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Abstract: The International Lunar Research Station, to be established around 2030, will equip lunar
rovers with robotic arms as constructors. Construction requires lunar soil and lunar rovers, for which
rovers must go toward different waypoints without encountering obstacles in a limited time due
to the short day, especially near the south pole. Traditional planning methods, such as uploading
instructions from the ground, can hardly handle many rovers moving on the moon simultaneously
with high efficiency. Therefore, we propose a new collaborative path-planning method based on deep
reinforcement learning, where the heuristics are demonstrated by both the target and the obstacles
in the artificial potential field. Environments have been randomly generated where small and large
obstacles and different waypoints are created to collect resources, train the deep reinforcement
learning agent to propose actions, and lead the rovers to move without obstacles, finish rovers’ tasks,
and reach different targets. The artificial potential field created by obstacles and other rovers in
every step affects the action choice of the rover. Information from the artificial potential field would
be transformed into rewards in deep reinforcement learning that helps keep distance and safety.
Experiments demonstrate that our method can guide rovers moving more safely without turning
into nearby large obstacles or collision with other rovers as well as consuming less energy compared
with the multi-agent A-Star path-planning algorithm with improved obstacle avoidance method.

Keywords: heuristic; lunar rover; path planning; artificial potential field; reinforcement learning

1. Introduction

The International Lunar Research Station will be established after 2030 [1]. Initially,
the construction of this station is facilitated by advanced lunar rovers outfitted with robotic
arms. Traditional planning methods are mainly based on ground control by creating and
verifying all human instructions [2]. However, this approach is inadequate given the dy-
namic lunar environment, particularly the partially observable lunar surface. Furthermore,
the construction of the lunar station contains heavy tasks, such as carrying large cargo
and collecting resources in a specific time, which cannot be completed with one single
rover. Although collaborative planning among multiple rovers could address this chal-
lenge, it requires a considerable cadre of trained engineers and is inherently inefficient [3].
Consequently, there arises a critical need for automated path-planning methodologies
that enable collaborative efforts among rovers, therefore enhancing the efficiency of lunar
station construction.

An imperative challenge lies in devising a sequence of actions to guide rovers to-
ward their targets within partially unknown environments. To address this, engineers
have developed various planning systems tailored for spacecraft and rovers. Automated
Scheduling and Planning Environment (ASPEN), formulated by NASA, generated activity
sequences for one spacecraft with constraints on resources and operating rules [4]. The
Japan Aerospace eXploration Agency (JAXA) has introduced a path-planning algorithm [5]
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that prioritizes decision-making considering the limitations of sunlight rather than sim-
ply avoiding obstacles. GPS-based path planning algorithm [6] is proposed for rovers to
generate paths in difficult terrain. However, a mature positioning system for lunar environ-
ments has yet to be developed. The ant colony algorithm [7] is adapted for the global path
planning of lunar rovers, but this approach necessitates waiting for convergence before
generating the entire path.

In the dynamic path-planning environment for lunar rovers, actions may fail due
to unforeseen situations, such as navigating at low speeds or traversing novel pathways,
particularly in instances where rovers encounter restricted visibility. The planning systems
mentioned above cannot react quickly to unforeseen situations on lunar rovers. However,
recent studies in planning have emerged that leverage learning capacity. Prominent among
these are reinforcement learning (RL) and deep reinforcement learning (DRL), which merge
neural networks with traditional RL paradigms. These innovative approaches hold promise
in enhancing the adaptability and responsiveness of lunar rover path-planning strategies.

Deep Reinforcement Learning (DRL) [8] is a general framework for adaptive decision-
making, as it leverages the ability of an agent to autonomously interact with the environ-
ment and refine its decision-making processes to maximize cumulative rewards. It can
explore complex and uncertain environments, relying on feedback mechanisms derived
from a sequence of elemental reward signals rather than prescriptive human-designed rules.
Minh et al. presented the deep Q network algorithm (DQN) model [9], which represents
a milestone in the fusion of deep learning with reinforcement learning methodologies.
The advent of the DQN model heralded a pivotal era in the evolution of reinforcement
learning techniques.

