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Abstract: The thermal protection system (TPS) represents one of the most critical subsystems for vehi-
cle re-entry. However, due to uncertainties in thermal loads, material properties, and manufacturing
deviations, the thermal response of the TPS exhibits significant randomness, posing considerable
challenges in engineering design and reliability assessment. Given that uncertain aerodynamic heat-
ing loads manifest as a stochastic field over time, conventional surrogate models, typically accepting
scalar random variables as inputs, face limitations in modeling them. Consequently, this paper
introduces an effective characterization approach utilizing proper orthogonal decomposition (POD)
to represent the uncertainties of aerodynamic heating. The augmented snapshots matrix is used to
reduce the dimension of the random field by the decoupling method of independently spatial and
temporal bases. The random variables describing material properties and geometric thickness are
also employed as inputs for probabilistic analyses. An uncoupled POD Gaussian process regression
(UPOD-GPR) model is then established to achieve highly accurate solutions for transient heat conduc-
tion. The model takes random heat flux fields as inputs and thermal response fields as outputs. Using
a typical multi-layer TPS and thermal structure as two examples, probabilistic analyses are conducted.
The mean square relative error of a typical multi-layer TPS is less than 4%. For the thermal structure,
the averaged absolute error of the radiation and insulation layer is less than 25 ◦C and 6 ◦C when the
maximum reaches 1200 ◦C and 150 ◦C, respectively. This approach can provide accurate and rapid
predictions of thermal responses for TPS and thermal structures throughout their entire operating
time when furnished with input heat flux fields and structural parameters.

Keywords: reduced-order model; thermal protection system; probabilistic analysis; proper orthogonal
decomposition; thermal response

1. Introduction

The thermal protection system (TPS) is an essential part to protect space vehicles from
extremely severe thermal load during atmospheric re-entry [1]. The structural design of
the TPS is a multidisciplinary optimization problem which involves trajectory prediction,
aeroheating analysis, size design, etc. However, there are inevitable uncertainties in the
design and maintenance of TPSs, such as trajectory deviations, errors in analytical model
and data measurement, dispersion of material property and system assembly deviations,
variation in external load environment, and other unknown uncertainties [2–4]. The
reliability and refinement of the design of the TPS depends on the accurate prediction of
the internal temperature distribution of the system structure during hypersonic flight.

To accurately obtain the distribution of target variables (e.g., temperature in critical
regions) under the influence of uncertainties, the probabilistic method is an effective
approach. It is usually assumed that the design parameters are random variables subject
to a certain probability distribution and then the statistical characteristics of the thermal
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response can be obtained through Monte Carlo Simulation (MCS). Owing to the simple
construction and ease of implementation, MCS is a widely used uncertainty quantification
(UQ) method. However, its application in multivariate UQ is limited because of its slow
convergence rate and huge computational cost, not to mention the large number of sampling
points to obtain an accuracy that meets the requirements [5].

With limited computational resources, how to construct a relatively accurate response
model with an acceptable size of sample data and analyze the propagation law of uncertain
parameters is a long-standing effort of scholars. Surrogate models, which are widely used
in fields such as machine learning and optimization design, provide new research ideas
for uncertainty quantification analysis [6–8]. Surrogate model uses limited samples to
construct the response relationship between the system output and the input variables.
One of the ultimate goals is to replace the time-consuming numerical simulation or ex-
perimental process and predict the output under the new input variables [9]. Commonly
used models include the polynomial regression model, artificial neural network, support
vector machine and Kriging model. Xin et al. [10] use a probabilistic analysis method
combining a polynomial regression model for multi-layer TPS which is efficient and can
meet the engineering needs. The probabilistic analysis method using the response surface
approximation provides a good discussion of the effects of uncertainties such as material
properties and geometries [11,12]. Rivier et al. [13] introduced a non-intrusive analysis of
variance method for low-cost sensitivity analysis in a problem with numerous uncertain
parameters and utilized the polynomial chaos method to compute statistical quantities of
interest related to the atmospheric entry of the Stardust capsule, accounting for uncertain-
ties in effective material properties and pyrolysis gas composition. Ma et al. [13] proposed a
unified reliability sensitivity analysis methodology including multi-input and multi-output
support vector machines for the conceptual design of a TPS with temperature-dependent
materials. The temperature dependency of the material properties was considered during
the thermal analysis. This method was utilized to approximate the thermal responses and
establish failure modes, ultimately saving calculation costs. Brune et al. [14] proposed an
efficient polynomial chaos expansion (PCE) approach to obtain uncertainty results for the
structural deformation response and surface conditions of the inflatable decelerator. Zhang
et al. [15] used the Kriging surrogate model to perform the probabilistic analysis of the TPS.
Accurate thermal responses are obtained through the inputs of material properties and
geometric thickness.

In addition to uncertainties in structural and physical parameters, aerodynamic heat-
ing deviations also need to be considered in thermal analysis, which usually arise from un-
certainties in trajectories, flow conditions, chemistry reaction, and surface catalysis, etc [16].
The largest aerodynamic heating uncertainties can be up to 15–101% [3]. Wright et al. [2]
presented a method for the probabilistic sensitivity and uncertainty analysis of aerother-
modynamics and thermal protection system material response modeling. The primary
objective of this methodology is to identify and quantify the most significant sources of
uncertainty in aeroheating and the subsequent selection and sizing of thermal protection
materials. This is carried out by considering inaccuracies in the current knowledge of
input physical models and the modeling parameters they depend on. Studies suggest that
the influence of uncertainties, which encompass factors such as surface pressure and heat
transfer coefficients within the field of aerothermodynamics, is of considerable importance.
Bose et al. [17] utilized Monte Carlo sensitivity and uncertainty analysis for a laminar
convective heating prediction in a moderate Mars atmospheric entry condition. A total
of 130 input parameters are statistically varied to shortlist a handful of parameters that
essentially control the heat flux prediction. Brune et al. [18] systematically reviewed the
uncertainty quantification studies applied to the modeling and simulation of planetary
entry systems, focusing on prior work in response modeling, fluid–structure interaction
simulation, and aerothermal modeling. Recently, Wang et al. [19] presented a novel inverse
estimation of hot-wall heat flux using nonlinear artificial neural networks (ANNs). The
effectiveness of this method was verified by comparing the estimated dynamic hot-wall
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heat flux with known experimental values. Lu et al. [20] used a point-collocation non-
instructive polynomial chaos method to propagate the uncertainties in the heat transfer
and pressure of fin-plate configurations. The freestream velocity, freestream static pressure,
freestream static temperature, wall temperature, and fin angles were chosen as uncertainty
sources. Meanwhile, Sobol indices were utilized to denote the contribution of each input
parameter. Alpert et al. [21] used machine learning models to reconstruct data collected
by the sensors of the Mars2020 Perseverance Rover. It was found that these models can be
an efficient and accurate alternative to state-of-the-art inverse analysis tools. Sensitivity
analysis revealed that the primary drivers of uncertainty in reconstructing the heat flux
and heat load were the heat capacity and thermal conductivity on the backshell.

