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Abstract: In aerodynamics, characterizing the aerodynamic behavior of aircraft typically requires a
large number of observation data points. Real experiments can generate thousands of data points with
suitable accuracy, but they are time-consuming and resource-intensive. Consequently, conducting
real experiments at new input configurations might be impractical. To address this challenge,
data-driven surrogate models have emerged as a cost-effective and time-efficient alternative. They
provide simplified mathematical representations that approximate the output of interest. Models
based on Gaussian Processes (GPs) have gained popularity in aerodynamics due to their ability to
provide accurate predictions and quantify uncertainty while maintaining tractable execution times.
To handle large datasets, sparse approximations of GPs have been further investigated to reduce
the computational complexity of exact inference. In this paper, we revisit and adapt two classic
sparse methods for GPs to address the specific requirements frequently encountered in aerodynamic
applications. We compare different strategies for choosing the inducing inputs, which significantly
impact the complexity reduction. We formally integrate our implementations into the open-source
Python toolbox SMT, enabling the use of sparse methods across the GP regression pipeline. We
demonstrate the performance of our Sparse GP (SGP) developments in a comprehensive 1D analytic
example as well as in a real wind tunnel application with thousands of training data points.

Keywords: surrogate modeling; sparse methods; variational inference; wind tunnel test

1. Introduction

Gathering accurate aerodynamic data to characterize the behavior of an aircraft often
demands a substantial investment of time and resources. On the one hand, it calls upon
aerodynamic simulations, which involve the solution of large discretized differential equa-
tions through High-Performance Computing (HPC) tools [1]. However, the use of HPC
becomes expensive if a large number of simulations are required to build a comprehensive
database. Despite significant advances in the past decades driven by increased computing
power, simulation accuracy is still limited by issues such as turbulence modeling and
discretization errors [2]. On the other hand, aerodynamic development involves real exper-
iments, sometimes in flight but most often in Wind Tunnels (WTs). These experiments are
efficient in producing thousands of observation data points with suitable accuracy [3], but
are expensive to set up and come along with practical limitations. Therefore, conducting
experiments at new input configurations might be infeasible. In this context, appropriate
methods are needed to consider large WT datasets to leverage the information they contain
fully for inference purposes.
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Data-driven surrogate models offer a cost-effective and time-efficient alternative by cre-
ating a simplified mathematical representation that approximates the output of a computer
code [4–6]. They are also valuable for approximating experimental outputs, provided they
can handle random measurement errors that introduce noise into the output [7]. GPs have
gained popularity in various engineering fields for constructing surrogate models, offering
a flexible and probabilistic framework for modeling complex relationships in data [1,5,8].
Their ability to capture non-linear and non-parametric behavior makes them well-suited to
accurately modeling aerodynamic phenomena [7,9–12]. Furthermore, GP models not only
provide accurate predictions but also allow for quantifying uncertainty [13].

Despite the versatility of GPs for learning complex data, their computational com-
plexity, which scales as O(N3) with N being the number of training points, hinders their
application to large datasets. This complexity arises from the inversion of an N × N
covariance matrix. Furthermore, the memory cost of storing this matrix is O(N2). To
address these limitations, sparse approximations of GPs have emerged as efficient alterna-
tives [14–18]. These approaches may involve approximating the covariance matrix using
a low-rank representation or approximating the posterior distribution via variational in-
ference. Both frameworks enable scaling GPs to large datasets while preserving accurate
predictions. A more detailed discussion on the computational complexity and storage of
the sparse approximations used in this paper is provided in Section 2.3.

In this paper, we focus on strategies such as sparse approximation and scalable in-
ference algorithms to mitigate computational costs and streamline the simulation time in
the context of large aerodynamic databases without compromising prediction accuracy.
Different strategies used to select the inducing inputs are proposed and compared in terms
of computation time and accuracy. Our framework is assessed on a 1D analytic exam-
ple and a real wind tunnel application with thousands of training data points. Through
our comprehensive analysis, we aim to provide a holistic understanding of the trade-offs
involved, allowing practitioners to make informed decisions based on their specific com-
putational and accuracy requirements. Finally, we seamlessly integrate our open-source
Python modules into the SMT toolbox [19], a versatile framework widely used in the
aerodynamic field. This integration is a practical demonstration of the applicability of our
framework in real-world scenarios.

This paper is organized as follows. Section 2 focuses on the definition of GPs and Sparse
GPs (SGPs). Section 3 describes the features available in SMT on SGPs. Sections 4 and 5
present numerical illustrations of our implementations on a comprehensive analytical
example as well as on a real-world WT application. Finally, further discussions, conclusions,
and potential future work are summarized in Sections 6 and 7.

2. Sparse Gaussian Processes
2.1. Gaussian Processes Regression

A GP is a stochastic process, i.e., a collection of random variables (r.v’s), where any
finite collection of those variables has a joint Gaussian distribution [13]. By convention, a
GP {Y(x); x ∈ Rd} is denoted as Y ∼ GP(m, k), where m(x) = E(Y(x)) is the mean func-
tion and k(x, x′) = cov(Y(x), Y(x′)) = E([Y(x)− m(x)][Y(x′)− m(x′)]) is the covariance
function (or kernel). The operator E(·) denotes the expectation of r.v’s [13]. In practice, as
the focus is on centered processes (i.e., m(·) = 0), statistical patterns within the data are
captured by the kernel k(x, x′) = E(Y(x)Y(x′)). The kernel evaluation k(x, x′) quantifies
the correlation between the r.v’s Y(x) and Y(x′). Independence between Y(x) and Y(x′)
implies that k(x, x′) = 0, while dependence implies non-zero values. For instance, a valid
covariance function in dimension d can be obtained by the tensorization of the squared
exponential (SE) kernel:

k(x, x′) = σ2
d

∏
i=1

k(xi, x′i) = σ2
d

∏
i=1

exp

(
−
(xi − x′i)

