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Abstract: Increasing pressures in gas-turbine compressors, particularly in aeroengines where the
pressure ratios can be above 50:1, require smaller compressor blades and an increasing focus on
blade-clearance control. The blade clearance depends on the radial growth of the compressor discs,
which in turn depends on the temperature and stress in the discs. As the flow inside the disc
cavities is buoyancy-driven, calculation of the disc temperature is a conjugate problem: the heat
transfer from the disc is coupled with the air temperature inside the cavity. The flow inside the
cavity is three-dimensional, unsteady and unstable, so computational fluid dynamics is not only
expensive and time-consuming, it is also unable to achieve accurate solutions at the high Grashof
numbers found in modern compressors. Many designers rely on empirical equations based on
inappropriate physical models, and recently the authors have produced a series of papers on
physically-based theoretical modelling of buoyancy-induced heat transfer in the rotating cavities
found inside compressor rotors. Predictions from these models, all of which are for laminar flow, have
been validated using measurements made in open and closed compressor rigs for a range of flow
parameters representative of those found inside compressor rotors. (The fact that laminar buoyancy
models can be used for large Grashof numbers (up to 1012), where most engineers expect the flow to
be turbulent, is attributed to the large Coriolis accelerations in the fluid core and to the fact that there
is only a small difference between the rotational speed of the core and that of the discs.) As many
as 223 separate tests were analysed in the validation of the models, and good agreement between
the predictions and measurements was achieved for most of these cases. This overview paper has
collected together the equations from these papers, which should be helpful to designers and research
workers. The paper also points out the limitations of the models, all of which are for steady flow,
and shows where further experimental evidence is needed.
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1. Introduction

Increasing pressures in gas-turbine compressors, particularly in aeroengines where the pressure
ratios can be above 50:1, require smaller compressor blades and an increasing focus on blade-clearance
control. To calculate the transient and steady clearances between the blades and casing of a high-pressure
compressor in an aeroengine (see Figure 1), it is necessary to calculate the radial growth of the
compressor discs. This in turn requires the calculation of the temperatures of the discs, which involves
the calculation of the flow and heat transfer inside the cavity between the corotating discs.
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Figure 1. High-pressure aeroengine compressor and schematic diagram of open rotating cavity. 

The buoyancy-induced flow that occurs inside these cavities is three-dimensional, unsteady and 

unstable, and the prediction of these flows using computational fluid dynamics (CFD) is very 

expensive and usually inaccurate, particularly at the high Grashof numbers found in compressors. 

Many designers rely on empirical equations based on inappropriate physical models, and recently 

the authors have produced a series of papers on physically-based theoretical modelling of buoyancy-

induced heat transfer in the rotating cavities found inside compressor rotors. These papers form the 

basis for the overview presented below. 

A review of research into buoyancy-induced rotating flow in closed and open cavities was given 

in [1]. However since that review there have been some significant developments in the theoretical 

modelling of these flows [2–6], and it is the object of this paper to bring all these models together in 

a form that can be readily used by the designers of aeroengines and industrial compressors.  

A background to buoyancy-induced rotating flow is given in Section 2. Sections 3 and 4 

summarise the models and the equations for heat transfer from the shroud and discs. Section 5 

combines these equations for the rotating cavity in a compressor with axial throughflow, including 

the calculation of the temperature rise of the throughflow, and the main conclusions are given in 

Section 6. The appendix includes the linear equations for inviscid rotating fluids and the equations 

for adiabatic flow in a rotating core of inviscid fluid. 

The definition of symbols not defined in the text below can be found in the Nomenclature. 

2. Buoyancy-Induced Rotating Flow 

To understand rotating flows, it is necessary to understand some of the effects of the Coriolis 

forces on these flows. The so-called linear equations (where the linear Coriolis accelerations are much 

greater than the nonlinear inertial terms) are given in the Appendix.  

In the steady-state, the outer shroud is relatively hot compared with the inner one (for closed 

cavities) or with the axial throughflow (for open cavities). This radial temperature gradient creates 

buoyancy-induced flow; for a radial flow to occur then either it must be confined to the viscous 

boundary layers (referred to here as Ekman layers, where the Coriolis forces are produced by shear 

stresses) or the inviscid flow must be non-axisymmetric (in which regions of cyclonic and anti-

cyclonic flow produce circumferential pressure gradients that create the Coriolis forces). An example 

of these non-axisymmetric flows is shown in Figure 2, first reported by Farthing et al. [7]. These flows 

are three-dimensional (3D), unsteady and unstable, making them extremely difficult and expensive 

to compute using computational fluid dynamics (CFD). 

Figure 1. High-pressure aeroengine compressor and schematic diagram of open rotating cavity.

The buoyancy-induced flow that occurs inside these cavities is three-dimensional, unsteady and
unstable, and the prediction of these flows using computational fluid dynamics (CFD) is very expensive
and usually inaccurate, particularly at the high Grashof numbers found in compressors. Many designers
rely on empirical equations based on inappropriate physical models, and recently the authors have
produced a series of papers on physically-based theoretical modelling of buoyancy-induced heat
transfer in the rotating cavities found inside compressor rotors. These papers form the basis for the
overview presented below.

A review of research into buoyancy-induced rotating flow in closed and open cavities was given
in [1]. However since that review there have been some significant developments in the theoretical
modelling of these flows [2–6], and it is the object of this paper to bring all these models together in
a form that can be readily used by the designers of aeroengines and industrial compressors.

A background to buoyancy-induced rotating flow is given in Section 2. Sections 3 and 4 summarise
the models and the equations for heat transfer from the shroud and discs. Section 5 combines these
equations for the rotating cavity in a compressor with axial throughflow, including the calculation of the
temperature rise of the throughflow, and the main conclusions are given in Section 6. The Appendix
includes the linear equations for inviscid rotating fluids and the equations for adiabatic flow in
a rotating core of inviscid fluid.

The definition of symbols not defined in the text below can be found in the Nomenclature.

2. Buoyancy-Induced Rotating Flow

To understand rotating flows, it is necessary to understand some of the effects of the Coriolis
forces on these flows. The so-called linear equations (where the linear Coriolis accelerations are much
greater than the nonlinear inertial terms) are given in the Appendix.