Typically, input parameters in a surrogate model are considered random variables
subject to some distribution. However, it should be noted that the uncertain thermal
loads are essentially random fields in the time domain and space domain. The random
variables and their distributions are undefined when external varying loads are used
as input to the surrogate model. The randomness should be accurately represented to
achieve a meaningful solution to specific reliability analysis, when the external loads
are treated as random fields [22]. In order to perform the probabilistic analysis of TPSs
under varying loads, a reduced-order model (ROM) to characterize the random field
is necessary. Meanwhile, the output of the probabilistic analysis of TPS is a random
field, while obtaining the thermal responses of all nodes in the time-varying case also
require ROM. ROM is a quantitative and accurate description of the original system with
a lower calculation cost, and is capable of capturing the main physical characteristics
of the original system [23]. Proper orthogonal decomposition (POD) is a quite useful
reduced-order modeling approach, which has been used in various dynamical systems
including fluid-flow problems [24–26]. In recent years, the POD technique has also been
used in a ROM of hypersonic aerodynamic thermals. Falkiewicz et al. [27] used the POD
method to construct ROMs for transient heat conduction problems with time-varying
heat flux boundary conditions. The method is applied to a representative structure to
provide insight into the importance of aerothermoelastic effects on vehicle performance.
Crowell and McNamara [28] used the POD method and Kriging model to establish a ROM
of the heat flux on the structure surface, greatly minimizing the computational cost of
steady-state CFD. The results show that the Kriging-based ROM is more accurate than
the POD-based ROM, but the POD method is more efficient. Chen et al. [29,30] used
three methods, namely, the radial basis function (RBF), POD-RBF and Kriging method,
to construct a reduced-order aerothermodynamic modeling framework for hypersonic
vehicles. Yan et al. [31] proposed the POD-Chebyshev aerodynamic thermal reduced
model, which can be used to predict the heat balance state of a hypersonic vehicle, with
higher computational efficiency and accuracy than Kriging method. Pérez et al. [32]
analyzed the linear instabilities present in a defined hypersonic flow over a blunt object in
thermal equilibrium. The POD modes are used to define the reduced-order models, and
characterize the flow with a reduced number of degrees of freedom and developing flow
control strategies. Huang et al. [33] used the aerothermal surrogate model to study the
impact of the high-temperature effect on the aerothermoelastic response of a hypersonic
skin panel and the POD method was used for model reduction. However, these reduced-
order models mentioned are given for steady-state problems and do not take into account
the time-varying effects of aerodynamic thermal loads. Zhang et al. [22] proposed a
probabilistic analysis method for transient heat transfer in thermal protection systems.
This approach utilizes the Karhunen-Loève expansion to represent the uncertainty in
aerodynamic heating as a set of random variables and establishes a Kriging model for
solving the structural thermal response. While this method accounts for the time-varying
effects of aerodynamic heat loads, it provides the maximum temperature response of the
structure as output rather than considering the spatial distribution of uncertainty. Inspired
by previous research on reduced-order modeling techniques, improved POD combined
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with Gaussian process regression (GPR) is utilized in this paper for the probabilistic analysis
of a TPS under time-varying loads.

In order to carry out probabilistic analysis of TPS under time- and space-varying loads,
the UPOD-GPR method is proposed. POD is utilized to decouple the time-dependent
behavior and the randomness, and the GPR is used to propagate the uncertain parameters
through the thermal system. The remaining sections of the paper are organized as follows.
In Section 2, the uncertainty of aerodynamic thermal loads are estimated. We introduce a
characterization method for the random field using POD in Section 3. The construction of
the POD-GPR method is proposed in Section 4. In Section 5, two numerical examples of
multi-layer TPSs which are subjected to random heat flux load are given to demonstrate the
effectiveness and accuracy of the proposed method. Conclusions are drawn in Section 6.

2. Generation of Random Heat Flux Samples

Aerodynamic heating uncertainties can arise from various sources such as trajectory
and atmospheric variations, turbulent transients, finite-rate chemistry, and unusual flow
phenomena. It is also important to consider transport quantities and wall thermal boundary
conditions in physical models [16]. In this section, we use the uncertainties of the trajectory
to calculate the aerodynamic heating. However, it should be noted that this method can
also be used to analyze other sources of uncertainty that affect thermal loads. High-fidelity
computational fluid dynamics (CFD) is essential for accurately estimating the heat flux for
a single flight. However, when calculating the heat flux for multiple flights, reduced-order
models can be more efficient and sufficiently accurate. Surrogate methods and proper
orthogonal decomposition can be used to obtain a large amount of heat flux data without
requiring multiple high-fidelity CFD calculations.

2.1. Analysis of Re-Entry Trajectory

A slight change in trajectory can significantly affect the surface heat load of a re-
entry vehicle. Therefore, to study the influence of trajectory uncertainty on the thermal
response of the TPS, the heat flux must be calculated while considering the scatter of the
re-entry trajectory. In this section, we will use the Allen–Eggers approximation for ballistic
entry to generate the re-entry trajectories [34]. The Allen–Eggers solution allows for the
determination of the re-entry trajectory of a spacecraft during atmospheric re-entry through
a numerical method, where a constant flight-path angle γ is assumed.

Two example ballistic entry trajectories have been selected to prepare for establishing
trajectory uncertainties. All example trajectories take place on Earth, where the atmospheric
scale height H = 8.5 km and the reference density ρref = 1.125 kg/m3 at a reference altitude
href = 0 km. Allen and Eggers formulated an equation for the convective heat flux at the
stagnation point of a blunt-body vehicle:

Q̇ = k
√

ρ/rnV3 (1)

where ρ is altitude-dependent atmospheric density, rn is nose radius, V is the current
velocity of the blunt-body vehicle, and the constant k is atmosphere dependent. A suit-
able k for application on Earth has the value of 1.7623 × 10−4 (kg1/2/m) [34]. Figure 1
displays the two example trajectories described in Table 1. The numerical relationship
of velocity–altitude and velocity–heat flux can be obtained by the Allen–Eggers solution.
The nose radius of rn = 1 m is assumed in Figure 1b. Similarly, the physical quantities
during the flight process can be expressed as a function of time. Figure 2 illustrates the
curves representing the variation in velocity and heat flux over time. The flight profile is
heavily influenced by the entry velocity, initial flight-path angle, and the vehicle’s ballis-
tic coefficient, while the heat flux can be significantly affected by the flight profile. The
time-dependent random heat flux can be generated by considering uncertainties in the
flight-path angle, initial velocity, and ballistic coefficient. The coefficient of variation (COV)
for the ballistic coefficient can be specified independently. The COVh of the initial velocity
and flight-path angle, as well as the COVb of the ballistic coefficient, are specified to gener-
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ate the random heat flux. Figure 3 depicts the time-varying heat flux for various sample
return cases mentioned in Table 2, considering a coefficient of variation COVh = 10%
and COVb = 5%. The three uncertainty parameters are assumed to be governed by the
truncated Gaussian distribution.
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Figure 1. Two example ballistic entry trajectories: (a) altitude vs.velocity; (b) heat flux vs. velocity.
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Figure 2. Variation in velocity and heat flux over time: (a) velocity; (b) heat flux.

Table 1. Parameters for example trajectories on Earth.

Parameter Sample Return Strategic

Initial velocity, V(initial) 12.8 km/s 7.2 km/s
Flight-path angle ,γ −8.2 deg −30.0 deg

Initial altitude, h(initial) 125 km 125 km
Ballistic coefficient, β 60 kg/m2 10,000 kg/m2

It should be noted that only the temporal variation in the heat flux at the stagnation
point is considered here. To simulate the characteristics of the spatial distribution on the
surface of the vehicle, CFD (computational fluid dynamics) or engineering algorithms are
required. After accounting for the uncertainty in the trajectory, the surface heat flux fields
are generated using engineering algorithms in a later section.
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Figure 3. Five heat fluxes for sample return cases in Table 2.

Table 2. Five cases for sample return with COVh = 10% and COVb = 5%.