Scholars across diverse disciplines have embraced the utilization of deep reinforcement
learning. Fisac et al. [10] studied human motion safety models, analyzing the positions and
velocities of humans and robots and treating human behavior deviations as contingencies.
DRL was employed to facilitate swift adaptation to the environment, aiding in rapid path
planning or collaboration with humans in aerial vehicles. Yu et al. [11] demonstrate the
DRL application with safety constraints in end-to-end path planning on lunar rovers but
without consideration of collaborative planning among rovers. Park et al. [12] apply the
DRL on failure-safe motion planning for four-wheeled two-steering lunar rovers, although
its efficacy in long-term planning remains questionable. Hu et al.[13] integrated the DRL
with a long-short time memory(LSTM) network for obstacle avoidance, yet this approach
was not extended to scenarios involving multiple rovers. Wei et al. [14] utilize multi-robots
for environmental data collection, whose paths are generated by Independent Q-Learning.
Results show that Independent Q-Learning performs better than Joint Action Q-Learning
when there are more robots. Chen et al. [15] refined the Multi-Agent Proximal Policy
Optimization method for three-dimensional path planning in unmanned aerial vehicles.
Saqib et al. [16] implement Q-Learning alongside a Wall Follower algorithm to navigate
mazes effectively.

Moreover, DRL planning may suffer from slow and long path planning, even low-
security concerns [17]. To address these challenges, heuristics have been integrated into
DRL frameworks to enhance search speed and circumvent local optima. Hu et al. proposed
SP-ResNet [18], a methodology aimed at accelerating planning speeds relative to conven-
tional search and sampling-based techniques. Within this framework, double branches of
residual networks are employed to abstract global and local obstacles, therefore constrain-
ing the search space for the DRL agent and serving as a heuristic. Heuristically accelerated
reinforcement learning [19] has also been developed and applied to contingency planning
within complex dynamic environments, such as spacecraft traversing between planets.
This heuristic aids in generating an initial estimate for a reference solution, a process
traditionally reliant on human intuition, before subsequent numerical adjustments. Path
planning around the lunar poles [20] employed heuristics to expedite search processes and
reduce planning duration and resource consumption during transformations near lunar
poles. Two tuning parameters in the heuristics balance solution quality with runtime when
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considering energy. The speed gains did not significantly sacrifice path quality. Artificial
potential field (APF) is used in motion planning for safe autonomous vehicle overtaking
[21] as the velocity difference potential field and acceleration difference potential field,
which influence the path planning as heuristic. This approach enhances the feasibility and
effectiveness of overtaking maneuvers in automated driving scenarios.

Although DRL has significantly been developed, most of the research in DRL does not
perform well with obstacles or multiple rovers because rovers can be obstacles to each other.
Path-planning methods must wait for convergence, which will not perform well when
navigating uncharted lunar terrains. In response to these challenges, heuristic methods have
emerged, primarily aimed at expediting training processes or reducing time and resource
consumption. In our study, we propose an innovative approach that combines artificial
potential fields with deep reinforcement learning as a heuristic, facilitating collaborative
path planning for multiple rovers within a simulated lunar environment. Our novelty lies
in two points: the first is the combination heuristic of small obstacles, large obstacles, the
target, and other rovers, while the second is the design of rewards. This heuristic ensures
that rovers maintain dynamic distances from large obstacles and other rovers while also
optimizing paths to navigate small obstacles without significantly increasing path length.
Additionally, we integrate heuristic information about the target destination into the DRL
framework, providing dense rewards during target search periods. Second, we devise a
methodology that combines path information derived from heuristics with task-related
rewards obtained at the target destination. This hybrid approach ensures that rovers move
safely while fulfilling their collection and delivery objectives.

The structure of the article is described below. Section 2 demonstrates the definition
of the path-planning problem, the construction of lunar surface featuring various sizes
of obstacles, places for mining, and the station to handle or blend the above materials.
Furthermore, this section elucidates our methodology for representing the environment
during Deep Reinforcement Learning (DRL) training. Section 3 mainly proposes the
dissimilarity between multi-agent reinforcement learning and traditional single-agent
reinforcement learning. We detail our approach to addressing the challenges posed by
multi-agent scenarios, wherein the Artificial Potential Field (APF) method serves as a
heuristic to enhance obstacle avoidance and rover navigation within the DRL framework.
Additionally, this section discusses the planning agent’s capability to generate actions
encompassing waiting, collection, and material processing beneath the blending apparatus,
therefore serving as a task planner. In Section 4, comprehensive experiments of training
and testing are proposed to show the adaptation of different obstacles out of view while
finishing the task of collection and processing at the same time. Finally, the conclusions are
provided in Section 5.

2. Modeling for the Lunar Environment

This section describes our consideration of the environment from the lunar surface,
which is all designed as geometry points with extra flags or information.

