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Abstract: To ensure the overall continuity of displacement and out-of-plane stress in composite
laminate structures and to quantitatively analyze the mechanical properties of composite materials
after damage or repair, a finite element solution method is applied based on the modified generalized
H–R variational principle. This method utilizes an eight-node non-conforming generalized partial
hybrid element (NCGPME8). The partial hybrid model established with this hybrid element can
accurately satisfy the out-of-plane stress boundary conditions of the structure, ensuring the continuity
of out-of-plane stress. Numerical examples are used to validate that this hybrid model can effectively
compute thick and thin laminate structures with high accuracy and rapid convergence of out-of-plane
stress. Finally, considering the insensitivity to irregular meshes and the accuracy in calculating
in-plane stress, this method is propagated by element coefficient deduction or element material
replacement, then employed to analyze the in-plane and out-of-plane stress distributions of laminates
with damage from stepwise grinding perforations, and laminates repaired in a stepwise fashion. Stress
and displacement at different locations on the laminates are compared and analyzed, leading to a
quantitative assessment of the impact of damage and repair on the stress distribution of the laminates.

Keywords: non-conforming generalized partial hybrid element; stress analyze; damaged laminate;
step scarf repair

1. Introduction

Advanced composite materials have been widely used in the primary load-bearing
structures of civil aircraft. The study of the mechanical performance of damaged composite
laminate panels and their repaired conditions is becoming increasingly important. Common
damages in composite laminate panels of civil aircraft include delamination and debonding.
One commonly used repair method for such damages is step scarf repair [1,2].

For classical laminate theory, the adoption of the straight normal assumption, ignoring
the influence of deflection on transverse strain [3,4], results in a poor description of the
response of structures with small span-to-height ratios. It becomes challenging to accurately
calculate interlaminar out-of-plane stresses with nonlinear distribution along the thickness
of small span-to-height ratio plates.

Three-dimensional solutions have emerged [5–9] in order to overcome the defects
in two-dimensional plane solutions. For the general three-dimensional displacement
elements, refined mesh division in the thickness direction is required to improve the
precision of the results. But in three-dimensional finite element solution methods, there
can be discontinuities in the thickness direction when solving stress at nodes using the
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stress–strain relationship. In order to maximize the continuity and accuracy of stress,
Hinton E [10] employs the least squares method to address the numerical discontinuity
problem when using finite element functions to handle physically continuous systems.
Zienkiewicz O C [11] uses a continuously expanded polynomial to establish a super
convergent patch recovery method, and Boroomand B [12] proposes a method based on
balanced recovery stress based on Zienkiewicz O C’s work. Generally, mesh refinement or
element enhancement methods can minimize such discontinuities and yield more accurate
stress field predictions. It is worth noting that layer-wise mixed theory [12,13] can also
address this issue. Recently, N. Magome [14] proposed a novel strategy called a B-spline-
based SFEM to cover the problems stated above; it can also handle the accuracy of numerical
integration and matrix singularity.

The so-called H–R variational principle is a generalized functional proposed with
displacement and stress as independent variables, and this state function includes three
displacement variables and three stress variables. The main advantages of the semi-
analytical solution method based on mixed elements for the above state space function
are that the continuity of displacement and out-of-plane stress parameters can be ensured
through transfer matrices, and the fulfillment of out-of-plane stress boundary conditions
for components is easily achieved. K. Xia [15] stated a semi-analytical method to determine
a mixed-mode fracture resistance curve (R-curve) and mode mixture of ADCB composite
laminates and verified its effectiveness and wide applicability. However, for commonly
encountered large and complex engineering structures, the efficiency of the semi-analytical
method is lower than that of traditional displacement methods. Additionally, for plates
with non-uniform thickness, the semi-analytical method is not suitable for stress analysis.
Furthermore, the semi-analytical method cannot guarantee each layer’s local continuity of
in-plane stresses.

A 12-node partial hybrid model based on the H–R variational principle was proposed
by Liao et al. [8], where three displacement variables and two out-of-plane shear forces are
treated as independent variables, and these five variables can be solved simultaneously.
However, the above method cannot ensure the continuity of out-of-plane normal stresses
between different layers and is not conducive to introducing boundary normal stress con-
ditions. Consequently, K. Rah [16] introduced a low-order partial hybrid stress solid-shell
element based on the composite energy functional for the analysis of laminated composite
structures; it can accurately calculate interlaminar stress through the element thickness.

The mixed element is a commonly used symmetric element in the H–R mixed varia-
tional principle. When used to solve various physical problems, it is generally non-positive
definite due to the presence of zero elements on the main diagonal of its control equation
matrix. Without stable mixed element methods, unstable solutions are likely when solving
two-dimensional or three-dimensional physical problems. M. Sorrenti [17] formulated a
new mixed model based on the enhanced Refined Zigzag Theory for thick multilayered
composite plates to handle this. In recent years, the non-conforming generalized mixed
eight-node element (NCGME8) has developed as a hybrid finite element method with
higher accuracy and stability in solving control equations. Numerical examples by Tian
Zongshu [7], Qing Guanghui [18,19], and others have demonstrated the advantages of this
method, including the following: (1) Easy satisfaction of stress and displacement boundary
conditions; (2) All stresses can be obtained through the finite element stress algebraic
system, and stress continuity is ensured; (3) Due to the introduction of non-conforming
displacement mode parameters by interpolation functions, the sensitivity of the solution
results to the nonlinearity at the mesh boundary is reduced.