In the steady-state, the outer shroud is relatively hot compared with the inner one (for closed
cavities) or with the axial throughflow (for open cavities). This radial temperature gradient creates
buoyancy-induced flow; for a radial flow to occur then either it must be confined to the viscous
boundary layers (referred to here as Ekman layers, where the Coriolis forces are produced by shear
stresses) or the inviscid flow must be non-axisymmetric (in which regions of cyclonic and anti-cyclonic
flow produce circumferential pressure gradients that create the Coriolis forces). An example of these
non-axisymmetric flows is shown in Figure 2, first reported by Farthing et al. [7]. These flows are
three-dimensional (3D), unsteady and unstable, making them extremely difficult and expensive to
compute using computational fluid dynamics (CFD).
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Figure 2. Schematic of flow structure in heated rotating cavity with axial throughflow of cooling air [7]. 
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Figure 2. Schematic of flow structure in heated rotating cavity with axial throughflow of cooling air [7].

Under transient conditions in aeroengines, the throughflow can be hotter than the outer shroud,
in which case stratified flow occurs and heat transfer takes place by conduction and radiation. The heat
transfer for buoyancy-induced flow is much higher than for stratified flow, and the transition from one
state to the other can give rise to flow instabilities.

Coriolis forces tend to attenuate velocity fluctuations, and so it is probable that the critical Rayleigh
numbers, Ra, for transition from laminar to turbulent flow will be much higher in a rotating cavity
than in a stationary one. In fact, it is shown below that the flow in the Ekman layers could remain
laminar even at engine operating conditions, where Ra > 1012.

Buoyancy-induced flow in rotating cavities is similar to that in the earth’s atmosphere: both are
affected by temperature gradients and by rotation. In both cases, the temperature gradients (radial for
cavities where the centripetal acceleration dominates or vertical for the atmosphere where gravity is
controlling) can be calculated assuming adiabatic flow. This gives rise to the adiabatic lapse rate in
the atmosphere and to a radial temperature gradient in a rotating cavity. It is shown in the Appendix
that the radial temperature gradient in the rotating core increases as Ωc, the angular speed of the
core, increases. However, as Nu, the Nusselt number for buoyancy-induced rotating flow, increases
as Ra (and hence as Ω) increases, it follows that there must be a critical value of Ra at which Nu is
a maximum: below this critical value, Nu increases as Ra increases; above it, Nu decreases as Ra
increases. It is shown below that this can and does occur in practice.

3. Heat Transfer from Shrouds

The equations below are based on those derived in [2] for a closed rotating cavity with adiabatic
discs. Results from these equations are compared with experimental measurements in Section 3.3.

3.1. Calculation of Nusselt Numbers

As shown in Figure 3, it is assumed that there are thin boundary layers on the inner and outer
cylindrical surfaces at r = a and r = b between which is a core of inviscid fluid rotating at the same
angular speed, Ω, as that of the discs. The temperatures of the inner and outer surfaces are Ta and Tb,
where Ta < Tb, and the corresponding temperatures of the core at the edge of the boundary layers are
Tc,a and Tc,b.
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Figure 3. Simplified diagram of temperature distribution inside closed cavity [2].

It can be seen from Figure 3 that
∆Ta = Tc,a − Ta (1)

∆Tb = Tb − Tc,b (2)

∆Tc = Tc,b − Tc,a (3)

and
∆T = Tb − Ta (4)

Assuming that the thickness of the boundary layers on the inner and outer surfaces are negligible
compared with the radial height of the cavity, it can be shown from the Appendix that

∆Tc =
Ω2

2Cp
(b2 − a2) (5)

In the absence of heat transfer from the discs, the total heat flow rate through the inner surface is
assumed to equal that through the outer one, so that the heat rates are related by

.
Q =

.
Qa =

.
Qb (6)

Hence
qaSa = qbSb (7)

The following definitions are used:

Nu def
=

.
Q

.
Qcond

(8)

where
.

Qcond is the heat flow rate due to conduction, which is given by

.
Qcond = 2πks

∆T
ln(b/a)

(9)

The Nusselt numbers and Grashof numbers on the inner and outer cylindrical surfaces are
defined as

Nua
def
=

qaLa

k∆Ta
(10)
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Nub
def
=

qbLb
k∆Tb

(11)

Gra
def
=

ρ2Ω2aL3
aβ∆Ta

µ2 (12)

Grb
def
=

ρ2Ω2bL3
bβ∆Tb

µ2 (13)

where La and Lb are appropriate length scales.
By analogy with free convection from a horizontal plate [8], it is assumed that heat transfer from

the rotating cylindrical surfaces is by laminar free convection but with the gravitational acceleration
replaced by the centripetal acceleration. The Nusselt numbers are then given by

Nua = c(GraPr)1/4 (14)

Nua = c(GraPr)1/4 (15)

For a hot horizontal plate with cold air above, or a cold plate with hot air below, the constant
c = 0.54. For the rotating cavity, where centripetal acceleration occurs, these cases respectively apply
to the outer and inner cylindrical surfaces. For horizontal surfaces, the length scale is taken to be the
area/perimeter ratio of the plate; for cylindrical surfaces, this corresponds to La = Lb = s/2.

Using the above equations, and noting that Ra = Pr Gr, it can be shown (see [2]) that

Nu = cξRa1/4 (1− χ Re2)5/4 (16)

Nu = cξ Ra1/4 (1− ψ Ra)5/4 (17)

where ξ is a geometric parameter given by

ξ =
a
b

ln
(

b
a

)(
a
la

) 1
4
(

2

(1 + a/b)(1− a/b)3

) 1
4
(

1 +
( a

b

)1/5
(

lb
la

)1/5(Sa

Sb

)4/5
)−5/4

(18)

and χ and ψ are compressibility parameters given by

χ
def
=

2µ2

ρ2Cp∆T(b2 − a2)
(19)

ψ
def
=

µ2

ρ2Cp∆T(b− a)2β∆T Pr
(20)

3.2. Maximum Nusselt Number

It follows from Equation (16) that,

Nu ∝ Re1/2(1− χ Re2)5/4 (21)

There will therefore be a maximum value of Nu at a critical value of Re where

Recrit = (6χ)−1/2 (22)

or, from Equation (17), at a critical value of Ra where

Racrit = (6ψ)−1 (23)
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It can be seen from Equations (19), (20), (22) and (23) that Recrit and Racrit increase as ρ increases
or as ∆T increases. (The increase in ρ was achieved in the experiments of Bohn et al. [9] by pressurising
the cavity. In their experiments, ∆T decreased as Re increased, which would reduce the critical value
given by Equation (22)). It should also be noted that, as χ ∝ ρ−2 and Re ∝ ρ, it follows that Ωcrit,
the critical value of Ω, is invariant with the density and is therefore unaffected by the pressure in
the cavity.