2

2ℓ2
i

)
, (1)
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where σ2 ∈ R+ is a variance parameter, and ℓi ∈ R+ for i = 1, . . . , d, are the length-scale
parameters. While σ2 can be seen as a scale parameter of the output, ℓi can be viewed as
a scale parameter for the i-th input variable. For the kernel in Equation (1), observe that
if x = x′, then cov(Y(x), Y(x′)) := k(x, x′) = σ2, which is the maximal possible value that
can be obtained. Otherwise, for distant inputs x and x′, k(x, x′) becomes smaller. We refer
to [13] for other examples of valid kernels.

In GP regression, we assume that the target function f : Rd → R can be modeled as a
realization of a (centered) GP Y. Indeed, the GP defines a probability distribution (called
the prior) over possible functions that fit a set of observations (X, y), where y = (yi)

N
i=1

are noise-free observations of f at inputs X = (xi)
N
i=1, where N is the number of sampling

points (called training points). This is achieved by the computation of the distribution of
the process f (x) conditionally to the interpolation conditions f (x) = y. This conditional
process, denoted here as f (x)|y, X, is also GP-distributed [13], i.e., f |y, X ∼ GP(mc, kc).
The conditional mean mc(·) and the conditional variance kc(·, ·) have explicit expressions
(see, e.g., [13]). While mc(x) is used as a point estimation of f (x), the conditional variance
kc(x, x) is used as the expected squared error of the estimate.

Here, we are interested in the case where y = (yi)
N
i=1 are noisy observations of f

at inputs X. In this case, the regression model is given by y(x) = f (x) + ε, where ε ∼
N (0, η2) is an independent Gaussian noise with noise variance η2 ∈ R+. This formulation
enables establishing the following distributions for the vectors f = [ f (x1), . . . , f (xN)]

⊤ and
y = [y(x1), . . . , y(xN)]

⊤:

f | X ∼ N (0, KNN), y | f, X ∼ N (f, η2IN), (2)

where KNN = k(X, X) denotes the N × N matrix of covariance between all pairs of training
points, and IN is the identity matrix of size N. Then, due to the Gaussian properties [13],
the conditional distribution of f∗ for a new set of N∗ inputs X∗, conditionally to the dataset
(X, y), is also Gaussian-distributed:

f∗ | y, X, X∗ ∼ N
(

K⊤
∗

[
KNN + η2IN

]−1
y, K∗∗ − K⊤

∗

[
KNN + η2IN

]−1
K∗

)
, (3)

where K∗ = k(X, X∗) and K∗∗ = k(X∗, X∗). The distribution in Equation (3) is called the
posterior distribution and is used for regression purposes in the same manner as explained
for the noise-free case.

2.2. Covariance Parameter Estimation

The accuracy of predictions hinges on how well the GP fits the regression model
y. Therefore, the choice of the kernel and its parameters is key. In practice, the kernel
k is generally assumed to belong to a parametric set of covariance functions (see, e.g.,
Equation (1)) with parameters Θ ⊂ Rp, with p being the number of kernel parameters.
Then, a better fitting of the GP relies on the proper estimation of a set of parameters θ ∈ Θ,
for instance, for the kernel in Equation (1), and for the noisy case, θ = (σ2, ℓ1, . . . , ℓd, η2).
This step is typically achieved by minimizing the Negative Marginal Log Likelihood
NMLL := log pθ(y), which is given by the negative log of the Gaussian probability density
distribution (pdf):

NMLL =
N
2

log(2π) +
1
2

log
(

det
(

KNN + η2IN

))
+

1
2

y⊤
(

KNN + η2IN

)−1
y. (4)

By minimizing the NMLL, we are looking for a model (i.e., the set of parameters θ)
that maximizes the pdf pθ(y). This leads to a better fit of the data. It is worth clarifying that
considering the kernel in Equation (1), the covariance matrix KNN is then parameterized
by (σ2, ℓ1, . . . , ℓd). This dependence is not explicitly indicated in Equation (4), nor in
subsequent formulas, for the sake of simplicity in notation. Note from Equations (3) and (4)
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that the complexity of the GP relies on the inversion (O(N3)) and storage (O(N2)) of the
covariance matrix KNN . This computation poses significant challenges, particularly when
dealing with large datasets. To mitigate this drawback, sparse approximations of GPs have
been introduced in prior studies such as [14–17].

2.3. Sparse Approximations of Gaussian Processes

The key idea of sparse approaches is to select a set of inputs Z = (zi)
M
i=1 known as

inducing inputs, and its corresponding (noisy) output set u = (ui)
M
i=1 known as inducing

variables. The introduction of the inducing points allows the approximation of the exact
GP by exploiting the structure of the covariance matrix. Here, we focus on the Fully Inde-
pendent Training Conditional (FITC) [15] and Variational Free Energy (VFE) [16] methods.

