table 2.

Table 2. Constant parameters of both proposed control approaches.

Parameters PTCM CMTC

λ1; λ2; λ3 48; 20; 20 14; 4; 4
λ4; λ5; λ6 10; 5; 5 14; 16; 16

γα(1); γα(2); γα(3) 140; 20; 15 -
γα(4); γα(5); γα(6) 80; 20; 10 -
γµ(1); γµ(2); γµ(3) 178; 145; 110 -
γµ(4); γµ(5); γµ(6) 64; 92; 80 -
γη(1); γη(2); γη(3) 70; 20; 25 -
γη(4); γη(5); γη(6) 65; 10; 5 -

γg(1); γg(2) 0.0011; 0.0014 0.0011; 0.0014
γg(3); γg(4) 0.0016; 0.0012 0.0016; 0.0012
γg(5); γg(6) 0.0015; 0.0015 0.0015; 0.0015
N1; N2; N3 0.11; 0.78; 0.18 -
N4; N5; N6 0.12; 0.08; 0.15 -
α1; α2; α3 - 1.5; 0.2; 0.5
α4; α5;α6 - 0.6; 0.1; 0.6
β1;β2; β3 - 2; 0.4; 0.5
β4; β5; β6 - 0.5; 0.3; 0.4

γ f (1); γ f (2); γ f (3) 5; 6; 8 5; 5; 10
γ f (4); γ f (5); γ f (6) 6; 2; 2 5; 2; 2

PTCM: proposed tracking control method; CMTC: refers to the tracking control method defined by Equation (38).

The simulation results obtained from the comparison that was carried out between the two
approaches of control are illustrated in Figures 15–28. Figures 15 and 16 depict the position tracking
errors; Figures 17 and 18 represent the attitude tracking errors; Figures 19 and 20 show the position
tracking evolution and its reference trajectory; the evolution of the attitude tracking and its desired
reference are shown in Figures 21 and 22; Figures 23–26 represent, for both tracking control methods,
the 3D position of the quadrotor and its reference trajectory in the time intervals [0, 80] s and [0, 4] s;
and finally, Figures 27 and 28 represent the position and the attitude control laws of the two compared
approaches of tracking control.
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Figure 19. The position tracking evolution obtained by the PTCM: (a) x-position (m) and its reference
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Figure 20. The position tracking evolution obtained by the CMTC: (a) x-position (m) and its reference
trajectory xd (m); (b) y-position (m) and its reference trajectory yd (m); (c) z-position (m) and its
reference trajectory zd (m).
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Figure 21. The attitude tracking evolution obtained by the PTCM: (a) roll angle evolution φ(rad) and
its reference trajectory φd(rad); (b) pitch angle evolution θ(rad) and its reference trajectory θd(rad);
(c) yaw angle evolution ψ(rad) and its reference trajectory ψd(rad).

Aerospace 2018, 5, x FOR PEER REVIEW 23 of 28 

 
Figure 21. The attitude tracking evolution obtained by the PTCM: (a) roll angle evolution ( )radφ  
and its reference trajectory ( )d radφ ; (b) pitch angle evolution ( )radθ  and its reference trajectory 

( )d radθ ; (c) yaw angle evolution ( )radψ  and its reference trajectory ( )d radψ . 

 
Figure 22. The attitude tracking evolution obtained by the CMTC: (a) roll angle evolution ( )radφ  
and its reference trajectory ( )d radφ ; (b) pitch angle evolution ( )radθ  and its reference trajectory 

( )d radθ ; (c) yaw angle evolution ( )radψ  and its reference trajectory ( )d radψ . 

Figure 22. The attitude tracking evolution obtained by the CMTC: (a) roll angle evolution φ(rad) and
its reference trajectory φd(rad); (b) pitch angle evolution θ(rad) and its reference trajectory θd(rad);
(c) yaw angle evolution ψ(rad) and its reference trajectory ψd(rad).
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In comparison with the CMTC, the PTCM shows the best tracking control performance. This
superiority of the PTCM in ensuring the desired objective of control despite unknown dynamics,
parameter variations, unknown disturbances, and unknown physical parameters of the studied
quadrotor is due to both of its features, namely (1) optimal estimation of unknown dynamics, and (2) a
great efficiency in rejecting all disturbances that influence the system robustness. Also, we noticed
that the control laws of the PTCM are smooth and do not present any variations which is not the case
for the CMTC. Thus, the undesired chattering phenomenon is avoided, and the tracking accuracy
is preserved.

6. Conclusions

In this study, we developed a robust full tracking control design method for quadrotor UAVs with
unknown dynamics and unknown physical parameters that are subject to unknown and unpredictable
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disturbances. In order to efficaciously estimate the unknown functions, seven IT2-AFSs and five
adaptive systems were designed. Then, based on IT2-AFSs, an optimal IT2-AFRSMCL was added to
the global control law in order to deal with the approximation errors and unknown and unpredictable
disturbances that influence the quadrotor dynamics while simultaneously avoiding the chattering
phenomenon. The underactuated problem of the quadrotor UAVs was resolved by introducing two
virtual control inputs to the control system. A mathematical analysis showed that the proposed
algorithm of control is stable in the sense of Lyapunov and can establish asymptotic convergence of
the system state trajectories to desired references. The obtained results confirmed the mathematical
analysis, ensuring the predetermined objective of control.
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