Case Number Initial Velocity, km/s Flight-Path Angle, Deg Ballistic Coefficient kg/m2

0 13.46 −6.70 59.32
1 12.09 −7.87 62.57
2 11.01 −7.92 60.08
3 13.63 −8.91 60.19
4 13.97 −7.24 57.33

2.2. Calculation of Surface Heat Flux

When conducting the probabilistic thermal analysis of a re-entry vehicle, it is crucial
to consider the thermal loads on the entire surface of the vehicle throughout the re-entry
process, even though the heat flux at a stagnation point remains a vital factor to be consid-
ered. For accurate analysis of hypersonic aerothermodynamics, refined numerical methods
such as Direct Simulation Monte Carlo (DSMC) or CFD are required. These high-fidelity
simulations enable the precise modeling and simulation of the intricate flow phenomena en-
countered at hypersonic speeds. However, in the initial design stage of thermal protection
systems (TPSs), there is a need for the fast computation of aerothermodynamic properties.
High-fidelity numerical methods can be computationally expensive and impractical for
such purposes.

The heating is significantly intensified at highly hypersonic Mach numbers expe-
rienced during re-entry, which poses a critical risk to the vehicle’s integrity due to the
substantial heat. Aerothermodynamics can be defined as the study of the thermodynamic
interaction between a gas flow and an object. In the case of viscous flows over a solid body,
there is forced convective heating at the surface of the object [35]. In this paper, the Free
Open Source Tool for Re-entry of Asteroids and Debris (FOSTRAD) is used to calculate
the aerothermodynamic environments of re-entry vehicles. FOSTRAD can be utilized for
space vehicle and TPS design, as well as trajectory optimization based on mission-specific
requirements [36,37].

To exhibit the validity of FOSTRAD, the sample return trajectory is selected to calculate
the surface flux of the Orion crew vehicle. The coefficient of variation (COV) of COVh = 10%
for the initial velocity and flight-path angle, along with COVb = 5% for the ballistic
coefficient, are designated to generate the random surface heat flux. The mean value of
initial velocity, ballistic coefficient, and flight-path angle are 11.0 km/s, 287.6560 kg/m2,
and −8.2 deg. Figure 4 displays example diagrams of heat flux distribution at specific
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moments mentioned in Table 3. The values of the heat flux of element 3668 for all cases are
marked in Figure 4. Figure 5 shows the random heat flux values of element 3668 over time
during overall re-entry. The case indicates that this method can effectively provide random
heat flux field data for subsequent temperature field calculation.

Figure 4. Surface heat flux of element 3668 (triangle in figure) described in Table 3.

Table 3. Four cases for heat flux distribution of Orion crew vehicle with COVh = 10% and
COVb = 5%.

Case Number Initial Velocity, km/s Flight-Path Angle, deg Ballistic Coefficient kg/m2 Time of Re-Entry, s

0 11.8733 −8.1269 283.8589 20
1 9.7711 −7.9425 305.0772 34
2 10.0655 −6.5829 264.9307 40
3 12.5229 −6.7248 288.9090 48

Moreover, because the surface temperature of the vehicle is related to the hot-wall heat
flux, the cold wall heat flux calculated from software should be converted to the hot-wall
heat flux by [22]:

qn = qc

(
1 − hw

hr

)
− σεT4

w (2)

where qn is hot-wall heat flux, qc is cold-wall heat flux, σ is the Stefan–Boltzmann constant,
ε is the radiation coefficient of the structure surface, hr is the enthalpy of the air flow at the
recovery temperature, Tw is the surface temperature, and hw is the enthalpy of the air flow
at the vehicle surface temperature.
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Figure 5. Heat flux curve of element 3668 with time under the trajectory parameters in Table 3.

3. Characterization Method of Field Variables by Uncoupled POD

By performing numerous heat transfer calculations with corresponding random heat
fluxes, it is possible to obtain the probability characteristics of the thermal response of
the TPS. In the case of complex and nonlinear models, performing calculations can be
time-consuming and computationally expensive. To improve computational efficiency,
an effective approach is to construct a surrogate model using existing data. This surro-
gate model approximates the intricate relationship between random inputs and outputs,
thereby providing a more efficient means of computation. For re-entry vehicles, the input
random heat fluxes can be seen as random processes and it is difficult to describe these
random processes with a small number of random variables. There are several methods to
expand the random processes by the Karhunen-Loève (K-L) expansion, PCE and the POD
method [22,38,39]. However, the non-uniform distribution of the heat flux density on the
surface of the TPS results in a random field that exhibits temporal and spatial correlation.
To describe the random heat flux field, which serves as the input for the surrogate model,
we have developed a novel POD method. This approach captures both spatial and temporal
correlations in the random heat flux data, enabling the effective dimensionality reduction
of the model while preserving its essential features of behavior.

3.1. Conventional Proper Orthogonal Decomposition

POD method is an effective model order reduction technique to sufficiently describe
the behavior of full-system dynamic characteristics by establishing a set of optimal orthog-
onal bases [40,41]. There are three equivalent forms in the literature, namely, Principal
Component Analysis (PCA), Karhunen-Loève Decomposition (KLD), and Singular Value
Decomposition (SVD), to obtain the bases [42]. The orthogonal bases {ϕi} provided by
the POD method represent a specific data set {xk} derived from experiments or numerical
simulations. Specifically, the elements in the data set {xk} have maximum projections on
this set of bases {ϕi}, which is defined as a constrained maximum problem:

max
ϕ

m

∑
k=1

(xk, ϕ)

∥ϕ∥ , ΦTΦ = I (3)
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where ϕ is the basis vector of POD method and Φ is the collection of ϕ. For a spatially
discrete domain with N nodes, a variable u(t) can be indicated in the following form [26]:

u(t) ≈ U0 +
m

∑
k=1

ak(t)ϕk = U0 + Φû(t) (4)

where the basis matrix Φ consists of Proper Orthogonal Modes (POMs) {ϕk} and the modal
coefficients {ak} are collocated into a column vector û(t) which represents deviations of
u(t) from a base solution U0.

The snapshot, proposed by Sirovich [43], is the fundamental concept in POD. It
consists of a collection of sampled values that capture the field under consideration. These
snapshots are generated by changing the parameter values on which the field depends. For
uniformly distributed aerodynamic heating of transient problem, the natural choice of such
a parameter is the time variable; the heat flux W on surface of model can be represented by
snapshot matrix as follows:

W =


Q(1)

t1
Q(1)

t2
· · · Q(1)

tl

Q(2)
t1

Q(2)
t2

· · · Q(2)
tl

...
...

. . .
...