2.1. Specification of the Lunar Environment

The lunar environment can be specified as follows. Suppose that there are N rovers,
Nm mining sites that contain N′m types of materials to collect. The blender can accept Nrb
rovers once at a time, and Nmb types of materials are about to be handled together, leading
to cooperation. Please note that Nmb ≤ Nrb is necessary, or our blender cannot handle
this task. A rover will cost b power to move one distance with a constant speed v. If the
rover i selects to collect resources at the j mining site, it will spend Dij distance and tij
time to arrive at the mining site. Dk and tk will be used from the k-th mining site to the
blender. The max power in the rover i is Bi. Therefore, the problem above can be expressed
as follows:
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min
N
∑

i=1

Nm
∑

j=1

(
Dij + c1tij

)
+

Nm
∑

k=1
(Dk + c2tk)

s.t.


Nmb ≤ Nrb

N
∏
i=1

bti ≤ Bi = true

(1)

Furthermore, rovers will depart from different points, but the time difference between
arriving at the blender should be as short as possible. The entire environment can be
represented as Figure 1.

Blender

Mine 0

Mine 1

Large obstacles

Small obstacles

Rover 0 Rover 1

Mine 

N

Mine 

N-1

Rover 

N-1

Rover 

N

Figure 1. The design of the lunar environment.

There are variable types of obstacles on the moon’s surface: small rocks, large rocks,
small craters, and large craters. For small rocks and small craters, lunar rovers can go across
or step in and out easily, which only needs more energy. Therefore, they would not inhibit any
action except consuming more energy for this kind of obstacle. In contrast, large rocks and
large craters present significant challenges and hazards. Once rovers come across or come
near, they may not move across, even fall off the craters, or must move backward because of
the lack of power, which influences the function of the rovers. These two obstacles are about
to be bypassed, as shown in Figure 2. When confronted with small obstacles, rovers may opt
to maneuver around them or proceed directly through them, albeit at the expense of increased
time and resource consumption. However, when encountering large obstacles, rovers must
prioritize navigating around them to ensure a safe pass.

Small obstacles

Not hard to pass with more energy

Large obstacles

Can not pass under any circumstances

Figure 2. Obstacles such as craters or stones in different sizes.
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2.2. The Way of Simulating in the Deep Reinforcement Learning Environment

Since not all pieces of information can be expressed precisely in training, we have
designed a framework to represent the environment in the simulated environment. This
framework employs a grid-based system to delineate the environment, enabling the ac-
curate recording of rovers, mining sites, blenders, and obstacles based on their respective
coordinates and supplementary information. For example, points for mining sites and
blenders will be marked as “mineX” and “mix” where X represents the number of the
mining site. The positions of the rovers are indicated as ‘roverX’. Definitions of points
are in Table 1. Additionally, waypoints within the grid are categorized into three distinct
types based on the presence and magnitude of obstacles: waypoints designated as 0 denote
normal navigable points, allowing rover access without hindrance; those labeled as 1 de-
note waypoints obstructed by small obstacles, requiring additional energy expenditure for
traversal; whereas waypoints marked as 2 denote locations obstructed by large obstacles,
rendering them impassable to rovers. Each obstacle is represented by a cluster of adjacent
waypoints, which may consist of one or multiple waypoints depending on the obstacle’s
size and configuration. We consider the rover moving in four different directions, i.e.,
if the rover’s position is (x, y), the next position without considering obstacles can be
(x + 1, y), (x− 1, y), (x, y− 1), (x, y + 1).

Table 1. Representation of different points.

Name Mark or Value

Mining site “mineX”
Blender “mix”
Rover “roverX”

Small obstacles 1
Large obstacles 2

Other accessible points 0

To simulate the uncertainty of our environment, two methods are set up to ensure
that the DRL agent is adapted to the uncertain environment. First, obstacles are generated
randomly, regardless of position or size, indicating that rovers may adapt to different
situations or terrain. Second, to simulate the vision on the moon, the environment is
restricted to each rover’s path planning, which indicates that rovers can only obtain the
target waypoint and the status nearby (within several grids). It can be expressed as follows.
For the rover i, the information the rover can obtain is < Wt, Wn >.

Wn = [W1, W2, ..., W(2n+1)×(2n+1)] (2)

The rover can obtain the grid n steps nearby, so the vision is considered to be a
(2n + 1) × (2n + 1) square. In this way, the agent can guide the rover to complete the
mining and mixing in a highly uncertain environment.

3. Multi-Agent Deep Reinforcement Learning with APF

This section will establish a heuristic adaptation based on the existing multi-agent deep
reinforcement learning to guide and plan for rovers to mine and produce the materials.