3.3. Comparison with Experimental Measurements

The theoretical model was validated using the experimental measurements of Bohn et al. [9].
The measurements were made in 194 separate experiments, over a wide range of Rayleigh numbers,
in three closed cavities, A, B and C, each of which had different geometries. There was good agreement
between Equation (17)—using a value of c = 0.32—and the experimental data obtained from all three
cavities. The results shown in Figure 4 were for Cavity A, where a = 125 mm, b = 355 mm and
s = 120 mm and the experiments were conducted with an absolute cavity pressure of 4 bar. It should
be noted that the shroud temperature decreased as Ra increased, and the empirical correlation of
Bohn et al. for cavity A was

NuA = 0.246 Ra0.228 (24)
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Figure 4. Variation of Nu with Ra for Cavity A of Bohn et al. [2] (Symbols denote experimental data [9];
solid curve denotes theoretical solutions; broken curve denotes empirical correlations).

The theoretical curve shows a good fit to the experimental data, particularly at the highest values
of Ra where the data points begin to deviate from the empirical correlation: these data points are
consistent with, but are not proof of, a maximum value of Nu.

It is significant that a laminar theoretical model fits the experimental data for values of Ra
approaching 1012, where most engineers would expect the flow to be turbulent. As stated in Section 2,
Coriolis forces tend to attenuate the effects of turbulence, and the fact that the fluid in the cavity is
expected to rotate close to the angular speed of the shrouds means that any speed difference across the
boundary layers would be very small.

4. Heat Transfer from Discs

The equations below are based on those derived in [3] for the discs in an open cavity with an
axial throughflow of cooling air. This is a conjugate problem: the heat transfer from the discs and the
temperature in the core are coupled. Results from these equations are compared with experimental
measurements in Section 4.5.
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4.1. Assumptions for Buoyancy Model

The Ekman-layer equations for buoyancy-induced flow were based on those used for isothermal
laminar source-sink flow in [10]. As shown in Figure 5, for heated discs and a cold core the flow will
be radially inward inside the Ekman layers. In practice, the flow in the core will be 3D and unsteady,
with the radial outflow of cold fluid and the inflow of hot fluid facilitated by pairs of cyclonic and
anti-cyclonic vortices. The 1D model assumes axisymmetric flow inside the Ekman layers: in effect,
this uses the spatial and temporal averages of the velocities and temperature.Aerospace 2018, 5, x  7 of 22 
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In the solutions presented below, although it is assumed that heat is transferred from the Ekman
layers to the core, it is also assumed that there is no significant heat transfer between the radial plumes
of air and the vortices in the core. Consequently the circumferential-average temperature of the core
can be considered to increase adiabatically with radius, as assumed in the Appendix.

It was shown by Owen and Pincombe [11] that the axial throughflow can create a toroidal vortex
inside the cavity, with the possibility of vortex breakdown in the swirling axial flow. The strength
and size of the toroidal vortex decreases as the Rossby number decreases, and at the small values of
Ro found in compressors (where Ro is of the order of 10−1) it is probable that the vortex will have
decayed to leave a shear layer between the throughflow and the buoyancy-induced flow inside the
cavity, shown as the inner layer in Figure 5; the outer layer corresponds to the boundary layer on
the shroud. Although heat will be transferred across the inner layer, with a temperature difference
proportional to the heat flux, the amount of mass transfer is likely to be very small.

4.2. Modelled Nusselt Numbers

The term modelled Nusselt numbers is used here to refer to the values that are determined using
the equations given below, which are based on the Ekman-layer model in [3]. The modelled Nusselt
number is defined as

Nuc
def
=

hcr
k

(25)

where the local heat transfer coefficient hc, is given

hc
def
=

qo

To − Tc
(26)

To and Tc are the temperatures of the disc and core respectively, and qo is the heat flux from the disc
surface to the core. It is shown in [3] that the Nusselt number for the discs is given by

Nuc =
1
2

x1/2
a

I1/4 Gr1/4
c

[
(θ −Co)

(
ρc

ρc,b

)2
x5

]1/3

(27)
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The nondimensional temperature θ is defined by

θ
def
=

To − Tc

To,b − Tc,b
(28)

It is θ that couples the heat transfer from the disc to the temperature of the core. The Grashof
number, Grc, is defined by

Grc
def
=

ρ2
c,bΩ2

c b4

µ2 β(To,b − Tc,b) (29)

The so-called Coriolis parameter, Co, which can be thought of as the ratio of Coriolis forces to
buoyancy forces, is defined by

Co def
= 2(1− Ωc

Ω
)

1
β(To,b − Tc,b)

(30)

Co is treated as an empirical parameter, and for the experiments discussed below a value of
Co = 0.07 was found to provide the best fit between the predicted and measured temperatures.
(In almost all experimental cases analysed in this paper, it was found that Nuc → 0 as r → a , so that
Equation (27) implies that θ ≈ Co at r = a . From the definition of θ in Equation (28), the choice of Co
determines the value of Tc,a used in the solution of the equations.)

I, which is an integral that accounts for the momentum exchange between the flow in the core
and that in the Ekman layers on the discs, is defined by

I =
∫ 1

xa
x11/3

[
(θ −Co)

(
ρc

ρc,b

)2
]1/3

dx (31)

Tc,b is calculated from Equation (A14) in the Appendix, and it follows from Equation (A15) that

ρc

ρc,b
=

[
1 + γ−1

2 Ma2
c
(
x2 − x2

a
)

1 + γ−1
2 Ma2

c (1− x2
a)

]1/(γ−1)

(32)

The other symbols are defined in the Nomenclature.

4.3. Modelled Disc Temperatures

In [4], Equation (27) was solved in conjunction with the numerical solution of the general fin
equation for the disc, which is given by

d2To

dr2 +

(
1
r
− 2

t
cosα

sinα
+

1
ks

dks

dTo

dTo

dr

)
dTo

dr
−

2h f

kstsinα

(
To − Tf

)
= 0 (33)

(In principle, the 2D version of Laplace’s equation could be used for the conduction calculations,
but the 1D fin equation has the advantage of simplicity, and it is much easier to use in conjunction
with a Bayesian statistical model [5].) The geometry of the disc, which is shown in Figure 6, is based
on the experimental Sussex rig described in [12]. The thermal conductivity, ks, of the titanium disc
and the finite-difference equations used for the numerical solution of Equation (33) are given in [4].
The measured temperatures at r = b and r = a′ (see Figure 6) were used as the boundary conditions.
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The coupled Equations (27) and (33) were solved iteratively to calculate the modelled Nusselt
numbers and disc temperatures.