Qing and Zhao [20,21] employed a parameterized multivariable variational principle
based on fully mixed variables. However, it is unsuitable for analyzing laminated structures
because of possible discontinuities in in-plane stresses between different layers in laminated
panels. For small deformation linear elastic bodies, Qing and Zhao chose the multiplier
λ = 0.5 when constructing control equations for such single-parameter bivariate mixed
finite elements. However, Felippa [22], based on the principle of energy conservation,
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derived other λ values corresponding to optimal solutions for the control function, and this
paper will be optimized based on this value.

Considering the widespread application of the step scarf repair method in repairing
the primary load-bearing structural components of civil aircraft, accurately determining
interlaminar stresses in composite laminate structures is crucial for analyzing the initial
damage and evolution of delamination or debonding. Accurate calculation of stress and
strain in damaged and repaired composite laminate panels is essential for evaluating the
effectiveness of repairs. Through finite element analysis, Samaneh et al. [23] emphasized
the importance of oblique repair three-dimensional modeling in engineering applications.
Yan et al. [24] proposed an improved semi-analytical method (ISM) to calculate the strength
of a scarf repair method. Z. Wang [25] introduces a parameterized simulation framework
for predicting the load-bearing capacity of 3D scarf-repaired composite laminates, which
remarkably reduces the modeling time. This study applied the finite element solution
method based on a non-conforming generalized partial hybrid element with an eight-node
element (NCGPME8) [7]. The partial hybrid model established with the above element can
accurately satisfy the out-of-plane stress boundary conditions of the structure, ensuring the
continuity of out-of-plane stress.

After solving the functional of a single-parameter bivariate based on NCGPME8 using
the MathMatica 12 platform, by reducing or replacing damaged elements, we propagated
its ability to solve composite material plates after damage or repair.

Finally, this method solves healthy laminate panels’ stress and displacement distri-
butions, laminates with damage from stepwise grinding semi-perforations, and repaired
laminate panels under the same loading conditions and boundary conditions for a linear
elastic small deformation problem. An analysis and comparison of stress and displacement
at specific panel locations under the same boundary conditions are also conducted. A
detailed understanding of the stress distribution in panels under different health conditions
can be obtained through comparative analysis, allowing for the evaluation of the effective-
ness of damage-repaired laminate. Additionally, it enables the prediction of potential early
damage and subsequent expansion under specific loads and boundary conditions.

2. Basic Theory
2.1. Single-Parameter Bivariate Functional Based on the Generalized H–R Mixed
Variational Principle

Ignoring body forces, the expression for the generalized H–R mixed variational princi-
ple, satisfying boundary conditions, is as follows [21,22]:

ΠHR =
∫

V

[
−1

2
σTC−1σ + σT(∇u)

]
dV −

∫
Sσ

TTudS (1)

In the above equation, σ represents the stress vector; C is the stiffness matrix of the
material; ∇ is the differential operator matrix; u is the displacement vector; T is the known
force applied on the boundary Sσ.

Based on references [20,22], a single-parameter stress-displacement functional is con-
structed, and its form is as follows:

ΠGHR = ΠHR + λ
∫

V

[
1
2

σTC−1σ +
1
2
(∇u)TC(∇u)− σT(∇u)

]
dV (2)

After substituting Equation (1)

ΠGHRλ = (1 − λ)
∫

V

[
−1

2
σTC−1σ + σT(∇u)

]
dV + λ

∫
V

1
2
(∇u)TC(∇u)dV −

∫
Sσ

TTudS (3)
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Equation (2) is equivalent to a set of single-parameter functionals for σ − u, where λ is
a parameter in the higher-order Lagrange multiplier of the generalized strain energy, and
λ ∈ [0, 1].

When λ < 0 or λ > 1, the formula has no practical significance;
When λ = 0, Equation (3) is equivalent to the H–R variational principle of Equation (1);
When λ = 1, Equation (3) is equivalent to the minimum potential energy principle

without body forces represented by the following Equation (4).

ΠP =
1
2

∫
V
(∇u)TC(∇u)dV −

∫
Sσ

TTudS (4)

Rearranging Equation (2), it can be expressed in the following form:

ΠGHRγ = γ
∫

V

[
−1

2
σTC−1σ + σT(∇u)

]
dV + (1 − γ)

∫
V

1
2
(∇u)TC(∇u)dV −

∫
Sσ

TTudS (5)

In the above equation, γ = 1− λ, hence γ ∈ [0, 1]; it can be seen that Equation (3) is
equivalent to Equation (5).

When the further generalized stress-potential function Πt
γ established by Felippa [22]

approaches the exact potential function Π, the value of γ= 0.25 in Equation (5) corresponds
to its optimal solution, and in this case, λ= 0.75 in Equation (3).

2.2. Modified Generalized H–R Variational Principle

First, provide a globally continuous vector of out-of-plane stresses.