Q(n)
t1

Q(n)
t2

· · · Q(n)
tl

 (5)

where Q(n)
tl

indicates the heat flux snapshot at tl moment of n th sample. The objective of
the POD technique is to identify an optimal set of POMs ϕ1, ϕ2, . . . , ϕr (where ϕi, i = 1, . . . , r
are column vectors), so that the flux field of the structure surface at any time can be
approximated as a linear combination of the POMs

Q(t) = q̂1(t)ϕ1 + q̂2(t)ϕ2 + · · ·+ q̂r(t)ϕr (6)

where q̂i is the corresponding time-variable coefficient of ϕi, i = 1, · · · , k. In order to
obtain the optimal POMs in Equation (6), the eigenvalue problem can be introduced as
follows [44]:

R = WTW (7)

where W is the snapshot matrix. Obviously, the order of matrix R is l × l. By solving the
eigenvalues λi and corresponding eigenvectors φi of matrix R:

Rφi = λi φi, i = 1, 2, · · · , m, m ≤ l (8)

the POMs can be developed by

ϕi =
1√
λi

W φi, i = 1, 2, · · · , m (9)

Since R is a symmetric and positive-definite matrix, its eigenvalues λi are real and positive,
and can be arranged in descending order:

λ1 ≥ λ2 ≥ · · · λm > 0 (10)

and the POMs are orthogonal, i.e.,

ϕi · ϕj = δij (11)

where δij is the Kronecker symbol (δij =1 if i = j and 0 otherwise).
It can be proved that the ith eigenvalue is a measure of the kinetic energy transferred

in the ith POD basis modes ϕi. Normally, this energy decreases rapidly with the increasing
number of modes, so that most modes can be discarded [45]. The number of modes retained
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in the POD basis can be truncated leading to a reduced POD modal matrix, which reduces
the number of degrees of freedom of the original problem. Therefore, the first r order
modes ϕ1, ϕ2, . . . , ϕr can be selected in analysis and the selection criterion is as follows:

r = argmin
{

K(r) : K(r) ≥ ϵ

100

}
(12)

where “argmin” means deciding the minimum r which satisfies K(r) ≥ η/100. Here,

K(r) = ∑r
i=1 λi

∑
p
i=1 λi

(13)

Generally, ϵ = 99.99.
The resulting POMs, referred to as truncated POD modes, are composed of r < m

vectors. This set of orthogonal vectors is both optimal and small in terms of approxima-
tion. By using the time-varying coefficients as shown in Equation (14), different random
processes of heat flux can be represented. The conventional POD algorithms are described
in Algorithm 1.

q̂ = ΦTW (14)

Algorithm 1: Conventional POD for uniformly distributed fields
1: procedure POD(W , ϵ)
2: Assembling the random heat flux matrix W
3: Solving the eigenvectors and eigenvalues: [Γ, λ] = eig(WTW)
4: Determining the truncation order r using Equation (13)
5: Setting the POD bases ϕi = γi/

√
||γi||2, i = 1, 2, · · · , r, and reduced

coefficients q̂ = ΦTW
6: return [Φ, q̂, r]
7: end procedure

This method enables the thermal stochastic field to be characterized by a limited
number of random variables, thereby facilitating the establishment of a mathematical
model that relates heat flux input with thermal response, which is applicable for typical
multi-layer TPS [22]. Nevertheless, the random field resulting from the non-uniform
distribution of heat flux on the TPS surface exhibits both temporal and spatial correlation.
The conventional POD is weak for random fields coupled in time and space. To address
this issue, a decoupling method of POD has been developed.

3.2. Augmented Snapshots Matrix

For this data set with temporal and spatial correlation, we aim to find the global POD
spatial and temporal bases on parameter domain according to the heat flux field. The
collection of heat flux field for TPS can be determined by running FOSTRAD with different
parameters. The snapshot describing the spatial distribution of heat flux of kth sample
at time step l ∈ [1, · · · , Nt] can be denoted as u(x, tl)k ⊂ RNp , where Np is the number of
thermal load input nodes and Nt is the number of time steps. Then, a matrix collecting
snapshots with kth sample at all time steps is denoted as follows:

U(k) =
[
u(x, t1)k, u(x, t2)k, · · · , u(x, tNt)k

]
⊂ RNp×Nt (15)

and the data set of all Ns sample of random heat flux can be collected as follows:

U =
[
U(1), U(2), · · · , U(Ns)

]
⊂ RNp×Nts (16)

where Nts = Nt ×Ns. A space can be spanned by vectors which characterize the physical space
distribution at time/samples in database U. An optimal reduced basis {ϕ1, ϕ2, · · · , ϕI} ⊂ RNp

with I ≪ Nts and I ≪ Np can be obtained using POD method on matrix U. The POD basis
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vectors, called spatial bases or spatial modes in many existing works, are still the most
popular descriptions for physical space in reduced subspace.

Another database can be assembled by value variations in all nodes with time march-
ing. The collection of high-fidelity solutions of kth sample at node i ∈ [1, 2, · · · , Np] in field
can be denoted as v(xi, t)k and a matrix collecting snapshots with kth sample at all nodes
in field can be written as follows:

V (k) =
[
v(x1, t)k, v(x2, t)k, · · · , v(xNp , t)k

]
⊂ RNt×Np (17)

and the database of all samples is denoted as follows:

V =
[
V(1), V (2), · · · , V (Ns)

]
⊂ RNt×Nps (18)

where Nps = Np × Ns. Similarly, the database V can also span a space by temporal history
with space/samples and then a reduced basis {ψ1, ψ2, · · · , ψJ} ⊂ RNt with J ≪ Nps and
J ≪ Nt, named as temporal basis, could also be solved via POD technique. It should
be pointed out that temporal features extracted via POD are not as widely used as the
spatial features. The feasibility of temporal bases to generate ROMs has been proved by
Audouze et al. [46]. The spatial and temporal bases are extracted independently from
two databases U and V . The dimensions of random flux field can be reduced by decoupling
method of independently spatial and temporal bases.

3.3. Uncoupled Method of POD

Parameterized random field can be expressed in terms of spatial and temporal bases,
which can be written as follows:

u(x, t)k =
I

∑
i=1

J

∑
j=1

dk
ijϕi(x)ψj(t)

=
I

∑
i=1

J

∑
j=1

L

∑
l=1

hk
l,ijζl,ijϕi(x)ψj(t)

(19)

where dk
ij, i = 1, 2, · · · , I; j = 1, 2, · · · , J denotes a set of reduced coefficients in the approxi-

mation, and ϕi(x) and ψj(t) are spatial and temporal bases extracted from databases U and
V via POD. Spatial bases ϕi(x) and temporal ψj(t) are still descriptions for space distribu-
tion and time course of the original random heat flux. For multi-parameter fluid system,
parameter/time-independent reduced bases can be obtained by introducing the extended
multi-parameter snapshots matrix via POD technique. The reduced space spanned by the
reduced bases provides a low-dimensional but accurate approximation for the high-fidelity
dynamical system [47,48]. Since there is no orthogonality between ϕi(x) and ψj(t), the dij
are joint coefficients of spatial and temporal bases. The non-orthogonality of the bases
results in coefficient variations that reflect not only sample influences but also base selection
effects. Furthermore, the number of coefficients d is dependent on the number of POD
bases used. The prediction efficiency for reduction coefficients will be unacceptable if a
complex requires many spatial and temporal truncation bases.

In fact, dk
ij could be further decomposed by dk

ij = ∑L
l=1 hk

l,ijζl,ij using a second-level

POD. After decomposition dk
ij, the basis vectors are orthogonal, making the prediction of

their coefficients more accurate. This reduces the requirement for the stability of the prediction
model. In this paper, the second-level POD is employed to further reduce the complexity of the
system. The specific implementation process is described in the following text.

For a fixed sample index k, according to Equation (19), random field can be written in
the matrix form as follows:

U(k) = ΦD(k)ΨT (20)

and coefficients D(k) at k th can be determined by



Aerospace 2024, 11, 269 13 of 34

D(k) = ΦTU(k)Ψ ⊂ RI×J (21)

where D(k) is an I × J matrix:

D(k) =


dk

11 · · · dk
1J

...
. . .