4.4. Experimentally Derived Nusselt Numbers and Disc Temperatures

The general fin equation, Equation (33), was solved numerically—in conjunction with the
measured disc temperatures, using the Bayesian statistical model described in [5]—to calculate what
are referred to here as the experimentally derived Nusselt numbers and disc temperatures. The Nusselt
numbers and the 95% confidence interval were determined from the inverse solution of Equation (33)
(where the temperature distribution was specified); the disc temperatures were determined from the
direct solution (where the Nusselt numbers were specified).

The temperatures of both surfaces of the instrumented disc were measured in the experiments;
for the inverse solution of Equation (33), both the two sets of measured temperatures were used to
calculate the averaged Nusselt numbers. (Apart from those on the cob surfaces, the differences between
the two sets of temperature were smaller than the uncertainty in the measured values.)

4.5. Comparison with Experimental Measurements

Table 1 shows the main parameters and average Nusselt numbers for the 19 test cases of Atkins
and Kanjirakkad [12]. For each of the four approximate Rossby numbers, the cases are presented
in order of ascending Grashof number. It should be noted that all the cases shown in Table 1 were
analysed in [4], but only selected cases are discussed below.

Table 1. Flow parameters and average Nusselt numbers for experiments of Atkins and Kanjirakkad [4].

Cases
Ro ≈ 5 Ro ≈ 1 Ro ≈ 0.6 Ro ≈ 0.3

1a 1b 1c 1d 1e 1f 2a 2b 2c 2d 2e 2f 2g 3a 3b 4a 4b 4c 4d

Ro 4.7 4.7 4.9 4.9 4.5 4.5 0.8 0.8 0.9 0.9 1.0 1.0 1.0 0.6 0.6 0.3 0.3 0.3 0.3
Grf/1011 0.0017 0.0030 0.0085 0.015 0.062 0.14 0.065 0.10 0.44 0.84 1.7 2.5 3.9 5.7 9.1 0.4 1.0 3.7 7.8
Reφ/106 0.078 0.077 0.19 0.19 0.46 0.45 0.46 0.45 1.1 1.1 2.1 2.1 2.1 3.5 3.1 1.4 1.4 3.1 3.0
β∆T 0.08 0.17 0.05 0.11 0.09 0.24 0.09 0.16 0.11 0.23 0.13 0.19 0.32 0.15 0.32 0.06 0.16 0.12 0.29

Rez/105 0.19 0.19 0.50 0.50 1.1 1.1 0.19 0.18 0.51 0.50 1.1 1.1 1.1 1.1 1.1 0.20 0.20 0.48 0.48
Nuav,exp 28.7 30.7 51.6 58.2 92.3 109 47.4 53.4 96.7 126 131 170 233 126 225 45.3 82.5 72.1 146
Nuav,th 32.5 37.2 56.2 66.5 103 128 59.4 64.7 109 135 149 175 216 133 214 50.5 83.5 78.0 142

Figures 7 and 8 show the comparison between the experimentally derived and modelled values
of Θ and Nuf for two of the 19 cases analysed in [4]. These cases are typical of all the cases for
Grf > 6× 109, and it is believed that buoyancy-induced flow is unlikely to dominate at lower Grashof
numbers. The solid curves in the figures show the theoretical distributions of Θ and Nuf obtained
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using the buoyancy model in conjunction with the general fin equation between a′ and b, and the
broken curves show the experimentally derived distributions. In general, an overestimate of the
Nusselt numbers will result in an underestimate of the temperatures.

Aerospace 2018, 5, x  9 of 22 

 

The coupled Equations (27) and (33) were solved iteratively to calculate the modelled Nusselt 

numbers and disc temperatures. 

4.4. Experimentally Derived Nusselt Numbers and Disc Temperatures 

The general fin equation, Equation (33), was solved numerically—in conjunction with the 

measured disc temperatures, using the Bayesian statistical model described in [5]—to calculate what 
are referred to here as the experimentally derived Nusselt numbers and disc temperatures. The Nusselt 

numbers and the 95% confidence interval were determined from the inverse solution of Equation (33) 

(where the temperature distribution was specified); the disc temperatures were determined from the 

direct solution (where the Nusselt numbers were specified).  

The temperatures of both surfaces of the instrumented disc were measured in the experiments; 

for the inverse solution of Equation (33), both the two sets of measured temperatures were used to 

calculate the averaged Nusselt numbers. (Apart from those on the cob surfaces, the differences 

between the two sets of temperature were smaller than the uncertainty in the measured values.) 

4.5. Comparison with Experimental Measurements 

Table 1 shows the main parameters and average Nusselt numbers for the 19 test cases of Atkins 

and Kanjirakkad [12]. For each of the four approximate Rossby numbers, the cases are presented in 

order of ascending Grashof number. It should be noted that all the cases shown in Table 1 were 

analysed in [4], but only selected cases are discussed below. 

Table 1. Flow parameters and average Nusselt numbers for experiments of Atkins and Kanjirakkad [4].  

Cases 
Ro ≈ 5 Ro ≈ 1 Ro ≈ 0.6 Ro ≈ 0.3 

1a 1b 1c 1d 1e 1f 2a 2b 2c 2d 2e 2f 2g 3a 3b 4a 4b 4c 4d 

𝐑𝐨 4.7 4.7 4.9 4.9 4.5 4.5 0.8 0.8 0.9 0.9 1.0 1.0 1.0 0.6 0.6 0.3 0.3 0.3 0.3 

𝐆𝐫𝐟/𝟏𝟎𝟏𝟏 0.0017 0.0030 0.0085 0.015 0.062 0.14 0.065 0.10 0.44 0.84 1.7 2.5 3.9 5.7 9.1 0.4 1.0 3.7 7.8 
𝐑𝐞𝛟/𝟏𝟎𝟔 0.078 0.077 0.19 0.19 0.46 0.45 0.46 0.45 1.1 1.1 2.1 2.1 2.1 3.5 3.1 1.4 1.4 3.1 3.0 

𝛃𝚫𝐓 0.08 0.17 0.05 0.11 0.09 0.24 0.09 0.16 0.11 0.23 0.13 0.19 0.32 0.15 0.32 0.06 0.16 0.12 0.29 