2.3.1. Fully Independent Training Conditional (FITC)

The FITC method relies on a Nyström (low-rank) approximation of the kernel matrix
KNN , which introduces the following modified kernel matrix:

QNN = K⊤
MNK−1

MMKMN ,

where KMM = k(Z, Z′) is the covariance matrix between all pairs of inducing inputs Z, Z′,
and KMN = k(Z, X) is the covariance matrix between all pairs of inputs and inducing
inputs. In the FITC, an additional term is considered, seeking to correct the diagonal
of the covariance matrix. For noisy observations, the covariance matrix KNN + η2IN is
approximated by the following:

KFITC = QNN + diag[KNN − QNN ] + η2IN . (5)

The kernel parameters of the approximated GP can be estimated by minimizing the
NMLL in Equation (4). The inversion of Equation (5) can be performed more efficiently
through the application of the matrix inversion lemma ([13], Appendix A.1), resulting
in a significant gain in terms of the computational cost, from O(N3) to O(NM2). While
the optimization of the new approximated NMLL is tractable, it may not consistently
approximate the exact GP. This lack of reliability stems from the absence of any guarantee
that the distribution of the approximated GP closely matches that of the exact one.

2.3.2. Variational Free Energy (VFE)

The VFE method focuses on minimizing the Kullback–Leibler (KL) divergence between
the exact GP posterior p(f, u | y) and a variational distribution q(f, u). The minimization of
the KL divergence is equivalent to maximizing the Evidence Lower Bound (ELBO) [20]:

ELBO ≜
∫ ∫

log
(

p(f, u, y)
q(f, u)

)
q(f, u) df du = Ef,u∼q(f,u)

[
log
(

p(f, u, y)
q(f, u)

)]
,

where Ef,u∼q(f,u) is the expectation of (f, u) with respect to q(f, u). It has been shown
in [16] that an optimal distribution for q(u) can be achieved, and that the NMLL for
hyperparameter learning is given by the following:

NMLLVFE =
N
2

log(2π) +
1
2

log(|KVFE|) +
1
2

y⊤K−1
VFEy +

1
2η2 tr(KNN − QNN),

where KVFE = QNN + η2IN . Unlike FITC, the diagonal correcting term is no longer needed.
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Independently of the sparse approach, the choice of M must seek a trade-off between
computational complexity and prediction accuracy. While SGP implementations offer faster
computations for M ≪ N compared to exact GP inference, the accuracy of predictions
tends to be lower [17,18]. In practice, M is often fixed to be large enough to ensure accurate
predictions while maintaining tractable CPU times. However, the specific value of M may
vary depending on the specifications of the machine used for the experimental setup.

2.3.3. Comparison and Contrast of the Two Methods

An analysis of both methods was performed by [21]. Their experiments showed
that the FITC method tends to overestimate the marginal likelihood and underestimate
the noise variance parameter, often being incapable of recovering the true posterior. By
contrast, the VFE method seems to overestimate the noise variance but correctly identifies
the true posterior. The main advantage of the VFE is that the NMLLVFE is a true bound on
the NMLL. However, as illustrated in Sections 4 and 5, the performance of each method
depends on the target function and on the choices made for initialization and optimization.

3. Surrogate Modeling Toolbox (SMT)

SMT stands as a robust tool for surrogate modeling, optimization, and sensitivity anal-
ysis, offering a comprehensive set of features tailored for constructing data-driven models
and leveraging them in various engineering applications [19,22]. With a user-friendly
interface and online documentation, SMT aims to streamline the application of surrogate
models in practical scenarios, making it accessible to practitioners. In addition, new surro-
gate models can be developed and integrated. SMT comprises three main sub-modules:
sampling_methods, surrogate_models and problems, each dedicated to implementing a
range of sampling techniques, surrogate modeling techniques, and benchmarking func-
tions, respectively. Each sub-module has a well-defined API that has to be defined for a
given algorithm by a specific sub-class. In the case of sparse GPs, the SGP class inherits from
the GP-based surrogate class (named KrgBased, from Kriging), while taking into account
both the FITC and VFE inference. We refer to Appendix A.1 for further details regarding
the numerical implementations of these methods.

The implementation of the FITC and VFE methods in SMT 2.3 draws inspiration from
existing ones in the GPy [23] and GPflow [24] toolboxes, particularly regarding the matrix
computation techniques used to achieve efficient implementations. However, it should
be pointed out that, concerning the model training process, optimization of the (zi)

M
i=1

locations of the inducing inputs is still unavailable, unlike in other libraries. In addition,
sparse methods in SMT do not account for a mean function, i.e., the trend of the SGP is equal
to zero. These choices are not necessarily restrictive, as a smart initialization of the inducing
inputs typically yields satisfactory results (see the experiments in Sections 4 and 5). Figure 1
illustrates the design of SMT 2.3 relevant to SGPs. After setting the training data (xi, yi)

N
i=1

(a common feature across all surrogates), the set of inducing inputs (zi)
M
i=1 required by

the sparse algorithms can be randomly picked from the training dataset or specified
using the set_inducing_points() method. The train() method from the KrgBased class
maximizes the NMLL, provided for the SGP class, and returns the optimal hyperparameters
using the prediction features: _predict_values() and _predict_variances().
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SMT
+ problems
+ sampling_methods
+ surrogate_models

surrogate_models::
SurrogateModel

+ set_training_values()
+ train()
+ predict_values()
+ predict_variances()
# _train()
# _predict_values()
# _predict_variances()

problems::
Problem
+ __call__()
# _evaluate()

sampling_methods::
SamplingMethod

+ __call__()
# _compute()

surrogate_models::
KrgBased

# _train()
# _reduced_likelihood()

surrogate_models::SGP

+ set_inducing_values()
# _reduced_likelihood()
# _predict_values()
# _predict_variances()

Figure 1. SGP in the SMT 2.3 architecture.