...
dk

I1 · · · dk
I J

 (22)

To establish efficient mapping relations between index k and D(k), we carry out the
reduction procedure for D(k). POD technique is used again to seek the low-rank subspace
which can approximate D(k) well. We define

p(k) =
[

D(k)(1, ·), D(k)(2, ·), · · · , D(k)(I, ·)
]T

(23)

The elements in D(k) are reassembled in a column vector; then, a matrix collecting all Ns
samples can be formed as follows:

P =
[

p(1), p(2), · · · , p(Ns)
]
⊂ R(I×J)×Ns (24)

POD bases, named sample bases Z, can be extracted from P. The decoupling coefficients H
can be written as follows:

H = ZTP ⊂ RL×Ns (25)

where L is the number of bases used. For the field matrix U, the predicted order scale needs
to be reduced from Np × Nts to L × Ns. Similarly, for field matrix V , the dimension are
reduced from Nt × Nps to L × Ns, and the prediction efficiency has been improved greatly.

The dimensions I, J, and L of the POD basis are determined by the following criterion.

Edecoupling =
1
2
(
Ep + Et

)
× Eh ≤ 1

2
[
1 − ϵp + 1 − ϵt

]
× (1 − ϵh) (26)

where ϵp, ϵt, and ϵh are the relative error tolerances used to control the accuracy of each
POD, and Ep, Et, and Eh are the energy of three PODs in decoupling. As an indicator
of degree of information contained in decoupling POD, Edecoupling is not an accurate
information content ratio but it can be used as a judgment for basis selection.

Uncoupled POD approaches can significantly reduce the dimensions of original system.
For non-uniform aerodynamic heating of transient problem, we only need to predict
decoupling coefficient for new sample of random heat flux, then the random flux field of
arbitrary samples can be constructed by linear combinations of sample coefficients, and
spatial and temporal bases. The uncoupled POD algorithms are described in Algorithm 2.

Algorithm 2: Uncoupled POD for non-uniform random field
1: procedure UPOD(U, V , ϵs, ϵt)
2: Assembling the random field matrix U and V
3: Solving the spatial bases: [Φ, Op, I] = POD(U, ϵp) and temportal bases:
[Ψ, Ot, J] = POD(V , ϵt)

4: Determining the first-level reduced coefficients at sample k:
D(k) = ΦTU(k)Ψ ⊂ RI×J

5: Assembling p(k) =
[

D(k)(1, ·), D(k)(2, ·), · · · , D(k)(I, ·)
]T

6: Collecting all coefficients at Ns sample bases:
P =

[
p(1), p(2), · · · , p(Ns)

]
⊂ R(I×J)×Ns

7: Solving the second-level POD bases: [Z, H, L] = POD(P, ϵh)
8: return [Φ, Ψ, Z, H]
9: end procedure
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4. Parameterized ROMs Based on Uncoupled POD

The reliability and refinement of the design of a TPS depends on the accurate prediction
of the internal temperature distribution of the system structure during hypersonic flight.
Similarly, the internal temperature distribution of a TPS is time-varying and non-uniform.
The uncoupled POD is available for temperature distribution as well. This work combined
a Gaussian-type regression with the uncoupled POD method to predict variables of interest
in the high-fidelity simulation. This section focuses on the framework based on UPOD-GPR
models and briefly introduces GPR.

4.1. Gaussian Process Regression Models

Regression involves predicting a continuous variable of interest by building a model
based on a set of observational data [49,50]. Express Ptr = {(xi, yi) : i = 1, 2,. . . , N} as
the training set of N observations, where input xi ∈ Ptr ⊂ Rc consists of c entries and
yi ⊂ R is the output corresponding to xi. In the GPR model, we assume that the observed
input–output pairs follow some regression function f : P → R, which is defined as a
Gaussian process (GP). When provided with a new input, this GPR model allows for the
prediction of the corresponding output. GPR models, characterized by non-parametric
kernels, contrast with the linear regression model, which is expressed in the following:

y = xT β + ϵ (27)

where ϵ ∼ N (0, σ2) and β are the corresponding combination coefficients. GPR models
could describe the response by introducing latent functions f (x) from a Gaussian process
and basis function h. A GP is a collection of random variables and, for any finite subset
of them, their joint distribution follows a Gaussian distribution. This can be defined by
its mean function m(x) and covariance function, k(x, x

′
), where m(x) = E( f (x)) and

k(x, x
′
) = Cov( f (x), f (x)

′
). Then, the regression model is as follows:

y = h(x)T β + f (x) (28)

where f (x) ∼ GP(0, k(x, x
′
)) and h(x) are a collection of basis functions defined in P . Gen-

erally, there are many options for k(x, x
′
). In this work, an automatic relevance determina-

tion (ARD) square exponential (SE) kernel is used for the solution of the covariance function:

k(x, x
′
) = s2

f exp

(
−1

2

d

∑
n=1

(xm − x
′
m)

2

l2
m

)
(29)

where s2
f is the width coefficients and lm is the individual correlated length scale for each

input. For a number of points of input, the joint Gaussian can be defined as follows:

y|X ∼ N (m(X), K)) (30)

where K = cov(y|X) = k(X, X) + σ2 IN , y = [y1, y2, 3, yn]
T ,X = [x1, x2,. . . , xn]. IN is the

N-dimensional unit matrix.
To predict the noise-free output f (α̂) for a new input α by this regression model, the

information of the training set is combined with the prediction of test samples to form
the joint density of observation y and noiseless test output f (α̂). Then, the posterior
predictive distribution as the form of a new GP can be obtained by the standard rules for
conditioning Gaussian:

ˆf (α)|α, X, y ∼ GP
(

m̂(α), ẑ(α, α
′
)
)

(31)

where
m̂(α) = m(α) + k(α, X)K−1(y − m(X)) (32)
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and
ẑ(α, α

′
) = k(α, α

′
)− k(α, X)K−1k(X, α

′
) (33)

The parameters required can be solved by an empirical Bayesian approach of maximiz-
ing likelihood. Setting hyperparameters θ = [β1, β2,. . . , βm, l1, l2,. . . , ld, s f , σ] the opti-
mal θ can be determined by solving such a maximization problem based on a standard
gradient-based optimizer:

θ = arg max log p(y|X, θ)

= arg max
{
−1

2
(y − βT H(X))TK−1(θ)(y − βT H(X))− 1

2
log |K(θ)| − N

2
log(2π)

} (34)

where p(y|X, θ) is the conditional density function of y given X with θ which can be
obtained by such a marginal likelihood:

p(y|X, θ) =
∫

p(y| f , X, θ)p( f |X, θ)d f (35)

The GPR model simply employs a basic function given by H(x) = 1 in this work.

4.2. Frameworks of Uncoupled POD

Projection coefficients are evolving substantially over time and the sample, often
resulting in a problematic GPR. The algebraic decoupling of projection coefficients based
on uncoupled POD increases the reliability of GPR. In addition, the dimensions of variables
with respect to the random field are reduced from Np × Nts to L × Ns. Thus, the prediction
efficiency is greatly improved. In non-intrusive PROMs, the approximate solutions of a
new parameter are determined by evaluating a regression model. For the probabilistic
transient thermal analysis of TPS, the focus is on predicting the temperature response
of different nodes under time variation. In this paper, the surrogate models based on
Gaussian process regression (GPR) for predicting coefficients are used. The regression
model takes the reduced coefficients for non-uniform random heat fields as inputs and
produces the reduced coefficients for temperature responses as outputs. Then, the time-
varying temperature response of the TPS of all samples can be predicted rapidly.