σo =
[
σxz σyz σzz

]T (6)

Provide a locally continuous vector of in-plane stresses.

σi =
[
σxx σyy σxy

]T (7)

According to Fan [26] and Pagano [27], the modified generalized H–R variational
principle can be expressed in the following form:

ΠMGHR = (1 − λ)
∫

V
LMHRdV + λ

∫
V

1
2
(∇u)TC(∇u)dV −

∫
Sσ

TTudS (8)

In the above equation,

LMHR = − 1
2 σT

o Φ11σo + σT
o [(∇1u) + ΦT

12(∇2u)]

+ 1
2 (∇2u)TΦ22(∇2u)

(9)

In Equation (9), the differential operators ∇1 and ∇2 are represented as follows:

∇1 =

∂z 0 ∂x
0 ∂z ∂y
0 0 ∂z

, ∇2 =

∂x 0 0
0 ∂y 0
∂y ∂x 0

 (10)

For isotropic or anisotropic materials in Equation (9), the terms Φ11, Φ12, and Φ22 are
represented as the following:

Φ11 = ΦT
11 =

s1 0 0
0 s2 0
0 0 s3

, Φ12 =

 0 0 0
0 0 0
s4 s5 0

,
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Φ21 = −ΦT
12 =

0 0 −s4
0 0 −s5
0 0 0

, Φ22 =

s6 s7 0
s7 s8 0
0 0 s9

 (11)

In the above equation, s1 = 1/c55, s2 = 1/c44, s3 = 1/c33, s4 = −c13/c33, s5 =
−c23/c33, s6 = c11 − c2

13/c33, s7 = c12 − c13c23/c33, s8 = c22 − c2
23/c33, and s9 = c66; the cij

represents the material’s modulus of elasticity.
The in-plane stresses in Equation (7) can be expressed in terms of displacement and

out-of-plane stresses as follows:

σi = Φ22(∇2u) + Φ21σo (12)

2.3. Eight-Node Non-Conforming Generalized Partial Hybrid Element

For a deformed irregular hexahedral displacement element, the displacement u can be
composed of a conforming part and a non-conforming part [28], expressed as follows:

u = uq + ur = Nqe + Nrre (13)

In the above equation, the conforming part interpolation functions N are repre-
sented by the diagonal matrix Diag [N]= [Ne Ne Ne

]
, qe= [ue ve we

]T, and the
non-conforming part interpolation functions are denoted as Nr= [1− ξ2 1−η2 1−ζ2]. Ad-
ditionally, they satisfy the patch test conditions. The non-conforming part displacement
re = [uer ver wer]

T, for Equation (13), when using an eight-node irregular hexahedral
element, the dimension of matrix N is 24 × 24, and Ne= [N1 N1 · · · N8

]
.

To enhance solution efficiency and reduce integration workload, this paper employs
an enhanced assumption method to eliminate the displacement vector re of the non-
conforming part based on the approach in reference [21].

By substituting Formula (13) into the minimum potential energy principle (4) and
considering that the variation of Formula (4) is zero, the relationship between re and qe can
be obtained.

re = −mrqqe (14)

In the above expression, mrq = k−1
rr kT

qr, where krr = kT
rr =

∫
Vi
(∇Nr)TC(∇Nr)dV,

kqr =
∫

Vi
(∇N)TC(∇Nr)dV.

The out-of-plane stress σo can also be expressed using the interpolation functions
from Formula (13).

σo = Npe (15)

Above pe = [σexz, σeyz, σezz]
T is the out-of-plane stress vector of the element.

By substituting (13) and (15) into Formula (9), we obtain the following:

∏MGHR(pe, qe, re) =
n
∑

i=1
[− 1

2 (1 − λ)pT
e apppe + (1 − λ)pT

e apqqe + (1 − λ)pT
e aprre

+ 1
2 (1 − λ)qT

e χqqqe +
1
2 (1 − λ)qT

e χqrre +
1
2 (1 − λ)rT

e χT
qrqe +

1
2 (1 − λ)rT

e χrrre

+ 1
2 λrT

e krrre + λqT
e kqrre +

1
2 λqT

e kqqqe − fT
e qe]

(16)

In which,
app = aT

pp =
∫

Vi

NTΦ11NdV,

apr =
∫

Vi

NT[(∇1Nr) + ΦT
21(∇2Nr)+(∇3Nr)] dV,

χqq = χT
qq =

∫
Vi

(∇2N)
T

Φ22(∇2N)dV,

χqr =
∫

Vi

(∇2N)
T

Φ22(∇2Nr)dV,
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χrr = χT
rr =

∫
Vi

(∇2Nr)
T

Φ22(∇2Nr)dV,

kqq = kT
qq =

∫
Vi

(∇N)TC(∇N) dV, fe =
∫

Si

N
T

TdS.