4. Numerical Illustrations

Here, we evaluate the performance of the FITC and VFE methods when applied to an
analytical test case, providing a comparative analysis of the results. We also discuss the
available strategies to improve the results and reduce the computation time associated with
the optimization step. Source codes of SMT 2.3 are available in the Github repository: https:
//github.com/SMTorg/smt (accessed on 10 January 2024 ). The numerical illustrations
presented in this section are publicly available in the Github repository: https://github.
com/SMTorg/smt-sgp-paper (accessed on 10 January 2024). All results were obtained
using an Dell Intel® i7 CPU 10850H @ 2.70 GHz core and 32 GB of memory.

4.1. Analytical Example Database

We considered the 1D benchmark function suggested by the GPflow toolbox [24]
(source: https://gpflow.readthedocs.io/en/v1.5.1-docs/notebooks/advanced/gps_for_big_
data.html, accessed on 10 January 2024):

f (x) = sin(3πx) + 0.3 cos(9πx) + 0.5 sin(7πx), (6)

for x ∈ [−1, 1]. We generated the training set of inputs X = (xi)
N
i=1, called the Design Of

Experiments (DoE), by sampling N = 200 values from a uniform distribution U(−1, 1). We
then evaluated f at inputs X, and introduced Gaussian noise with the variance η2 = 10−2.
Figure 2 illustrates the 1D function and the generated training dataset.

https://github.com/SMTorg/smt
https://github.com/SMTorg/smt
https://github.com/SMTorg/smt-sgp-paper
https://github.com/SMTorg/smt-sgp-paper
https://gpflow.readthedocs.io/en/v1.5.1-docs/notebooks/advanced/gps_for_big_data.html
https://gpflow.readthedocs.io/en/v1.5.1-docs/notebooks/advanced/gps_for_big_data.html
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Figure 2. 1D analytical example (orange solid line) with 200 noisy training data points (blue points).
The M = 30 randomly selected inducing inputs are represented by red bars along the x-axis.

4.2. SGP Using a Random Selection of Inducing Inputs

Using the noisy training data generated in Section 4.1, we proceeded to define the SGP
model. We first needed to define the inducing inputs Z = (zi)

M
i=1. By default, if they are

not specified before proceeding to the model-training stage, SMT randomly selects them
from the dataset, as illustrated in Figure 2.

Figure 3 shows the predictions obtained by SGPs using both the FITC and VFE, and
by an exact GP. Both models have been defined with the default parameters of the SMT
toolbox (square exponential kernel, predefined initial values, and bounds for the kernel
parameters (σ2, θ) and the noise variance η2), and trained via maximum likelihood. The
SGPs were built with M = 30 random inducing points. From Figure 3, we can observe
that while the three models provided similar predictions, the confidence intervals for the
SGPs tended to be overestimated. This phenomenon is well known in the SGP literature
and is a consequence of the sparse approximation when considering M ≪ N [17,18]. The
predictive confidence intervals of the SGPs became thinner as M increased, and converged
to those of the exact GP when the inducing inputs Z exactly coincided with the training
inputs X.

Table 1 presents a comparison of the optimal values of the GP parameters (σ2, θ, η) and
the likelihood, training time, and RMSE errors for the three GP-based models discussed in
Figure 3. The RMSE criterion is computed by the following:

RMSE =

√√√√ Nt

∑
i=1

(y(xi)− ŷ(xi))
2

Nt
,

where Nt is the number of data points, i = 1, . . . , Nt, y(xi) is the true value at point xi, and
ŷ(xi) is the associated predicted value. The RMSE is computed on the training and test
sets. For the test set, we considered Nt = 103 random input values. The results in Table 1
evidence that the SGPs were twice as fast as the exact GP and that they led to RMSE values
of the same order, endorsing the practical advantage of the former models.

Table 1. Comparison of the optimal GP parameters, training time, likelihood, and RMSE for the
GP-based models in Figure 3.

SGP-FITC SGP-VFE Exact GP

Optimal σ2 4.78 0.81 0.88
Optimal θ 37.04 44.80 20.96
Optimal η2 (noise) 0.010 0.012 0.011
Training time [s] 0.19 0.18 0.42
Optimal likelihood 280.11 266.99 303.90
RMSE-training data 0.0962 0.0969 0.0945
RMSE-test data 0.1105 0.1092 0.1050
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Figure 3. Predictions for the example in Figure 2 obtained by SGPs using both the FITC (top) and
VFE (center), and by an exact GP (bottom). Each panel shows: the target function (orange solid line),
the training data (blue points), the predictive mean (black solid line), and 99% confidence intervals
(dashed green lines) led by the models. For the SGPs, the inducing inputs are shown along the x-axis.

To further illustrate the computational benefit of SGPs in inference purposes, Figure 4
shows the training time for the exact GP and SGP-FITC as a function of the number of
training points N for our analytical example. The trend of both profiles confirms that the
inference for the SGP-FITC scales linearly as O(NM), whereas that of the exact GP scales
quadratically as O(N2). Moreover, it is observed that the computational gains achieved
with the SGP become more substantial for datasets containing more than 103 training points.
This computational advantage will be key in the aerodynamic application discussed in
Section 5, where the dataset comprises tens of thousands of data points.
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Figure 4. Training time curves for the exact GP (red) and SGP-FITC (blue) inference as a function
of the number of training points N. The theoretical and empirical profiles are shown in solid and
dashed lines, respectively. For the SGP-FITC, M has been fixed to 10. To recall, inference for the SGP
scales linearly as O(NM), whereas that of the exact GP scales quadratically as O(N2).

4.3. k-Means Clustering for the Selection of Inducing Inputs

As previously mentioned in Section 3, the current implementation of SGPs within
SMT does not optimize the location of the inducing inputs Z. In SMT, these inputs are
either randomly selected from the training set or directly defined by the user. However,
this choice can significantly impact the inference accuracy, as the inducing inputs can be
considered as “representatives” of the entire training set.