The non-uniform field of heat flux UF can be reduced to coefficient HF by Algorithm 2.
Similarly, the heat response field UT from finite element analysis (FEA) can be simplified
as HT . In UPOD-ROM, a GPR model can be constructed to map the input UPOD reduced
coefficients HF of the random heat flux field with the homologous outputs HT of the
temperature responses field, acting as an approximation π̂UPOD. For a new sample of
non-uniform heat flux, an approximated output UPOD coefficient H∗

T can be obtained by
H∗

T = π̂UPODH∗
F. The input of the surrogate model is the coefficient HF from the random

heat flux field and the output is the coefficient HT from the temperature responses field.
The matrix H∗

T can be reshaped to D∗
T , then combined with spatial bases ΦT and temporal

bases ΨT , and the final approximated solutions at all times steps for new samples can be
determined as T∗ = ΦT D∗

TΨT
T. The UPOD-GPR algorithms are described in Algorithm 3.

It is clear that the proposed methods are decoupled for a non-uniform random field.
The computation of approximation is independent of the high fidelity that will enable fast
solutions of probabilistic analyses by UPOD-GPR. The uncoupled works for space, time,
and samples in the data reduction process by UPOD reduction lead to more efficient and
stable prediction. The specific UPOD-GPR establishment method for probabilistic analysis
of TPS will be introduced in Section 4.3.
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Algorithm 3: UPOD-GPR method of POD for probabilistic analysis of TPS
1: procedure UPOD-GPR(A,T ,UF, UT , , V F, V T)
2: Sampling random heat flux field A (m × t × s) and calculating temperature
response field T (p × t × s).

3: Assembling the augmented snapshots matrix UF, V F of random flux field and
UT ,V T of temperature response field.

4: Solving the reduced coefficients [ΦF, ΨF, ZF, HF] = UPOD(UF, V F, ϵFp, ϵFt)
of random flux field by Algorithm 2.

5: Solving the reduced coefficients [ΦT , ΨT , ZT , HT ] = UPOD(UT , V T , ϵTp, ϵTt)
of temperature responses field by Algorithm 2.

6: Training the mapping relationship π̂UPOD between HF and HT by GPR
model.

7: Determining the coefficient of the random heat flux field for the test samples
[Φ∗

F, Ψ∗
F, Z∗

F, H∗
F] = UPOD(U∗

F, V∗
F, ϵ∗Fp, ϵ∗Ft).

8: Evaluating outputs H∗
T = π̂UPODH∗

F .
9: Computing P∗ by: P∗ = ZT H∗

T .
10: Reshaping matrix P∗ to matrix D∗

T .
11: Determining approximate solutions T∗ = ΦT D∗

TΨT .
12: return T∗.
13: end procedure

4.3. Construction of GPR Models with Input of Uncertain Parameters

In the probabilistic analysis of thermal protection systems (TPSs), conducting sampling
calculations is essential. The conventional Monte Carlo Simulation (MCS) method demands
a substantial number of numerical calculations with a high degree of precision. To enhance
analysis efficiency, a common approach is to leverage existing data for constructing surro-
gate models that can capture the intricate relationship between random inputs and outputs.
In this section, we illustrate the construction of the UPOD-GPR method for probabilistic
analysis of TPS, wherein a field serves as the input.

The strategy for building the UPOD-GPR method considering the field variables is
shown in Figure 6. The procedure can be elaborated as follows:

1. Sample trajectory parameters (initial velocity, flight-path angle. and ballistic coeffi-
cient) using Latin hypercube sampling method.

2. Generate the random heat flux field A(m × t × s) by inputting random trajectory
parameters using numerical integration or software. Then, generate the augmented
matrices UF and V F and obtain the corresponding bases ΦF and ΨF.

3. Calculate the UPOD coefficient matrix HF corresponding to field A. Generate the
random parameter matrix B by sampling which defines the uncertainties of material
properties and geometries.

4. Build the finite element models (FEMs) considering the random parameter matrix
B. Then, treating random heat flux as the thermal load to calculate the temperature
response field T(p × t × s) of interest using FEA.

5. Calculate the spatial bases ΦT and temporal bases ΨT corresponding to field T
(p × t × s). Then, calculate the UPOD coefficient matrix HT .

6. Assemble sample matrix S shown in Equation (36) using matrix B, HF, and HT . Then,
construct the UPOD-GPR method by the sample of matrix S.

7. Resample the trajectory parameters and random parameter matrix B∗. Then, generate
the test random flux field A∗(m × t × s∗) and corresponding coefficient matrix H∗

F.
8. Reconstruct the thermal response field T∗(p × t × s∗) of the test samples using

Algorithm 3 after predicting its coefficient H∗
T .
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Figure 6. Construction strategy of UPOD-GPR method.

The merged sample matrix can be defined as S:

S =


B11 · · · B1np H11

F · · · H1M
F H11

T · · · H1N
T

B21 · · · B2np H21
F · · · H2M

F H21
T · · · H2N

T
...

...
...

...
...

...
...

...
...

Ba1 · · · Banp Ha1
F · · · HaM

F Ha1
T · · · HaN

T

 (36)

where Bij denotes the jth random parameter from material properties and geometry un-

certainties of the ith training sample, Hij
F denotes the jth UPOD coefficient from the ith

heat flux vector, and Hij
T denotes the jth UPOD coefficient from the ith thermal response

vector. The orders of the UPOD coefficients describing the heat flux field and thermal
response field are denoted as M and N, respectively. Each row of matrix S represents a
training sample.

After the construction of the UPOD-GPR model, the temperature response field of
interest taking the random heat flux field as input can be calculated efficiently without
time-consuming FEAs. A large number of samples required for follow-up probability
analysis can be obtained by sampling on this GPR model.

5. Numerical Examples

In this section, two numerical results are presented to validate the effectiveness of
the proposed parameterized ROM. In the first numerical case, a rigid ceramic tile TPS
for hypersonic flight vehicles is analyzed. This TPS consists of ceramic tiles with a high-
temperature emissivity coating, flexible strain isolation pad, and skin. The second one
is the Orion crew vehicle with a typical multi-layer heat insulating construction, which
comprises the thermal protection panel, heat insulation layer, and vehicle structure.

5.1. Rigid Ceramic Tile TPS

The illustration of the rigid ceramic tile TPS is shown in Figure 7. The uncertain mate-
rial properties of ceramic tiles, strain isolation pad, and skin of mean thickness 32.50 mm,
4.20 mm, and 1.60 mm are described in Table 4. The thermal conductivity and specific
heat varying with temperature of each material are listed. The FEM of the ceramic TPS is
shown in Figure 8. The model is discretized using 5625 hexahedral elements and consists of
6656 nodes. The top side of the model is subjected to the random heat flux and other sides
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are subjected to the insulated condition. The initial temperature of the model is assumed to
be 25 ◦C.

Figure 7. Illustration of ceramic tile TPS.

Figure 8. Finite element model of rigid ceramic tile TPS.

The following 10 uncertain parameters in Table 5 which follow a normal distribution
are involved in the probabilistic thermal analysis of the ceramic TPS. Here, based on
previous research, the various parameters that change with temperature are represented in
the form of polynomial fits [22]. The uncertainties provided in the table are defined for the
constant terms of the polynomials and are indicated with an asterisk ∗. The coefficient of
variable is (COV), set as 5.0%.