Substitute the expression for re from its Formula (14) into the above equation to obtain
the following:

∏MGHR(pe, qe, re) =
n
∑

i=1
[− 1

2 (1 − λ)pT
e apppe + (1 − λ)pT

e (apq − aprmrq

)
qe

+ 1
2 (1 − λ)qT

e (χqq − θqq − θT
qq + mT

rqχrrmrq

)
qe

+λ 1
2 qT

e (kqq − kqrmrq

)
qe − fT

e qe]

(17)

Substitute the term θqq = χqrmrq in the above equation with its expression from
Formula (15). At this point, the equation only contains two independent variables. Taking
the variation of the equation with respect to δ ∏MGHR(pe, qe) = 0, we obtain

−(1 − λ)Rpppe + (1 − λ)Rpqqe = 0 (18)

(1 − λ)RT
pqpe + Rqqqe = fe (19)

In which,
Rpp = app, Rpq = apq − aprmrq,

Rqq = (1 − λ)(χqq − θqq − θT
qq + mT

rqχrrmrq

)
+λ(kqq − kqrmrq

)
Assemble the element column expression of Formula (19) to obtain the overall solution

expression. [
−∑ Rpp ∑ Rpq

(∑ Rpq)
T ∑ Rqq

]{
∑ pe
∑ qe

}
=

{
0

∑ fe

}
(20)

Furthermore, we have [
−Mpp Mpq
MT

pq Mqq

]{
p
q

}
=

{
0
f

}
(21)

It is important to note that here p represents the out-of-plane stress component. Ac-
cording to reference [13], the boundary conditions f include both known out-of-plane
stress boundary conditions t0 = T and displacement boundary conditions u = u. It can
be observed that Formula (21) is conducive to introducing out-of-plane stress boundary
condition f. In the above expression, displacement and out-of-plane stress are the quantities
to be solved. At this point, the in-plane stress component is still unknown.

2.4. Finite Element Algebraic System for In-Plane Stresses

Expressing (12) as a function of pe, qe, we have

σi (pe, qe) = Φ22[(∇2N)− (∇2Nr)mrq] qe + Φ21Npe (22)

In the above expression, pe, qe can be determined by solving Equation (20).
The in-plane stresses at the element nodes can be obtained through Equation (22).

However, to ensure the uniqueness of in-plane stress values on the same layer, it is necessary
to calculate the average or the weighted average on the nodes [29]. Therefore, the results
may not always be precise. Additionally, Formula (22) is not conducive to introducing
in-plane stress boundary conditions.
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Considering that the in-plane stresses are continuous within a single layer, this paper
employs a finite element algebraic system for in-plane stresses in a single-layer material for
the solution.

When the in-plane stress vector σi is only represented by the shape functions of the
conforming part,

σi = Npei (23)

where pei = [σexx, σeyy, σexy]
T is the in-plane stress vector of an element.

By combining Formulas (22) and (23), we have the following:

Npei = Φ22[(∇2N)− (∇2Nr)mrq] qe + Φ21Npe (24)

Multiply both sides of the equation by pT
eiN

T simultaneously, and after rearranging,
we obtain the following:

pT
eiaii pei − pT

eiΓe = 0 (25)

The parameters mentioned above aii =
∫

V NTNdV,
Γe = Φ22

∫
V NT[(∇2N)− (∇2Nr)mrq] dV qe + Φ21

∫
V NTNdV pe, are both column

vectors. Further rearranging Formula (25), we get

aiipei = Γe (26)

Integrating the above equation, we obtain the expression for the overall in-plane stress
variables in the finite element algebraic system.

api = Γ (27)

It can be observed that Formula (27) is advantageous for handling in-plane stress
boundary conditions and ensuring the continuity of stress solutions within each individ-
ual layer.

Let pi be the in-plane known stress corresponding to the surface or edge nodes of the
structure, and the values of pi can be obtained by applying forces T on the stress boundaries
of the structure. Formula (27) can then be written as[

a11 a12
aT

12 a22

]{
pi
pi

}
=

{
Γ1
Γ2

}
(28)

In Formula (28), Γ1 and Γ2 are obtained by transforming the rows of Γ.

a11pi + a12pi = Γ1 (29)

a22pi = Γ2 − aT
12pi (30)

It can be seen that Formula (30) allows the solution of the remaining unknown in-
plane stresses pi based on the known out-of-plane stresses and displacements, making (29)
redundant.

2.5. Damage Element Reduction or Replacement

After solving the healthy laminated plate with single-parameter bivariate functional
constructed based on NCGPME8 on the commercial software Mathematica, we extend this
method to the solution of damaged or repaired composite material by element material
replacement or element stiffness reduction.

First, given a composite lamina size a × b × h, we mesh the lamina board into the
acquired size, whose quantity is m × n × l, then locate the cubic damage edge on the
lamina, supposing the damage area’s two vertex coordinates are (x1, y1, z1) and (x2, y2, z2),
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in which the damage area should be smaller than the lamina. Then, we can get this area’s
element number in Figure 1, and in the first layer we have the following:

[
m1 − 1 m2

]T
= Round

[
m
a

{
x1
x2

}]
(31)