An appropriate selection of inducing inputs would ideally balance the coverage of
the data points with a local focus on areas with high variations, such as discontinuities or
humps. A random selection among the training points may lead to poor results if they are
scarce in a certain region of the input space (see Figure A1). To mitigate this issue, clustering
methods such as k-means have been considered to initialize the inducing inputs [25].

As discussed in Section 2.3, the number of inducing inputs M (i.e., clusters) is often
known due to the limitations of the machine used for the experimental setup. Therefore,
the consideration of more advanced but resource-demanding non-parametric clustering
methods is not necessary in practice. For instance, the experiments in this section have
also been conducted using the DBSCAN approach in [26]; however, the results were
outperformed by k-means in terms of the RMSE. In particular, DBSCAN has focused the
selection of inducing inputs mainly in regions with high concentrations of data. This
resulted in uncovered high-variability regions with few data points, for instance around
x = −0.6,−0.2, 0.65, consequently leading to a decrease in the accuracy of the predictions.
Therefore, in the following, we have decided to focus on k-means due to its simplicity
and efficiency.

Here, to obtain a smart positioning of the inducing points without requiring an
optimization step, we propose to proceed as follows:

1. Perform k-means clustering on all input–output pairs of the observations (X, y) to
partition the training set into M clusters (Si)

N
i=1, each one being characterized by its

centroid µi = (x̃i, ỹi).
2. Define the inducing inputs as the x-component of the centroids µi, i.e., Z = (x̃i)

M
i=1.

Contrarily to the random scheme, setting Z by applying k-means clustering on input–
output data pairs promotes the allocation of inducing inputs while taking into account
the distribution of data points (see, e.g., Figure 5). Note, that unlike the choice by random
permutations, the induced inputs defined by the k-means-based algorithm no longer need
to be existing points in the dataset.

As shown in Figure 3, the random approach leads to an uncovered area around
x = 0.25, which explains the high predicted variance of the model in this region. Figure 5
shows that the inducing inputs are placed taking into account the distribution of input
variables x while concentrating points in regions with a high variability of the output
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(e.g., around x = −0.5,−0.25, 0.5). Unlike the random scheme, k-means has also added
inducing points around x = 0.25. From Figure 6, it can be noted that the SGP with the
k-means-configuration of inducing points leads to more accurate confidence intervals, in
particular around x = 0.25.

Figure 5. Location of the inducing points for the analytical example in Figure 2 considering the
random (red bars) and k-means-based (black crosses) selection schemes.

Figure 6. Prediction obtained by SGP-FITC with M = 30 inducing points chosen via k-means. The
panel description is as in Figure 3.

The results in Table 2 show that, compared to Table 1, the k-means-based scheme
leads to slight improvements in both the likelihood and RMSE. These improvements are
more noteworthy, as the random scheme fails to promote coverage of data points. An
example where the random scheme can severely degrade the SGP accuracy is provided in
Appendix A.2.1.

Table 2. Comparison of the optimal GP parameters, training time, likelihood, and RMSE for the
SGP-based models using the k-means configuration of inducing points from Figure 6 (M = 30).

SGP-FITC SGP-VFE Exact GP

Optimal σ2 0.70 0.80 0.88
Optimal θ 56.84 54.42 20.96
Optimal η2 (noise) 0.010 0.013 0.011
Training time [s] 0.19 0.18 0.42
Optimal likelihood 282.99 276.63 303.90
RMSE-training data 0.0966 0.0964 0.0945
RMSE-test data 0.1153 0.1115 0.1050
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5. Wind Tunnel Application
5.1. Database Description

The Wind Tunnel (WT) database used in this study is derived from the NASA Common
Reference Model (CRM) [27]. Experimental testing has been conducted at ONERA’s WT
department encompassing two ONERA WT facilities: F1-WT, in Fauga, which focuses
on high Reynolds values and Mach numbers ranging from 0.05 to 0.36 [28]; and S1-WT,
in Modane, which focuses on transonic speeds [29]. The CRM shape was used to build
two Large Reference Models (LRM): the first one for S1-WT with a wing span of 3.5 m
(scale 1/16.835) and the second one for F1-WT with a wing span of 3 m (scale 1/19.5).
Aeroelastic deformations were considered in the design to produce a shape under load
that is comparable to previous CRM tests in NTF [30] and ETW [31]. The WT models were
equipped with hundreds of pressure taps, but for the present study only the aerodynamic
forces measured by internal balances are considered. The measurements were corrected
from the effect of the WT walls [32], and they were also corrected from the support effect,
using CFD for the S1 database [33], and by performing a dummy sting test for the F1
database. Additional information can be found in reference [7], where this database has
been previously introduced.

The WT database is composed of 52,227 experiment executions (samples) correspond-
ing to a configuration of the model including the Body, Wing, and Vertical tail plane (BWV
configuration). It consists of:

• Four inputs corresponding to the Mach number (Mach), the Reynolds number (Re),
the angle of attack (α [deg]), and the sideslip angle (β [deg]). Pairwise histograms for
those input parameters can be found in [7].

• Three outputs describing the drag coefficient (Cx), the lift coefficient (Cz), and the pitch
moment coefficient (CM).

The database has been partially used to some extent in a multi-fidelity GP context by [7].
However, owing to the computational complexity inherent in the exact GP framework
considered, the models were limited to a few thousand training samples, encompassing
both low- and high-fidelity databases.