𝐑𝐞𝐳/𝟏𝟎𝟓 0.19 0.19 0.50 0.50 1.1 1.1 0.19 0.18 0.51 0.50 1.1 1.1 1.1 1.1 1.1 0.20 0.20 0.48 0.48 
𝐍𝐮𝐚𝐯,𝐞𝐱𝐩  28.7 30.7 51.6 58.2 92.3 109 47.4 53.4 96.7 126 131 170 233 126 225 45.3 82.5 72.1 146 
𝐍𝐮𝐚𝐯,𝐭𝐡 32.5 37.2 56.2 66.5 103 128 59.4 64.7 109 135 149 175 216 133 214 50.5 83.5 78.0 142 

Figures 7 and 8 show the comparison between the experimentally derived and modelled values 

of 𝛩 and Nuf for two of the 19 cases analysed in [4]. These cases are typical of all the cases for Grf >

6 × 109, and it is believed that buoyancy-induced flow is unlikely to dominate at lower Grashof 

numbers. The solid curves in the figures show the theoretical distributions of 𝛩 and Nuf obtained 

using the buoyancy model in conjunction with the general fin equation between 𝑎′ and b, and the 

broken curves show the experimentally derived distributions. In general, an overestimate of the 

Nusselt numbers will result in an underestimate of the temperatures. 

 

Figure 7. Distributions of temperature and Nusselt numbers for Ro ≈ 0.6. (Symbols denote measured 

temperatures; broken and solid lines represent experimental and theoretical results respectively; 

shading shows 95% confidence intervals on experimental Nusselt numbers) [4]. 
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shading shows 95% confidence intervals on experimental Nusselt numbers) [4].
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In Figure 7, for Ro ≈ 0.6, the Nusselt numbers increase as the Grashof number increases, but they
all converge to a low value at the smaller radii. This suggests that, as the disc temperature tends to
that in the core, the effects of buoyancy are weak in the inner part of the cavity.

Figure 8, for Ro ≈ 0.3, again shows mainly good agreement between the theoretical and
experimental distributions of Θ and Nuf. However, it should be noted that the maximum value
of Nuf,exp for Grf = 3.7 × 1011 is smaller than that for Grf = 1011. This is an example of the
compressibility effect discussed for the shrouds in Section 3: increasing the rotational speed increases
the core temperature, which reduces the heat transfer from the disc to the core. As for the shrouds,
there will be a maximum disc Nusselt number and a critical rotational speed above which the Nusselt
number will decrease as the speed is further increased. The theoretical values of Nuf also show this
effect, but it is not as marked as the experimental one.

5. Buoyancy-Induced Heat Transfer inside Compressor Rotors

Heat transfer from the shrouds and discs is discussed in Sections 3 and 4, and in this section
(which is based on [6]) the results are applied to the case of an open rotating cavity with an axial
throughflow of cooling air. This includes calculating the temperature rise of the throughflow, which in
turn involves estimating the heat transfer from the cob bore to the air.
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5.1. Model of Heat Transfer from Shroud to Core

The equations derived in Section 3 are adapted for use here. To compare the theoretical predictions
with the experimental measurements, the temperature of the shroud, Tsh, was assumed to equal To,b,
the measured disc temperature at r = b, and the air temperature in the core close to the shroud, Tc,b,
was calculated from Equation (A14) for x = 1. Consequently

Nush = C(GrshPr)0.25 (34)

where C is an empirical constant, and the definitions of Nush and Grsh are

Nush
def
=

hsh(s/2)
kc,b

=
qsh(s/2)

kc,b(Tsh − Tc,b)
(35)

and

Grsh
def
=

ρ2
c,bΩ2

cb

µ2
c,b

Tsh − Tc,b

Tc,b

( s
2

)3
(36)

The theoretical heat flux from the shroud can then be computed by

qsh = 2Nushkc,b(Tsh − Tc,b)/s (37)

and .
Qsh = 2πbsqsh = 4πbkc,bNush(To,b − Tc,b) (38)

5.2. Model of Heat Transfer from Cob to Axial Throughflow

The heat transfer from the cob bore to the throughflow is assumed to be by forced convection.
In [6], it was assumed for simplicity (and to fit the available data) that

Nucob = 0.69ReT
0.37 (39)

where
Nucob

def
=

qcobl
k f (Tcob − Tf )

(40)

and

ReT
def
=

ρ f Ul
µ f

(41)

The heat flow from the cob to the throughflow can then be calculated from

.
Qcob = 2πalqcob (42)

5.3. Model of Temperature Rise of Axial Throughflow

The heat transferred from the discs and shroud to the core, together with the heat transferred
from the cob, all contribute to the temperature rise of the throughflow. Referring to the control volume
shown in Figure 9, for disc i, it is assumed that

.
Qu,i ≈

.
Qd,i. It is also assumed that, as the rotational

speed of the core is very close to that of the discs, the work term is significantly smaller than the heat
transfer terms. If

.
m f is the mass flow rate of the throughflow, then an energy balance for the control

volume shows that

∆Tf =
2

.
Qu,i +

.
Qsh,i +

.
Qcob,i

Cp
.

m f
(43)

where ∆Tf = Tf ,i+1/2 − Tf ,i−1/2.
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5.4. Comparison between Theoretical and Experimental Values

5.4.1. Disc Nusselt Numbers and Temperatures

The experimentally derived Nusselt numbers were calculated from the temperature measurements
using the Bayesian method described in Section 4. The modelled temperatures and Nusselt numbers
for the discs were predicted using the buoyancy model in conjunction with the direct solution of the
general fin equation. (It should be noted that the Nusselt numbers are the average for the upstream
and downstream surfaces of the instrumented disc.) The ranges of the experimental parameters
shown in Table 2 were: 4.1× 1011 < Grf < 1012, 0.15 < β∆T < 0.35, 1.6× 106 < Reφ < 3.0× 106,
1.1× 105 < Rez < 5.1× 105 and 0.1 < Ro < 0.6. It should be noted that all the cases shown in Table 2
were analysed in [6], but only selected cases are discussed below.

Table 2. Flow parameters and experimental and theoretical average disc temperatures [6].