[
n1 − 1 n2

]T
= Round

[
n
b

{
y1
y2

}]
(32)
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within each layer are determined. Each element is assigned a material category code based 
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Based on the damage size, the element numbers that need to be reduced or replaced 
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on whether it needs to be reduced or replaced. For example, elements to be reduced are 
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This method is very intuitive; the difficulty lies in coordinating the element 
partitioning with the damage size requirements. To ensure the calculation process does 
not result in a singular matrix, the stiffness of damaged elements is reduced by 
multiplying the healthy element stiffness by 1 × 10−11. 
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Based on the damage size, the element numbers that need to be reduced or replaced 
within each layer are determined. Each element is assigned a material category code based 
on whether it needs to be reduced or replaced. For example, elements to be reduced are 
assigned the code “D”, while elements to be replaced are assigned the code “R”. Based on 
this, material properties are assigned to the elements by an encoded assembly function. 
Figure 2 shows a quarter of a three-layered composite lamina; it was meshed into 24 × 24 
in plane and 12 layers in thickness, and its damage area elements. Π 

This method is very intuitive; the difficulty lies in coordinating the element 
partitioning with the damage size requirements. To ensure the calculation process does 
not result in a singular matrix, the stiffness of damaged elements is reduced by 
multiplying the healthy element stiffness by 1 × 10−11. 
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Based on the damage size, the element numbers that need to be reduced or replaced 
within each layer are determined. Each element is assigned a material category code based 
on whether it needs to be reduced or replaced. For example, elements to be reduced are 
assigned the code “D”, while elements to be replaced are assigned the code “R”. Based on 
this, material properties are assigned to the elements by an encoded assembly function. 
Figure 2 shows a quarter of a three-layered composite lamina; it was meshed into 24 × 24 
in plane and 12 layers in thickness, and its damage area elements. Π 

This method is very intuitive; the difficulty lies in coordinating the element 
partitioning with the damage size requirements. To ensure the calculation process does 
not result in a singular matrix, the stiffness of damaged elements is reduced by 
multiplying the healthy element stiffness by 1 × 10−11. 
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Based on the damage size, the element numbers that need to be reduced or replaced 
within each layer are determined. Each element is assigned a material category code based 
on whether it needs to be reduced or replaced. For example, elements to be reduced are 
assigned the code “D”, while elements to be replaced are assigned the code “R”. Based on 
this, material properties are assigned to the elements by an encoded assembly function. 
Figure 2 shows a quarter of a three-layered composite lamina; it was meshed into 24 × 24 
in plane and 12 layers in thickness, and its damage area elements. Π 

This method is very intuitive; the difficulty lies in coordinating the element 
partitioning with the damage size requirements. To ensure the calculation process does 
not result in a singular matrix, the stiffness of damaged elements is reduced by 
multiplying the healthy element stiffness by 1 × 10−11. 
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Based on the damage size, the element numbers that need to be reduced or replaced 
within each layer are determined. Each element is assigned a material category code based 
on whether it needs to be reduced or replaced. For example, elements to be reduced are 
assigned the code “D”, while elements to be replaced are assigned the code “R”. Based on 
this, material properties are assigned to the elements by an encoded assembly function. 
Figure 2 shows a quarter of a three-layered composite lamina; it was meshed into 24 × 24 
in plane and 12 layers in thickness, and its damage area elements. Π 

This method is very intuitive; the difficulty lies in coordinating the element 
partitioning with the damage size requirements. To ensure the calculation process does 
not result in a singular matrix, the stiffness of damaged elements is reduced by 
multiplying the healthy element stiffness by 1 × 10−11. 

(n2 − 1) × m + m2

Based on the damage size, the element numbers that need to be reduced or replaced
within each layer are determined. Each element is assigned a material category code based
on whether it needs to be reduced or replaced. For example, elements to be reduced are
assigned the code “D”, while elements to be replaced are assigned the code “R”. Based on
this, material properties are assigned to the elements by an encoded assembly function.
Figure 2 shows a quarter of a three-layered composite lamina; it was meshed into 24 × 24
in plane and 12 layers in thickness, and its damage area elements.
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Figure 2. Typical damaged area elements in red.

This method is very intuitive; the difficulty lies in coordinating the element partitioning
with the damage size requirements. To ensure the calculation process does not result in a
singular matrix, the stiffness of damaged elements is reduced by multiplying the healthy
element stiffness by 1 × 10−11.

3. Algorithm Validation and Its Application in Stress Analysis of Damaged
Composite Materials

Example 1:
The first example is a single-layer-thick square plate, as shown in Figure 3, with in-

plane dimensions a = b, thickness h, and the span-to-depth ratio S = a/h = 10. The material
properties are Ex = 10, Ey = 10Ez, Gxy = Gxz = 0.6Ez, Gyz = 0.5Ez, and νxy = νxz = νyz = 0.25.
The boundary conditions are σxx = 0, ux = uz = 0 on x = 0 and x = a; and σyy = 0, ux = uz = 0
on y = 0 and y = b. The uniformly distributed load q0 = 1.0 is on the upper surface of the
plate. This particular problem has been investigated by Fan [26].
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Figure 3. A single square plate and coordinate system.

Due to the symmetry of the plate, only a quarter of the plate is analyzed. The notation
l × m × n denotes l subdivisions along the x-axis and m subdivisions along the y-axis
with the uniform elements; here n denotes the element number in the z direction. An
amount of 2 × 2 × 2 Gaussian points and λ = 0.75 for each element are employed in our
computer program.