It is noteworthy to note that for datasets with heterogeneous input bounds, normal-
izing the data can make the clustering process less sensitive to convergence issues due to
differences in orders of magnitude of input–output pairs. For instance, in the aerodynamic
application, the Reynolds number is in the order of tens of thousands, while the angle of
attack is in radians. A simple solution to this drawback is to use a min–max normaliza-
tion of the inputs according to each dimension. This strategy of applying k-means with
normalized data will be denoted in the following as k-means-n.

In our experiments, 90% of the database was used as the training set (47,004 points)
and the remaining 10% as the test set (5223 points). Figure 7 shows the histograms of the
training and test sets over the entire design space.

For the choice of the inducing inputs, we consider the two strategies discussed in
Section 4: random and k-means. Figure 8 shows the design of M = 50 inducing inputs for
the output Cz. It is observed that some areas (e.g., Mach > 0.8 as a function of α in the first
column) are better covered with k-means or k-means-n compared to the random scheme.
However, k-means does not promote coverage of data points, particularly in terms of α
and β, with all inducing inputs located in the center of the design space. Depending on the
choice of inducing inputs, the time and accuracy differ as shown in the next section.
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Figure 7. Histograms of the four input variables (Mach, Re, α, β): training points (47,004 points in
blue) and test points (5223 points in orange).

Figure 8. Distribution of the Cz training points (47,004, blue points) and M = 50 inducing inputs
considering three design schemes: random (top, red points), k-means (center, black points), and
k-means-n (bottom, green points).

5.2. Results Analysis

As in [7], we consider an independent process, i.e., an SGP, for each outcome coefficient
Cx, Cz, and CM, with a squared exponential kernel and with the default SMT parameters.
Figure 9 presents a qualitative comparison between SGP-FITC and SGP-VFE predictions
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(50 random inducing points are used), where standardized residuals for the Cz test set
(5223 points) are computed from [34]:

Standardized residual(xi) =
y(xi)− ŷ(xi)

s(xi)
, (7)

where y(xi) corresponds to the observed value at point xi, ŷ(xi) for the GP prediction, and
s(xi) for the estimated GP standard deviation. Standardized residuals are commonly used
to identify potential outliers in regression analysis. Assuming that the data are normally
distributed, then 99% of predictions should fall within ±3 s around the predictive GP mean.
Due to the rescaling by s, then approximately 99% of the standardized residuals should fall
in the interval [−3, 3]. The region where the main deviation is observed corresponds to Cz
values close to 1, a value that typically corresponds to the wing stall region, and is highly
sensitive to changes in the input variables. Despite the increased deviation compared
to lower Cz values, it remains within the interval [−3, 3]. Therefore, aside from a small
number of predicted points (the red points), most of the residuals are within the confidence
interval, suggesting an accurate fit of the regression model.

Table 3 summarizes the outcomes of a systematic study comparing the accuracy (i.e.,
the likelihood and RMSE) and computation time of both SGP-FITC and SGP-VFE across
different values of M (ranging from 50 to 1000) for the three selection strategies of the
inducing inputs. Similar to Section 4, the RMSE was computed on the training and test
sets for a Cz output. According to the results, the RMSE on the test data decreased as
M increased, particularly between M = 100 and M = 500. However, beyond this range,
adding more inducing points did not yield meaningful RMSE improvements, and there
was no significant impact between the random and the k-means-n schemes. The higher
RMSE values led by the k-means are justified by the poor distribution of the inducing
points. Generally speaking, both GP-FITC and GP-VFE show similar RMSE results. In
Figure 10, the performance of the VFE and FITC methodologies is examined across various
inducing point quantities: M = 50, 100, 500, and 1000. The primary focus lies in comparing
the RMSE for each methodology. It is observed that in most inducing point scenarios, the
k-means-n using the VFE emerges as the lower RMSE in general terms.

Figure 9. Standardized residual for the Cz test set (5223 points) using SGP-FITC (left) or SGP-VFE
(right). The residual points outside the [−3, 3] confidence intervals are displayed in red.

The CPU time involved by the k-means-based schemes, denoted in Table 3 as inducing
time, is another criterion to analyze, as this step can be time-consuming. Therefore, it
needs to be considered in addition to the training time. For the random selection, this
inducing time is negligible, since it only involves a random permutation of the point
indices. From Table 3, as expected, the inducing time of the k-means-based schemes
increases as M increases. In particular, for the k-means scheme, the inducing time is more
sensitive to M. For instance, for M = 1000, the inducing time for k-means is almost
three times higher than that of the k-means-n time. This substantial increase is due to
the heterogeneity in the order of magnitude among the aerodynamic input parameters,
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making the convergence of the optimization relative to the clustering step slower. Thus, the
normalization of both inputs and outputs in k-means-n proves beneficial in streamlining this
process, consequently leading to a reduction in the computational overhead. Furthermore,
it is noteworthy that both SGP-FITC and SGP-VFE demonstrate similar performance
concerning the inducing time.

Table 3. Output Cz: comparison of the likelihood, RMSE, and CPU times on the training and test
datasets with M = 50, 100, 500, 1000, considering different schemes for the selection of the inducing
points. The strategy of applying k-means with normalized data is denoted as k-means-n. The CPU
time involved by the selection of the inducing inputs is denoted as inducing time. The arrows show
whether the metric has risen () or fallen () in comparison to the results achieved with M = 50. The
colors signify the nature of the behavior, with green indicating positive or favorable trends, and red
indicating negative or unfavorable trends. For each SGP model, the best results across the different
selection schemes are highlighted in bold.