Case
Ro ≈ 0.6 Ro ≈ 0.3 Ro ≈ 0.2 Ro ≈ 0.1

a b1 b2 c1 c2 c3 c4 c5 c6 d

Ro 0.61 0.31 0.31 0.16 0.16 0.18 0.17 0.17 0.17 0.10
Grf/1011 2.5 10 10 4.2 4.5 6.8 7.2 7.2 7.8 4.1

β(Tb − Tf ) 0.32 0.35 0.35 0.15 0.16 0.33 0.32 0.32 0.34 0.29
Reφ/106 1.6 3.0 3.0 3.0 3.0 2.5 2.7 2.7 2.7 2.1
Rez/104 5.1 5.0 5.0 2.5 2.5 2.4 2.4 2.4 2.5 1.1

Nsha f t/Ndisc 1.0 0.34 1.0 0.34 −0.34 1.0 0.34 −0.34 0 0
Θav,exp 0.347 0.349 0.330 0.499 0.494 0.357 0.377 0.385 0.368 0.413
Θav,th 0.334 0.332 0.334 0.540 0.518 0.364 0.370 0.367 0.357 0.427

The Coriolis parameter defined by Equation (30) was chosen to minimise the difference between
the theoretical and experimental average disc temperatures, Θav,th and Θav,exp respectively, where

Θav =
2
∫ 1

xa
Θxdx

1− x2
a

(44)

A value of Co = 0.030 provided a good fit with a standard deviation of 0.019, and the individual
values of Θav,th and Θav,exp are included in Table 2. (It was shown in [4] that the theoretical Nusselt
numbers were relatively insensitive to the value of Co. In that paper, the Rossby numbers tended to
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be higher and their range (0.3 < Ro < 5) larger than for the experiments described here, which are
more representative of the Rossby numbers found in aeroengine compressors; a value of Co = 0.07
was found to give the best fit to the data. It is possible that Co may increase as Ro increases, but more
evidence is required to support that conjecture.)

As in [4], and consistent with the experimental evidence, the modelled Nusselt numbers were
assumed to be zero at the inner radius of the disc and, as stated above, a value of Co = 0.030 was used
for the Coriolis parameter in all 10 cases. It should be noted that—unlike in [4]—the results shown here
include the modelled Nusselt numbers and temperatures for the cob. An over-prediction of Nuf tends
to result in an under-prediction of the disc temperature, and vice versa, but in the main there was good
agreement between the modelled and experimental results. It should also be noted that the relative
speed of the inner shaft (see Table 2) appears to have had no significant effect on the results. (This was
also observed in [13] for heat transfer measurements on the shroud in a multi-cavity compressor rig.)

Comparison between Figures 10 and 11 shows the effect of compressibility on the Nusselt
numbers. The Grashof number is lower but the maximum value of Nuf is higher in Figure 10 than the
corresponding values in Figure 11. The reduction in Nuf despite the increase in Grf is caused by the
fact that Reφ in Figure 11 is higher (and therefore the rise in core temperature is also higher) than that
in Figure 10. (It should also be noted that the modelled temperatures tended to be less accurate in [6]
compared with those in [4]. The reason for this is that a convective boundary condition was used at
r = a in [6] whereas the measured temperatures at r = a′ were used in [4].)Aerospace 2018, 5, x  13 of 22 
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5.4.2. Temperature Rise of Throughflow

The method used to predict ∆Tf , the bulk-mean total-temperature rise of the axial throughflow,
was described in Section 5.3. For convenience, Equation (43) is repeated below removing the subscript
i and adding th to denote the theoretical or modelled value of ∆Tf .

∆Tf ,th =
2

.
Qu +

.
Qsh +

.
Qcob

Cp
.

m f
(45)

Knowing the radial distribution of the disc temperatures and the Nusselt numbers,
.

Qu, the heat
transfer from the upstream surface of the disc, can be calculated by integrating the heat flux from r = a
to r = b. Knowing the value of Tc,b, the modelled core temperature at r = b,

.
Qsh, the heat transfer from

the shroud, can be calculated using Equations (34) to (38). Knowing the value of To,a,
.

Qcob, the heat
transfer from the cob, can be calculated using Equations (39) to (42).

Figure 12 shows the comparison between the modelled and experimental values of ∆Θ f where

∆Θ f =
∆Tf

To,b − Tf
(46)

The modelled values were calculated using a value of C = 0.44 in Equation (34) for the shroud
heat transfer. This value, which was chosen to minimise the least-squares error between the modelled
and experimental values, is intermediate between 0.54 for laminar free convection from a horizontal
plate [8] and 0.32 for the shrouds in closed rotating cavities [2]. (The correlation of Long and Childs [13]
produced significant overestimates of the temperature rise.) The predicted relative contributions of heat
transfer from the shroud, both disc surfaces and the cob bores to the rise in throughflow temperature
were approximately 62%, 37% and 1% respectively for the range of conditions tested.
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It is important to emphasise that the empirical correlation for the cob Nusselt number given by
Equation (39) may not be valid outside the range of experiments reported in this paper. The values
of Nucob used here were between 42 and 52, and an average value of 48 gave predictions similar to
the ones discussed. As the relative effect of the heat transfer from the cob bore has only a very small
effect on the temperature rise of the throughflow, and as the results are only weakly affected by the
precise value of Nucob, it is unlikely that other correlations would make a significant difference to
the predictions.
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6. Conclusions

This overview paper has collected together the equations from five separate papers on theoretical
modelling of buoyancy-induced flow and heat transfer inside rotating cavities. Predictions from the
models, all of which are for laminar flow, have been compared with measurements made in open
and closed compressor rigs for a range of Rossby, Reynolds and Grashof numbers representative of
those found inside the compressor rotors of aeroengines. A total of 223 separate tests was analysed in
the validation of the models, and good agreement between the predictions and measurements was
achieved for most of these cases.

For rotating flows, the gravitational term in the Grashof number is replaced by the local centripetal
acceleration in the cavity. It should also be noted that buoyancy-induced flows are strongly conjugate:
the buoyancy equations are coupled with the conduction equations for the discs. For the discs,
the temperatures were solved using the 1D conduction equation for a circular fin, which proved
to be acceptably accurate for the cases studied. In addition, a Bayesian statistical model was used,
in conjunction with the fin equation, to compute the Nusselt numbers from experimental temperature
measurements. (A 2D or 3D version of Laplace’s equation could be used instead of the fin equation
but this would take more time to solve.)