The nonconforming displacement element with eight nodes (NCDE8) in the commer-
cially available software ABAQUS are obtained from the stresses of Gauss quadrature
points by the extrapolation method [10]. Based on the results of the 11 × 11 × 10 mesh, the
percentage errors of displacements and stresses illustrated in the legends in Figures 4–12
are computed by (numerical-exact)/numerical, where “exact” denotes the exact solution
and “numerical” is NCGPME8 or NCDE8. The exact solution is obtained by the method in
reference [26].
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It should be mentioned that the normalized quantities shown in Figures 4–12 are
defined as

(u, v, w) = (Ezu/(q0hS3), Ezv/(q0hS3), 100Ezw/(q0hS4)) (33)

(σxz, σyz, σzz) =
(σxz, σyz, σzz)

q0S
(34)

(σxx, σyy, σxy) =
(σxx, σyy, σxy)

q0S2 (35)

in which, the span-to-depth ratio S = a/h.
Figures 4–6 show a comparison with the displacements obtained using NCDE8. The

convergence of displacement of the present nonconforming generalized partially mixed
element with eight nodes (NCGPME8) are slightly better than those of NCDE8.

Figures 7–12 indicate that, for the same mesh, the out-plane stress results of NCGPME8
and the in-plane stress results of the finite element algebraic system are evidently superior
to NCDE8. This superiority is more obvious for the two out-plane shear stresses, and the
in-plane shear stress.

The foregoing comparison of NCDE8 and NCGPME8 seems unfair since, for the same
mesh, the present mixed element has more degrees of freedom. However, it does highlight
the advantage of having a continuous stress field with unique nodal values. Furthermore,
Figures 7–12 indicate that if one wants to get more accurate shear stress results, NCGPME8
does not require the extremely fine meshes that are needed by NCDE8.

From Figures 7 and 8, the two out-plane shear stresses of two elements oscillate
with the increase in mesh density. The main reason is that, when the model is divided
into an odd number of elements in the thickness direction, the results of the out-plane
stresses σxz(0 , b/2, h/2) and σyz(a/2, 0, h/2) can be only obtained by interpolation based
on the nodal stresses in the model. When the model is divided into an even number of
elements in the thickness direction, the accuracy of the out-plane stresses σxz(0 , b/2, h/2)
and σyz(a/2, 0, h/2) is relatively high since their values are on the nodes.

Example 2:
To demonstrate the accuracy of NCGPME8 in solving thick laminated plates, consider

the following simply supported single-layer-thick plate with h/a = 0.2, where the length
and width of the plate are a = b. The upper surface of the plate is subjected to a uniformly
distributed pressure stress q = −1, with material properties that are the same as Example 1.

Define non-dimensional parameters as the following:

w = C11
q0h w

(σyy, σxz) = (σyy, σxz)/q0
(36)

Organize Tables 2 and 3 into a graph, which provides the following:
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Table 2. Precise solution obtained by the method in reference [26].

z= z
h w(a/2,b/2) σyy(a/2,b/2) σxz(0,b/2)

1 −2.743533 −2.526717 0
5/6 −2.739329 −1.662968 −2.381170
4/6 −2.727750 −0.846945 −3.061120
3/6 −2.712523 −0.046092 −3.200664
2/6 −2.695031 0.754651 −2.834947
1/6 −2.674012 1.570716 −1.872847
0 −2.645490 2.417468 0

Table 3. NCGPME8 solution with a mesh division of 20 × 20 × 18.

z= z
h w(a/2,b/2) σyy(a/2,b/2) σxz(0,b/2)

1 −2.741791 −2.509171 0
5/6 −2.737851 −1.663214 −2.368812
4/6 −2.726255 −0.846987 −3.057917
3/6 −2.711019 −0.046016 −3.200198
2/6 −2.693535 0.754853 −2.835750
1/6 −2.672537 1.570882 −1.875278
0 −2.644015 2.417018 0

From Figures 13–15, it can be observed that the solution obtained by NCGPME8 for
thick plates is very close to the exact solution, and it exhibits good convergence. The
NCGPME8 element belongs to three-dimensional non-coordinated elements, taking into
account the relationship between the plate deflection and the z-coordinate, and it can pass
the Patch Test. The non-coordinated interpolation functions can describe irregular elements
much better, and the partial mixed variable method can also ensure the stress continuity of
individual nodes, thus ensuring the convergence and accuracy of the NCGPME8 method
in solving small deformation problems for thick plates. In addition, the difference between
the exact solution and the NCGPME8 solution is larger on the upper surface than on the
lower surface, mainly because the deflection solution of the thick plate is influenced by the
z-coordinate.
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Example 3:
In order to demonstrate the convergence of NCGPME8 under the assumption of

small deformation in a linear elastic body, numerical calculations were conducted for a
four-edge simply supported honeycomb square plate. The boundary conditions are simply
supported, the same as Example 1. The plate has upper and lower surface layers, as well as
a honeycomb core layer. The material parameters are specified as follows:

C12/C11 = 0.233190, C13/C11 = 0.010776
C22/C11 = 0.543103, C23/C11 = 0.098276
C33/C11 = 0.530172, C44/C11 = 0.266810
C55/C11 = 0.159914, C66/C11 = 0.262931

(37)

According to Fan [26], the dimensionless parameters are defined as follows:

(u, w) =
C(C)

11
q0h (u, w)

(σyy, σxz) = (σyy, σxz)/q0

(38)

The material parameter ratio between the surface layers and the honeycomb core is
denoted by δ = C(F)

11 /C(C)
11 , where C(F)

11 represents the material parameter of the surface

layers, and C(C)
11 represents the material parameters of the honeycomb core. The total

thickness of the plate is denoted as h, with the upper and lower panel thicknesses both
equal to 0.1h, and the honeycomb core thickness is 0.8h. The upper surface is subjected to a
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uniform distributed pressure q0 = 1, while the lower surface is free. Fan Jiarang [26] solved
this problem and the results are shown in Table 4.

Table 4. Exact solution from reference (h/a = 0.1, δ = 5).

Mesh −
u(0,a/2)

−
w(a/2, a/2)

−
σyy(a/2,a/2)

−
σxz(0,a/2)

Exact
T+ 4.400012 −24.184091 −10.86213 0
T− 2.509768 −24.200546 −7.980501 −1.976828
B+ −2.422380 −23.431627 8.202850 −1.519604
B− −4.020358 −23.373870 11.073676 0

Due to the symmetry of the plate, an analysis using the NCGPME8 element (λ = 0.75)
was performed on a quarter model. In the thickness direction, each of the upper and lower
panels consists of one layer, and the middle honeycomb core is divided into eight uniformly
distributed layers, resulting in a total of 10 layers.

In Table 4, T represents the top layer and B represents the bottom layer, where + and
− indicate the top and bottom surfaces of a layer, respectively.

Clearly, with the increase in planar mesh, the rapid convergence of NCGPME8 can
be observed in Figures 16–22. It is noteworthy that the error in the solution for in-plane
stresses is small, as evident from Figures 20 and 21. Although the w values for the upper
and lower panels exceed the exact solution of Fan [26], the solution from this method
becomes noticeably convergent with mesh refinement. In Figure 22, the error in the upper
panel’s out-of-plane stress σxz is within 3%, which is acceptable. This example verifies
the correctness of the stress analysis method for laminated plates based on the eight-node
non-conforming generalized partially mixed element and the accuracy of the algorithm in
calculating in-plane stresses.
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Example 4:
As shown in Figure 23, the non-dimensionalized size of the laminated plate is a = b = 10 h,

with each layer having an equal thickness and a ply orientation of [0◦/90◦/0◦]. The
boundary conditions are the same as Example 1. Each layer of the laminated plate is
idealized as a homogeneous orthotropic material. The material properties of the laminated
plate in the main material direction are the following: Exx = 25.0, Eyy = 1.0, Gxy = 0.5,
Gxz = 0.2, νxy = νxz = 0.25.
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Figure 23. Three-layered square plate and its coordinate system.

A normal out-of-plane load q(x, y) = q0 Sin(πx/a)Sin(πy/b) is applied to the top surface,
where q0 = 1, and the bottom surface is free. Pagano [27] studied laminated plates adopting
the elasticity theory.

In this example, due to symmetry, only a quarter of the plate is discretized. A uniform
grid of 12 × 12 × 12 is used to calculate the stress distribution along the thickness direction.
Figures 24–27 show four typical stress distributions obtained by NCGPME8 (λ = 0.75) as
given by Equations (34) and (35).
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It should be noted that in this example, all parameters are normalized, and the expres-
sions are the same as Example 1:

Figures 24–27 show that the stress distribution along the thickness direction matches
well with the exact solution. When a 12 × 12 × 12 discrete grid is used, the error in the
stress distribution along the thickness direction is less than 0.5%.

As the out-plane shear stress boundary conditions on the plate surface can be fulfilled
in some mixed models, the outcomes of the out-plane shear stress on the upper and lower
surfaces are fit to the given boundary conditions, as shown in Figures 24 and 25.

Besides, Figure 26 shows the discontinuity of the interlaminar in-plane stress.
Example 5:
Given that the forgoing examples have demonstrated the convergence and accuracy

of NCGPME8 and its ability to accurately solve internal stresses, this method is employed
to analyze and compare composite materials, including healthy plates, damaged plates,
and layered plates after step scarf repair. The models, boundary conditions, and loading
methods used in this example are the same as in Example 4. Referring to Shen [30], the elas-
tic modulus of the isotropic adhesive layer E= 1.077 GPa, shear modulus G = 0.40489 GPa,
and Poisson’s ratio µ= 0.33. A 48 × 48 grid is used to divide the plate in the oxy plane,
and the z-direction finite element model is divided into 12 layers for healthy and damaged
plates, while the repaired plate was divided into 16 layers for a patch and was attached to
the surface. The normalization method for parameters in this example is the same as in
Equation (38).