Due to the relatively uniform spatial distribution of the surface heat flux of a single
thermal protection tile, a stagnation heat flux is used here as a substitute, with specified
spatial distribution characteristics. The stagnation qs heat flux is calculated by the sample
return shown in Figure 1b of nose radius rn = 1 m using Equation (1). The mean value of
trajectory parameters are defined as initial velocity (6.0 km/s), flight-path angle (8.0 deg),
and ballistic coefficient (50 kg/m2). The COV of the trajectory parameters is set as 10%.
The emissivity of the radiation layer is set as 0.85 for all temperatures. In order to simulate
a non-uniform heat flux field, the magnitude of the heat flux applied to each node is
correlated with their coordinates through a nonlinear function, which is{

hx = 1
2∗exp((x+0.1)∗12) + 0.6

hz =
1

5∗exp((z+0.1)∗14) + 0.8
(37)

qnode = qs ∗ hx ∗ hz (38)
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where qnode is the random heat flux actually applied to the FEM nodes. hx and hz are non-
linear equations associated with the x-coordinate and z-coordinate, respectively. Figure 9
shows one load applied to the surface nodes at the moment of maximum stagnation heat
flux. This allows for the application of spatial and temporal varying random heat flux on a
single thermal protection tile.

Table 4. Material properties of rigid ceramic tile TPS.

Ceramic Tile (ρ = 140 kg/m3) Isolation Pad (ρ = 194 kg/m3) Skin (ρ = 2770 kg/m3)

(◦C) (W/m◦C) (J/kg◦C) (◦C) (W/m◦C) (J/kg◦C) (◦C) (W/m◦C) (J/kg◦C)

−17.6 0.0485 628.3 −17.6 0.0308 1306.3 −73.2 163.0 787.0(0.0317)

121.3 0.0571 879.2 38.0 0.0360 - −17.8 - -(0.0390)

260.2 0.0727 1055.1 93.5 0.0415 1339.8 21.0 - -(0.0479)

399.1 0.0883 1151.4 149.1 0.0471 - 26.9 177.0 875.0(0.0563)

538.0 0.1091 1205.8 204.6 0.0524 1402.6 37.8 - -(0.0679)

676.9 0.1437 1239.3 315.7 0.0675 - 93.3 - -(0.0852)

815.7 0.1887 1256.0 426.9 0.0865 - 126.9 186.0 925.0(0.1068)

954.6 0.2423 1268.6 615.7 - 1444.5 148.9 - -(0.1328)

1093.0 0.3116 - - - - 204.4 - -(0.1631)

1260.0 0.4154 - - - - 260.0 - -(0.2008)

1371.0 - - - - - 315.6 - -(0.2406)

1538.0 - - - - - 326.9 - 1042.0(0.3116)

1649.0 - - - - - 371.1 - -(0.3791)

Table 5. Material properties of rigid ceramic tile TPS.

Category Parameter Component Mean STD Lower Limit Upper Limit

Thickness (m)
H1 Ceramic tile 32.500 × 10−3 1.625× 10−3 27.625 × 10−3 37.375 × 10−3

H2 Isolation pad 4.200 × 10−3 2.100× 10−4 3.570 × 10−3 4.830 × 10−3

H3 Skin 1.600 × 10−3 8.000× 10−5 1.360 × 10−3 1.840 × 10−3

Specific heat ∗ (J/kg◦C)
C1 Ceramic tile 661.4 33.070 562.19 760.61
C2 Isolation pad 1310.0 65.50 1113.5 1506.5
C3 Skin 856.4 42.32 727.94 984.86

Thermal conductivity ∗

(W/m◦C)

K1x
Ceramic tile of

in-plane direction 0.04946 2.473× 10−3 0.04204 0.05688

K1y
Ceramic tile of

thickness direction 0.03228 1.614× 10−3 0.02744 0.03712

K2 Isolation pad 0.03226 1.613× 10−3 0.02742 0.03710
K3 Skin 172.2 8.610 146.37 198.03
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Figure 9. Load applied to the surface nodes at the moment of maximum stagnation heat flux.

A deterministic thermal analysis of this FEM is carried without considering any
uncertainties. The re-entry is set to 1200 s. The deterministic heat flux over time loaded
on the surface of ceramic tile as shown in Figure 10a,b shows temperature changes over
time for the top and bottom of the maximum temperature nodes. The overall temperature
distribution of the TPS bearing a deterministic load when the top layer and skin achieve
their maximum is shown in Figure 11.

Latin hypercube sampling is applied to trajectory uncertain parameters (initial velocity
V(initial), flight-path angle γ, and ballistic coefficient β). By utilizing the obtained uncertain
parameters, the thermal flux field A of each sample is computed, incorporating both tem-
poral and coordinate variations, and used as the thermal loads of the finite element model.
Similarly, the parameter matrix B of FEM including material properties and dimensions
is obtained by Latin hypercube sampling. Using the UPOD-GPR method, the random
heat flux field A (375 × 1000 × 200) is involved in thermal analysis. The corresponding
thermal response field T (6656 × 1200 × 200) is obtained by FEA. The model random pa-
rameter matrix B (200 × 10) is taken into account and all parameters are obtained by Latin
hypercube sampling.

The UPOD-GPR for the thermal analysis of a ceramic tile is constructed by 200 training
samples. The prediction model takes as input the UPOD coefficients obtained from the
thermal flux and response field reduction, as well as the model parameter matrix B. The
output of the model is the reconstructed thermal response field T∗ of the finite element
nodes. Figure 12a shows the relative eigenvalues of matrices UT and V T derived from the
thermal response field T corresponding to Algorithm 2. The relative eigenvalues of the
second-level POD process are shown in Figure 12b. According to Equation (13), the first-
and second-level POD truncation order can be set to be 5, uniformly. Further, the accuracy
of the UPOD-GPR method for the probabilistic analysis of the TPS is illustrated by the
averaged absolute error and the mean square relative error. The averaged absolute error
ea is defined as the sample-averaged difference between the high-fidelity solution TFEM
of the FEM full-order model obtained by the ANSYS software 18.0 and the corresponding
solution TUPOD of the prediction model, given by:

ea(t) = ∑|TPOD(t) − TFEM(t)|/s (39)

where s is the test sample number of the full-order model. To quantify the percentage error
of the UPOD-GPR solution, the mean square relative error er is defined as

er(t) =
∥TPOD(t)− TFEM(t)∥2

∥TFEM(t)∥2
(40)

Expressed in this way, the mean square relative error can be understood as the 2 norm of
the vector representing percentage errors for nodes at each time point.



Aerospace 2024, 11, 269 21 of 34

(a)Deterministic heat flux

(b)Temperature variation in top and bottom layer

Figure 10. The input and output of deterministic thermal analysis of ceramic tile TPS.
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(a)Overall temperature distribution at 67 s

(b)Overall temperature distribution at 1000 s

Figure 11. The overall temperature distribution when (a) ceramic tile layer reaches its maximum and
(b) skin layer reaches its maximum.
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(a)

(b)

Figure 12. Relative eigenvalue sizes of (a) matrices UT and V T , and (b) second-level POD process.

Figure 13 shows the averaged absolute error ea(67) and ea(1000) of all nodes at 67 s
and 1000 s for 200 test samples which has been obtained by the UPOD-GPR method. It
can be observed that, when the top layer reaches its maximum temperature, the averaged
relative error ea(67) for all nodes reaches at most 20 ◦C. Similarly, when the bottom layer
reaches its maximum value, the error ea(1000) is at most 2 ◦C. For the surface and skin of
the ceramic tile, the absolute error in the temperature of each node, relative to the maximum,
is acceptable.
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(a)The averaged absolute error of all nodes at 67 s

(b)The averaged absolute error of all nodes at 1000 s

Figure 13. The averaged absolute error distribution of all nodes at 67 s and 1000 s.