The buoyancy model for the disc is based on laminar Ekman-layer flow, and it includes a Coriolis
parameter, Co, which is in effect the ratio of Coriolis to buoyancy forces inside the cavity. For the range
of experimental cases analysed, Co was treated as an empirical constant with a value between 0.03
and 0.07. It typically took only seconds for a laptop to solve the coupled buoyancy and conduction
equations for each case: by contrast, CFD would take days or even weeks to solve a single case.

The model for the shrouds is based on a standard correlation for laminar free convection from
a horizontal plate but with the gravitational acceleration replaced by the centripetal one. This correlation
requires an empirical constant, C, the value of which was taken to be between 0.32 and 0.44 (compared
with 0.54 for a horizontal plate) for the range of experimental cases analysed.

The inviscid compressible core in the cavity, which rotates at an angular speed close to that of
the discs, is assumed to be adiabatic. Consequently the core temperature increases with increasing
rotational speed, and this increase attenuates the heat transfer from the discs and shrouds. There are
therefore maximum Nusselt numbers for the discs and shrouds: above a critical Grashof number,
the Nusselt numbers decrease as the Grashof number increases.

The heat transfer between the bore of the cobs and the axial throughflow in an open cavity was
assumed to be by forced convection. An empirical correlation was assumed for the cob Nusselt number,
and two empirical constants were chosen to provide the best fit between the measured and predicted
disc temperatures. The relative heat flow from the cob to the throughflow was very small (about 1% of
the total heat flow), and so the predicted temperature rise of the throughflow was relatively insensitive
to the magnitude of the cob Nusselt numbers.

The modelled values of the heat flow from the shroud, discs and cob were used to predict the
temperature rise of the throughflow, and good agreement was achieved between the predicted and
measured values. The average contributions from the shroud, both disc surfaces and the cob bores to
the temperature rise were predicted to be approximately 62%, 37% and 1% respectively for the range
of conditions tested.

From experiments at large Rossby numbers and small Grashof numbers, it appeared that
buoyancy-induced flow was not the dominant convective mode below Grashof numbers of the
order of 109. The fact that laminar buoyancy models can be used for large Grashof numbers (up to
1012), where most engineers would expect the flow to be turbulent, is attributed to the large Coriolis
accelerations in the fluid core and to the fact that there is only a small difference between the rotational
speed of the core and that of the discs. It should also be noted that the available experimental evidence
suggests that neither the rotational speed of the inner shaft nor the relative direction of its rotation had
any significant effect on the heat transfer inside the cavity.
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Caution should be exercised when applying these models to engine conditions. The values of the
empirical constants (particularly C and Co) used here are likely to be dependent on the cavity geometry
and on the Rossby number, but more experimental evidence is needed to confirm this. In particular,
there is reason to believe that the empirical constants will change as the axial gap between the cobs
decreases and the open cavity starts to behave like a closed one, with a corresponding decrease in
the Nusselt numbers. Although the results from 223 tests provide strong evidence that laminar flow
occurs for Grashof numbers up to 1012, there is no evidence to confirm—as the authors believe—that
the flow will remain laminar at the larger Grashof numbers found in some aeroengine compressors.

The buoyancy models have so far been validated only for steady-state conditions, and transient
comparisons cannot be made until suitable experimental data becomes available. The conditions
for transition between buoyancy-induced and stratified flow have yet to be accurately quantified,
and last—but by no means least—the effects of different temperatures between the two discs in a cavity
have yet to be investigated. The authors are currently building a compressor rig to address many of
the above points, and in the coming years more experimental data will become available.

References [14–54] provide some additional background reading on buoyancy-induced
rotating flows.

Acknowledgments: We thank the American Society of Mechanical Engineers (ASME) for permission to use the
published figures and tables in this paper.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

a inner radius
a′ inner radius of outer edge of cob
b outer radius
c empirical constant
C empirical constant
Cp specific heat capacity at constant pressure
Co Coriolis parameter (see Equation (30))
dh hydraulic diameter (= 2(a− rs))

Gr Grashof number for closed cavity (= ρ2Ω2(a+b)/2L3

µ2
∆T

(Ta+Tb)/2 )

Gra Grashof number of inner surface of closed cavity (see Equation (12))
Grb Grashof number of outer surface (shroud) of closed cavity (see Equation (13))
Grc Grashof number in theory (see Equation (29))
Grf Grashof number in experiment (= (1− a/b)3Re2

φβ(To,b − Tf ))
Grsh shroud Grashof number (see Equation (36))

h heat transfer coefficient
hc heat transfer coefficient based on Tc(see Equation (26))
h f heat transfer coefficient based on Tf (= qo/(To − Tf ))
hsh shroud heat transfer coefficient (= qsh/

(
Tsh − Tc,b

)
)

i disc number
I integral (see Equation (31))
k thermal conductivity of air
ks thermal conductivity of disc
l axial length of cob
L characteristic length
La characteristic length of inner surface of closed cavity
Lb characteristic length of outer surface of closed cavity
.

m f mass flow rate of axial throughflow (kg/s)
Mac Mach number in core (see Equation (A18))
Ndisc rotational speed of disc

Nsha f t rotational speed of inner shaft
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Nu Nusselt number of closed cavity (see Equation (8))
Nua Nusselt number of inner surface of closed cavity (see Equation (10))
Nub Nusselt number of outer surface of closed cavity (see Equation (11))
Nuc Nusselt number based on hc (see Equation (25))

Nucob cob Nusselt number (see Equation (40))
Nuf Nusselt number based on h f (= h f r/k f )

Nush shroud Nusselt number (see Equation (35))
p static pressure
P reduced pressure
Pr Prandtl number
qa heat flux from inner surface of closed cavity to air
qb heat flux from outer surface of closed cavity to air

qcob heat flux from cob to air
qo heat flux from disc to air
qsh heat flux from shroud to air

.
Q heat flow rate
.

Qa heat flow rate from inner surface of closed cavity to air
.

Qb heat flow rate from outer surface of closed cavity to air
.

Qcob heat flow rate from cob to air
.

Qcond heat flow rate due to conduction
.

Qd heat flow rate from downstream disc surface to air
.

Qu heat flow rate from upstream disc surface to air
.