SGP-FITC SGP-VFE
Random k-Means k-Means-n Random k-Means k-Means-n

M = 50

Likelihood 150,709 147,636 150,614 147,646 137,891 147,919
RMSE-training data 0.0257 0.0262 0.0246 0.0248 0.0314 0.0251
RMSE-test data 0.0267 0.0267 0.0249 0.0247 0.0314 0.0248
Inducing time ≈0 5 10 ≈0 7 9
Training time 19 19 20 19 19 19
Prediction time 0.02 0.01 0.02 0.02 0.02 0.02

M = 100

Likelihood () 161,201 155,554 157,966 156,422 148,673 158,380
RMSE-training data () 0.0205 0.0227 0.0209 0.0205 0.0240 0.0202
RMSE-test data () 0.0206 0.0222 0.0212 0.0203 0.0237 0.0201
Inducing time () ≈0 24 18 ≈0 33 19
Training time () 40 40 42 56 40 38
Prediction time () 0.03 0.04 0.04 0.04 0.04 0.04

M = 500

Likelihood () 172,894 171,246 173,187 171,502 161,872 172,228
RMSE-training data () 0.0145 0.0179 0.0148 0.0147 0.0177 0.0145
RMSE-test data () 0.0150 0.0175 0.0148 0.0151 0.0174 0.0148
Inducing time () ≈0 333 90 ≈0 326 89
Training time () 218 219 219 213 213 213
Prediction time () 0.17 0.17 0.17 0.17 0.17 0.17

M = 1000

Likelihood () 172,704 173,003 175,620 172,884 165,026 175,077
RMSE-training data () 0.0144 0.0157 0.0134 0.0143 0.0165 0.0136
RMSE-test data () 0.0147 0.0155 0.0138 0.0147 0.0162 0.0140
Inducing time () ≈0 319 127 ≈0 296 125
Training time () 471 472 475 464 471 461
Prediction time () 0.34 0.34 0.34 0.34 0.36 0.34

Complementary results on the quality of predictions for the outputs Cz, Cx, and CM
are shown in Appendix A.2.2.
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Figure 10. Comparison of RMSE for SGP-FITC and SGP-VFE methodologies across M = 50, 100, 500,
and 1000 inducing points.

5.3. Results on a Testing Subset

To assess the impact of the inducing points distribution on the SGP predictability,
the test database is now restricted to the region of the input domain not covered by the
k-means scheme. To that aim, 1068 points satisfying the conditions α < −7 or α > 13 are
retained. The distribution of training points and the new test subset points over the entire
design space are depicted in Figure 11.

Figure 11. Histograms of the four input variables (Mach, Re, α, β): training points (47,004 points in
blue) and test points (1286 points in orange).

Figure 12 provides a visual representation of the cumulative density function (CDF)
and boxplots of the squared prediction errors for the SGP-FITC with M = 50. The figure
compares the errors across three different selection schemes, providing a comprehensive
understanding of the model’s performance under varying conditions. The squared pre-
diction errors are computed for both the full test set (5223 points) and a subset of the test
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data (1286 points). The CDF curves illustrate the probability that a squared prediction
error takes on a value less than or equal to x, providing insights into the distribution
of these errors. By comparing the CDF curves of the three selection schemes, one can
determine which scheme results in lower prediction errors. A curve that is shifted more
towards the left indicates better performance, as it means that there is a higher probability
of achieving lower prediction errors. Here, the k-means strategy is less efficient for reaching
1 (or 100% on the y-axis) with a maximum squared prediction error greater than 0.05 in
both cases. The boxplots, on the other hand, offer a summary of the statistical features
of these errors, including their median and quartiles. With some groups of three median
lines relatively close, the whiskers of the box plot for k-means extend further than those
for random and k-means-n schemes, indicating a larger range of error values and the
presence of more extreme values. This figure serves as a valuable tool for assessing the
performance of the SGP-FITC model and the impact of different selection schemes on its
accuracy. As expected, the k-means performance is less consistent compared to the random
and k-means-n schemes.

Figure 12. Output Cz: cumulative density function and boxplot for the squared prediction
errors using the full test set of 5223 points (left column) or the subset of 1286 points (right
columns). GP-FITC is used with M = 50 inducing points chosen randomly, with k-means or
k-means-n (normalized k-means).

6. Discussion

For the WT database in Section 5, several conclusions can be drawn. First, the choice
of the sparse approximation method (either the FITC or VFE) shows no significant impact
on the analyzed criteria, whether in terms of global accuracy (i.e., the likelihood and RMSE)
or in terms of the CPU times (i.e., inducing, training, and prediction times). Second, k-
means performs poorly compared to the other methods (random and k-means-n), involving
longer inducing times (due to the high differences in the order of magnitude between the
inputs) and higher RMSE values (attributed to the poor distribution of inducing inputs
in the design domain). Third, the random scheme shows similar RMSE values compared
to k-means-n, with the advantage of requiring a negligible inducing time. However, the
potential lack of robustness in the distribution of the inducing inputs may lead to a greater
dispersion of performance and a possible reduction in the accuracy of the prediction, as
observed in the analytical example studied in Section 4 and Appendix A.2.1. Therefore,
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the k-means-n scheme appears as a safer approach, more precisely when the number of
inducing points is relatively low. Despite its non-negligible inducing time, k-means-n leads
to accuracy improvements in terms of the likelihood and RMSE, as shown in Table 3.

7. Conclusions

To address the challenge of handling large datasets, we have explored SGP models,
focusing on adapting two classic inference methods, namely the FITC and the VFE. Our
study includes a comparative analysis of various strategies for selecting inducing inputs
based on random or k-means methods, with or without normalization. Moreover, we have
integrated our implementations into the open-source Python toolbox SMT. The versatility
offered by this integration enhances the accessibility and applicability of SGP techniques in
various applications. Lastly, the practical utility of our SGP developments is demonstrated
through an analytical example and a real wind tunnel application featuring thousands of
training data points. The performance showcased in these scenarios validates the approach.