Taking into account instances with large temperature gradients, we focus on the
temperature response between 41 and 50 s for the top nodes, and 601 and 610 s for the
bottom nodes. Figure 14 shows the mean square relative error for the top and bottom nodes
at ten moments with significant temperature gradients, considering 200 test samples. It
can be observed that the average relative error for the top nodes is less than 4% and, for
the top nodes, it is even less than 3%. The error for each time-step is shown in Table 6. For
intervals with significant temperature variations, this prediction method still maintains a
relatively high level of accuracy. Thus, the proposed method is effective and accurate in the
calculation of a typical multi-layer TPS.
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(a)Mean square relative error of top nodes at 41–50 s

(b)Mean square relative error of bottom nodes at 601–610 s

Figure 14. Mean square relative error of top and bottom nodes at 41–50 s and 601–610 s of large
temperature gradient.

Table 6. Mean square relative error of top and bottom nodes of large temperature gradient.

top nodes (s) 41 42 43 44 45 46 47 48 49 50

er(t)× 100% 1.59 1.74 1.95 2.19 2.44 2.68 2.90 3.12 3.32 3.50

bottom nodes (s) 601 602 603 604 605 606 607 608 609 610

er(t)× 100% 2.62 2.61 2.59 2.58 2.56 2.54 2.53 2.52 2.50 2.49

5.2. Typical Re-Entry Capsule Model

Using the methods introduced in this paper, the Orion crew vehicle with a typical
multi-layer insulation structure is analyzed as the second application example. The three-
dimensional structured FEM is shown in Figure 15. The finite model is generated using
57,600 linear hexahedral elements and consists of 70,167 nodes. There are four layers in the
researched structure. The first layer is thermal protection panel, the second and third layer
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are heat insulation layers, are the last layer is the vehicle structure. The input parameters
with uncertainties are specified in Table 7. Similarly, the uncertainties of specific heat and
thermal conductivity in the table are defined by the constant terms of the polynomials
and are indicated with an asterisk ∗. The diagram of the vehicle cross-section is shown in
Figure 16.

Figure 15. Finite element model of Orion crew vehicle.

Table 7. Model properties of thermal structure.

Parameter Component Mean Value Standard Deviation

Thickness h (mm) Thermal protection panel 4 0.2
First insulation layer 25 1.25

Second insulation layer 40 2.00
Vehicle structure 4 0.20

Specific heat ∗ (J/kg◦C) Thermal protection panel 1000.0 50
First insulation layer 900.3 45.02

Second insulation layer 990.0 49.50
Vehicle structure 640.0 32.00

Thermal conductivity ∗

(W/m◦C)
Thermal protection panel 60.0 3

First insulation layer 0.088 0.0044
Second insulation layer 0.072 0.0036

Vehicle structure 177.0 8.85

Other parameters Component Value -

Density (kg/m3) Thermal protection panel 2300 -
First insulation layer 400 -

Second insulation layer 170 -
Vehicle structure 2770 -

Space-temp (◦C) Space radiation point −60 -
Initial-temp (◦C) Structure 25 -

Emissivity Radiation layer 0.85 -
Shape factor Radiation surface 1 -
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Figure 16. Illustration of cross-section and thermal structure.

The applied heat flux is calculated by FOSTRAD, mentioned in Section 2.2. Similarly,
the sample return trajectory described in Figure 1 is used to describe the validity of the
reduced-order algorithm. The mean values for the initial velocity, flight-path angle, and
ballistic coefficient are set to 11.0 m/s, −8.2 degrees, and 287.6560, respectively, with
COV specified at 10% for the initial velocity and flight-path angle, and 5% for the ballistic
coefficient. The trajectory parameters are imported to obtain the heat flux data of each
surface panel for every transient state. The gained heat flux field is used as the input load
to compute the probabilistic thermal response of the Orion crew vehicle model. Figure 17
shows the surface heat flux distribution applied to the Orion model of one sample at a
specific moment.

Figure 17. Thermal load applied to the surface nodes at the moment of a specific sample.

Similarly, a deterministic thermal analysis of this FEM is carried without considering
any uncertainties. The maximum deterministic heat flux over time loaded on the surface
of the finite model is shown in Figure 18a,b, which show temperature changes over time
for the radiation layer and second heat insulation layer of the maximum temperature
nodes. For ease of calculation, cross-sectional data are uniformly used for analysis. The
cross-section temperature distribution of the TPS bearing a deterministic load when the top
layer and insulation layer achieve their maximum is shown in Figure 19.
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(a)Deterministic heat flux

(b)Temperature variation of top and middle layer

Figure 18. The input and output of deterministic thermal analysis of Orion crew.

Considering the UPOD-GPR method, the random heat flux field A (280 × 150 × 200)
is involved in thermal analysis. The corresponding thermal response field T (5001 ×
1000 × 200) is obtained by FEA. The model random parameter field B (200 × 12) from Latin
hypercube sampling is be taken into account. The UPOD-GPR model is developed for the
thermal analysis of a finite model, utilizing 200 training samples. The predictive model
takes as input the second-order POD coefficients derived from the reduction in the thermal
flux and response fields, in addition to the model parameter matrix. The model’s output is
the reconstructed thermal response field of the finite element nodes. According to Figure 20,
the first-level POD truncation orders, corresponding to matrices UT and V T , can be set to 5
and, for the second-level POD, the order can be set to 6.
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(a)Temperature distribution at 47 s

(b)Temperature distribution at 1000 s

Figure 19. The cross-section temperature distribution when (a) radiation layer reach its maximum
and (b) second insulation layer reach its maximum.
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(a)

(b)

Figure 20. Relative eigenvalue sizes of (a) matrices UT and V T , and (b) second-level POD process.

Figure 21 illustrates the mean absolute error of all nodes at 47 s and 1000 s, computed
for 200 test samples using the UPOD-GPR method. It is evident that the absolute tempera-
ture error for each node, relative to the maximum value, falls within an acceptable range.
This example further demonstrates that, for real thermal structures, this method continues
to maintain its effectiveness and high accuracy.
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(a)The averaged absolute error of all nodes at 47 s

(b)The averaged absolute error of all nodes at 1000 s

Figure 21. The mean absolute error distribution of all nodes at 47 s and 1000 s.

6. Conclusions

In this paper, the probabilistic analysis method of TPS considering uncertainties in
thermal loads is proposed. By using the UPOD-GPR method, the random field of heat flux
can be described by a low-dimensional coefficient matrix. After generating enough samples
by FEA, a high-accuracy prediction model considering the random heat flux field as input
can be constructed to describe the complex relationship between various random variables
and the temperature response field. Based on the theoretical and numerical methods, the
rapid solving framework for probabilistic design and analysis is finally formed and is



Aerospace 2024, 11, 269 32 of 34

validated via two example of typical multi-layer TPSs and thermal structure. Based on data
obtained in this study, some conclusions can be drawn as follows:

1. The UPOD method is useful to describing the random field of heat flux by a low-
dimensional coefficient matrix. The whole random field can be well represented by
using only the first few orders of feature information, which makes it possible to
establish the subsequent surrogate model.

2. Using the GPR model with a random field as input for predicting thermal responses
results in increased accuracy. The UPOD-GPR construction approach based on a
random field exhibits practicality and feasibility, significantly reducing the computa-
tional complexity in the probabilistic characteristic analysis of TPSs while maintaining
high accuracy.

3. This method can accurately and rapidly predict the temperature responses of TPSs
and thermal structures throughout their entire operational duration when provided
with input heat flux field and structural parameters. It provides a robust reference for
the design process.
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