Qsh heat flow rate from shroud to air
r radius
rs radius of inner shaft
R gas constant

Ra Rayleigh number for close cavity (= Pr Gr)
Racrit critical Ra where Nu reaches maximum
Recrit critical Re where Nu reaches maximum
ReT Reynolds number for cob (see Equation (41))
Rez axial Reynolds number (= ρ f Wdh/µ f )
Reφ rotational Reynolds number based on ρf (= ρ f Ωb2/µ f )
Ro Rossby number (= W/Ωa)
s axial space between discs in cavity
S area of convection surface
Sa area of inner surface of closed cavity
Sb area of outer surface of closed cavity
t disc thickness
T static temperature

Tc, Tf , To, Tsh temperature of core, throughflow, disc, shroud
u, v, w circumferential, radial, axial component of velocity in rotating frame

U resultant velocity (=
√

W2 + (Ωa)2)
V speed of sound in core (=

√
γRTc,a)

W axial component of velocity of throughflow
x nondimensional radius (= r/b)
xa radius ratio (= a/b)
α angle of gradient of disc surface
β volume expansion coefficient (= 1/Tre f )

∆T temperature difference between outer surface and inner surface of closed cavity
∆Ta temperature difference between core (r = a ) and inner surface of closed cavity
∆Tb temperature difference between core (r = b) and outer surface of closed cavity
∆Tc temperature difference between core (r = b) and core (r = a )
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∆Tf temperature rise of axial throughflow
∆Θ f nondimensional temperature rise of axial throughflow

γ ratio of specific heats
θ nondimensional temperature (see Equation (28))
Θ nondimensional disc temperature (= (To − Tf )/(To,b − Tf ))
µ dynamic viscosity
ξ geometric parameter for close cavity(see Equation (18))
ρ density

φ, r, z circumferential, radial, axial coordinates
χ compressibility parameter for close cavity (see Equation (19))
ψ compressibility parameter for close cavity(see Equation (20))

Ω, Ωc angular speed of disc, core
Subscripts

a value at r = a
av radially-weighted average value
A cavity A from [9]
b value at r = b
c value in core

cob value on cob
cond conduction
crit critical
d value on downstream disc surface

exp Experimentally derived value
f value in axial throughflow
i values for the ith disc in a multi-cavity system
o value on disc surface

re f reference value
sh value on shroud
th theoretical or modelled value
u value on upstream disc surface

φ, r, z circumferential, radial, axial direction

Appendix

Linear Equations for Inviscid Rotating Fluids

This section is adapted from the version that appears in [1].
The symbols u, v, w denote the radial, tangential and axial components of velocity in a rotating frame of

reference, and p denotes the static pressure. The frame rotates at a constant angular speed Ω about the z axis,
the flow is steady and the fluid is inviscid; this could apply to the rotating core of fluid outside the Ekman layers
on the solid surfaces of a rotating cavity.

For steady (or time-average) flow, the continuity equation can be expressed in cylindrical polar coordinates by

∂

∂r
(ρur) +

∂

∂φ
(ρv) + r

∂

∂z
(ρw) = 0 (A1)

If u, v, w� Ωr, so that the nonlinear inertial terms are much smaller than the Coriolis terms, it can be shown
that the Navier-Stokes equations reduce to

− 2ρΩ(v +
1
2

Ωr) = − ∂p
∂r

(A2)

− 2ρΩur = − ∂p
∂φ

(A3)

∂p
∂z

= 0 (A4)
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The Coriolis accelerations are −2Ωv and −2Ωu in the radial and tangential directions respectively,
and Equations (A2)–(A4) are referred to as the inviscid linear equations.

Equation (A3) shows that for axisymmetric flow u = 0. (For radial flow to occur in a rotating cavity, either it
must be confined to the Ekman layers—where the Coriolis forces are produced by shear stresses—or, as discussed
below, the flow must be non-axisymmetric.)

Using Equations (A2)–(A4) in conjunction with Equation (A1) it follows that

∂

∂z

[
ρΩ
(

v +
1
2

Ωr
)]

= 0 (A5)

∂

∂z
(ρΩur) = 0 (A6)

∂

∂z
(ρw) =

1
2

Ω
∂ρ

∂φ
(A7)

For incompressible flow, these equations reduce to

∂u
∂z

= 0,
∂v
∂z

= 0,
∂w
∂z

= 0 (A8)

That is, the velocity is axially-stratified: there is no variation in the axial direction. This is a version of the
Taylor-Proudman theorem.

The reduced pressure P is defined as

P = p− 1
2

ρΩ2r2 (A9)

and, for incompressible flow, Equation (A2) can be expressed as

∂P
∂r

= 2ρΩv (A10)

So for a cyclonic vortex, where v > 0, ∂P/∂r > 0. As in the earth’s atmosphere, cyclonic circulation is
therefore associated with low pressure (which increases with distance from the centre of the vortex); conversely,
anti-cyclonic circulation (where v < 0) is associated with high pressure.

Pairs of cyclonic and anti-cyclonic vortices in a rotating cavity (as shown in Figure 2) will create alternating
regions of low and high pressure. These generate the circumferential pressure gradient which, as shown by
Equation (A3), is required to produce a radial flow in the rotating fluid.

Compressible Adiabatic Flow in Rotating Core

This section is based on equations derived in [3]. Note: all pressures, temperatures and densities used below
are circumferentially-averaged static values.

Owing to the compressibility of the air in the cavity, the core temperature is assumed to increase adiabatically
with radius. (This is analogous to the earth’s atmosphere where, owing to gravitational acceleration, the pressure
and temperature decrease with vertical height; the decrease in temperature is referred to as the adiabatic lapse
rate. However, owing to the centripetal acceleration in the rotating core, the pressure and temperature increase
with radius.)

For a perfect gas
pc

ρc
= RTc (A11)

and for adiabatic flow pc

ρcγ
= constant (A12)

If the angular speed of the inviscid core is Ωc then for radial equilibrium

dpc

dr
= ρcΩc

2r (A13)

It can be shown that

Tc − Tc,a =
Ωc

2b2

2Cp
(x2 − x2

a) (A14)
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where x = r/b, and pc = pc,a, ρc = ρc,a, Tc = Tc,a at x = xa. Using the conventional notation of compressible
flow, it follows that

Tc

Tc,a
= 1 +

γ− 1
2

Mac
2(x2 − xa

2) (A15)

pc

pc,a
=

[
1 +

γ− 1
2

Mac
2(x2 − xa

2)

]γ/(γ−1)
(A16)

and
ρc

ρc,a
=

[
1 +

γ− 1
2

Mac
2(x2 − xa

2)

]1/(γ−1)
(A17)

The Mach number in the core, Mac, is defined as

Mac
def
=

Ωcb
V

(A18)

where the speed of sound, V, is given by
V =

√
γRTc,a (A19)
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