The characterization and prediction of aircraft aerodynamics benefit from a collabo-
rative approach involving both aerodynamic simulations and experiments. This tandem
approach generates complementary datasets in terms of fidelity and cost, typically consist-
ing of extensive data points. Multi-fidelity GPs are often used for mixing CFD simulations
and wind tunnel experiments [7,12,35–37], but they cannot be applied to large databases.
Hence, from a theoretical point of view, a potential future work is to extend the sparse
approximations discussed in this paper to multi-fidelity GPs.

The next step for the developments involves integrating SGPs with other existing
features in SMT. In particular, we aim to couple SGPs with the multi-fidelity and Bayesian
optimization pipelines. This will enhance the capabilities of the toolbox by providing users
with more advanced and versatile tools for surrogate modeling and optimization.
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HPC High-Performance Computing
GP Gaussian Process
SGP Sparse Gaussian Process
NMLL Negative Marginal Log-Likelihood
FITC Fully Independent Training Conditional
VFE Variational Free Energy
KL Kullback–Leibler
ELBO Evidence Lower Bound
SMT Surrogate Modeling Toolbox
DoE Design of Experiments
RMSE Root Mean Square Error
WT Wind Tunnel
CRM Common Reference Model
CFD Computational Fluid Dynamics

Appendix A

Appendix A.1. Implementations of the FITC and VFE Methods in SMT

Since the expressions of both NMLL and NMLLVFE are similar, we will develop here
the details of the implementation for the following general formulation:

NMLL∗ =
N
2

log(2π) +
1
2

log(|K∗|) +
1
2

y⊤K−1
∗ y +

1
2η2 tr(T∗),

where K∗ can refer to either KFITC or KVFE, and TFITC = 0 while TVFE = KNN − QNN . We
start by considering the Cholesky decomposition QNN = V⊤V. Hence, by introducing the
one for the reduced covariance matrix KMM = UU⊤, the Nyström approximation becomes:

V⊤V = K⊤
MN

[
UU⊤

]−1
KMN =

(
U−1KMN

)⊤(
U−1KMN

)
.

Therefore, we have V = U−1KMN . Given this matrix, we can efficiently compute the other
terms from the NMLL as follows:

1. The log-determinant term can be rewritten as:

log(|K∗|) = log(|V⊤V + D∗ + η2IN |) = log(|V⊤V + D̃∗|),

where D∗ is a diagonal matrix whithatch refers to either DFITC = diag[KNN − QNN ]
or DVFE = 0. Applying the matrix determinant lemma, we then have:∣∣∣V⊤V + D̃∗

∣∣∣ = ∣∣D̃∗
∣∣.∣∣∣IN + VD̃−1

∗ V⊤
∣∣∣ = ∣∣D̃∗

∣∣.|A|.

Hence, using the Cholesky decomposition A = LL⊤, it can be shown that the log-
determinant term can also be expressed as:

log(|K∗|) = ∑
i

di + 2 ∑
i

Lii,

where di is the vector containing the diagonal terms of D̃∗, whose computations are
straightforward but slightly different between the FITC and VFE methods given their
respective definitions.

2. The quadratic term, also referred to as the “Mahalanobis” term, is computed using
the Woodbury matrix identity to obtain the inverse of K∗:

K−1
∗ =

[
V⊤V + D̃∗

]−1
= D̃−1

∗ − D̃−1
∗ V⊤A−1VD̃−1

∗ .
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Thus, as D̃∗ is a diagonal matrix, we can simply replace it with the inverse of the
vector d computed beforehand. By relying again on the factorization of matrix A, we
can still gain in efficiency by noticing the following:

K−1
∗ = d−1 + d−1V⊤

[
LL⊤

]−1
Vd−1 = d−1 +

(
L−1Vd−1

)⊤(
L−1Vd−1

)
.

Hence, the computation is straightforward, as we only need to compute the inverse of
vector d and of triangular factor L.

3. The trace term (only appearing in the VFE method) does not present any particular
difficulty; relying on the Cholesky decomposition of QNN , we obtain the following:

tr(KNN − QNN) = tr(KNN)− tr
(

V⊤V
)

.

Therefore, the computations involved here allow us to maintain reasonable scalability,
since we limit the complexity to M × M triangular matrice inversions, avoid most of the
required matrix products, and keep a memory cost up to the storage of an M × N matrix.

Appendix A.2. Complementary Results

Appendix A.2.1. Analytic Example

Figure A1 illustrates another sampling where the random selection of inducing points
(M = 30) can give poor predictions when some area is not sufficiently covered (here
x ∈ [−1,−0.75]) compared to the k-means choice.

Figure A1. Prediction obtained by SGP-FITC with M = 30 inducing points chosen via random (top)
and k-means (bottom) schemes. Each panel shows the target function (orange solid line), the training
data (blue points), the predictive mean (black solid line), and the 99% confidence intervals (dashed
green lines) led by the models. For the SGPs, the M = 30 inducing inputs are shown along the x-axis.
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Appendix A.2.2. WT Application

Figure A2 shows the prediction Q–Q plots of the SGP-FITC for the outputs Cz, Cx, and
CM, and considering random and k-means-n schemes with M = 50, 500.

Figure A2. Q–Q plots for the outputs Cz (top), Cx (center), and CM (bottom) using a GP-FITC with
M = 50 (left) or 500 (right). The results are shown for the random (blue points) and k-means-n (green
points) schemes for the selection of the inducing points.
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