For the damaged model, assume there is a damage in the center of the upper surface
of the plate with dimension (a/6) × (b/6), and the damage extends to a depth of h/3.
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The damaged material stiffness coefficient is derived by multiplying the healthy element
stiffness by 1 × 10−11. According to Equations (31) and (32), we have

m = n= 48; m1 = 21; m2 = 28; n1 = 21; n2 = 28.

The damaged elements number is listed in Table 5.

Table 5. The first layer damaged area element number.

21st Column
Element No.

22nd Column
Element No.
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The stiffness of the damaged element is approximated by multiplying the material
parameters of the healthy plate by a factor 10−11.

For the repaired plate model, after removing the damage, a filling layer with dimen-
sions (a/8)× (b/8) is first placed at the damaged location, and then an outer repair layer
with dimensions (a/3)× (b/3) is attached, and the gap is filled with adhesive. The material
parameters of the filling layer and the repair layer are the same as the original layer of the
repaired item. The E–E cross-sectional view in Figure 28 illustrates this configuration.
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Figure 28. Stepped scarf-repaired laminate plate and it’s E-E section view.

To the different health conditions of the plates, we compared their displacement w
and stresses σzz, σxx, σxy along the line connecting A(a/2, 0, h/2) and B(a/2, b/2, h/2) in
Figure 28. We also compared the in-plane stresses σxx, σyy, σxy along the line connecting
C(a/3, b/3, h) and D(a/3, b/3, 0).

Figures 29–32 show four parameters along the AB line segment inside the plate. The
fiber orientation in this layer is along the y-axis.
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Figure 32. Stress σxy(0, y, h/2) along AB.

According to Figures 29 and 30, we know that damage reduces the local stiffness
of the laminated panel, while repair enhances the local stiffness of the laminated panel.
Correspondingly, the out-of-plane stresses are affected by damage and repair patches,
leading to fluctuation across AB. From Figures 31 and 32, we acquire that the in-plane
stresses σxx, σxy of the damaged panel significantly increased; this is mainly due to the
reduction in stiffness of the surface layer in the damaged panel, resulting in higher in-plane
stresses borne by the intermediate and bottom layers. Due to the presence of adhesive
layers between the panel and the filling layer, as well as the reinforcing effect of the repair
patch, in-plane stresses σxy also exhibit fluctuations along AB as shown in Figure 32.

Figures 33 and 34 indicate that under fixed boundaries and loading conditions, the
stress variation of σxx, σxy in the middle ply remains small for all three conditions, while
the stresses at the top and bottom plies of the damaged part σxx, σxy show significant
changes. This results in an increase in in-plane stress, making it more prone to interlaminar
shear failure. In Figure 35, stress σyy is mainly carried by the matrix material of the middle
plies and the fibers of the middle 90◦ ply. After damage to the top ply, stress σyy increases
slightly in the top and bottom surface plies. After repair, stress σyy closely aligns with the
healthy board, indicating minimal influence from damage or repair. Figure 36 demonstrates
that stress σzz has a distribution that is similar between the healthy board and the repaired
board, with only a slightly increased slope for the damaged board, suggesting that damage
results in more pronounced stress changes and a higher susceptibility to delamination
or debonding.
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4. Conclusions

This paper applies a finite element method of an optimized nonconforming gener-
alized partially mixed element (NCGPME8) model for laminated composite structures
using in-plane stress and displacement as variables. The key features of this partially
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mixed model include the ease of applying in-plane stress boundary conditions in the finite
element model and ensuring the continuity of in-plane stress and displacement for the
damaged and repaired laminates. A finite element algebraic system for in-plane stress
analysis of laminates, consisting of a single material layer, is also applied due to its di-
rect handling of in-plane stress boundary conditions, ensuring the continuity of in-plane
stress results across layers and discontinuity between interlayer in-plane stresses. Finally,
we implemented this solving process in the Mathematica software. Numerical examples
demonstrate that compared to the nonconforming displacement mixed element model
NCDE8, the NCGPME8 model and the in-plane stress algebraic system provide higher
accuracy in numerical results, particularly ensuring the discontinuity of in-plane stresses
within the laminate.

Given the accuracy of the NCGPME8 method and the finite element algebraic system
for in-plane stress analysis, this paper further expands its application scope by employing
element material replacement or element stiffness reduction. This approach is very intuitive
and can simulate more complex damage or repairs by subdividing the mesh.

In the end, we apply this approach to study the stress and strain distribution of
laminates under specific external loads and boundary conditions in three states: healthy,
damaged, and step-repaired. A comparison is made for the displacement and stress
distribution at specified locations, revealing changes in stress and displacement in different
conditions of laminates. The variations in in-plane stress provide insights into the primary
factors influencing interlaminar shear failure, and proper stress distribution can lead
to damage occurring in expected locations; hence, invisible damages can be localized.
Additionally, the out-of-plane stress indicates factors affecting delamination propagation in
laminates. The analysis of displacement reveals variations in the stiffness and strength of
different laminates.

In conclusion, the proposed method demonstrates sufficient generality for analyzing
in-plane stresses in complex damaged or repaired laminated composite materials. Based on
the modified H–R mixed variational principle for piezoelectric or magnetoelastic materials,
this method can be further extended to the generalized stress analysis of damaged or
repaired layered structures involving multiple physical fields.
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