3.1. Deep Reinforcement Learning Overview

For the timestep t that starts from 0, the environment provides the agent with an
observation St, and the agent responds by selecting an action At. Then, the environment
provides the next reward Rt+1 and state St+1, where the discount γt+1 is set as a hyper-
parameter. This progress is the Markov Decision Process (MDP), represented by a tuple



Aerospace 2024, 11, 253 6 of 24

< S, A, T, R, γ >. S is a finite set of states, A is a finite set of actions, T in Equation (3) is the
transition function or stochastic transition function.

T(s, a, s′) = P[St+1 = s′|s, a] (3)

R in Equation (4) is the reward function of the current states and the next step action.
γ ∈ [0, 1] is the discount factor.

R(s, a) = E[Rt+1|St = s, At = a] (4)

The DQN algorithm is established based on MDP [9]. A neural network has been
used to express the policy π(s, a) from a replay memory buffer that holds the last certain
number of transitions, i.e., (St, At, Rt+1, γt+1, St+1). The parameters of the neural network
are optimized using stochastic gradient descent to minimize the loss(

Rt+1 + γt+1max
a′

q′θ
(
St+1, a′

)
− qθ(St, At)

)2
(5)

where t is the time step, θ′ represents the neural network parameters or the network policy
from the target network, q′θ is the Q value through policy θ′, and θ represents the ones from
the online network, qθ is the Q value through policy θ, which is exactly the training and
updating network.

3.2. Adaptation for Multi-Agent

The multi-agent reinforcement learning can be represented as a tuple

< X, U1, ..., Un, T, R1, ..., Rn > (6)

where n is the number of agents. X is the discrete set of environment states, Ui, i = 1, . . . , n
describe the discrete sets of actions available to the agents, which produces the joint action
set U.

U = U1 × ...×Un (7)

T is the state transition probability function.

T : X×U× X→ [0, 1] (8)

R are the reward functions of the agents.

R : X×U× X→ R, i = 1...n (9)

However, T can be programmed in different ways. T can be trained and stored in one
neural network, which is like the centralized policy, or in a separate neural network kept
by each agent for one piece, which is like the decentralized policy.

Similarly, various approaches can be adopted to determine the action set U. In the
first approach, utilizing a single neural network, actions can be provided simultaneously.
This entails the neural network generating an output vector with a length greater than one,
encompassing multiple actions at once. Alternatively, actions can be decided cyclically,
with each action being determined sequentially. This sequential decision-making process
does not significantly impact time-sensitive environments, as it operates swiftly. There
is another way that actions are decided only when necessary, such as when the former
durative action is made. Even in decentralized scenarios, where decision-making may be
distributed across multiple agents, these decision-making methods can still be applied.
However, in decentralized settings, communication patterns may vary, particularly if
communication costs are high. Differences between the list of the modes in Table 2. We
select the centralized and cycling decision mode in this article.
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Table 2. Differences among the decision mode.

Policy Mode Action Sequence Mode Pros Cons

Centralized
Simultaneous Good for time-sensitive decision Modify the neural network and

cannot use ways in single agent
Cycling Easy to code and use Cannot decide instantly
Conditional Flexible, can deal with complex problems Hard to design the planning system

Decentralized
Simultaneous
Cycling
Conditional

Pressure of decision can be separated to
multiple devices

Need time and bandwidth for
communication

3.3. Improvements of the Multi-Agent Policy

In this work, we choose to use the centralized model with the decision to action the
cycling because we do not design the time for each action, so the decision model the cycling
is acceptable.

Usually, the observation of the environment will be designed separately for each
rover. However, we compress the observation to minimize the data input by removing the
repeated information from the rovers.

We define that the position of the i-th mining site is Pi
m, the position of the i-th rover

is Pi
r , the position of the blender is Pb, and the positions of the 8 nearby points of the i-th

rover are Pi
ra.Ci represents whether the collection of the i-th rover is prepared. The origin

input OI of the centralized cycling way is:

oi =< Pi
ra, Pi

r , Pb,< P1
m, ..., PNm

m >, Ci > (10)

OI = [o1, ..., oN ] (11)

Please note that the Pb and Pi
m are duplicated in all the oi so we can use one of these

inputs because we use the centralized model, which becomes:

OI =< Pra, Pr, Pb, Pm, C > (12)

In this way, the representation of the environment will be largely compressed, and it
will benefit training.

3.4. APF as Heuristic in DRL

Rovers can avoid obstacles while moving in the environment because the DRL agent
has gained experience with different decisions in different situations. Nevertheless, while
the agent prioritizes the shortest path, the resultant trajectory may not always ensure rover
safety. There exists the risk of the path being in close proximity to large obstacles or leading
to collisions with other rovers. To address this concern, we advocate for the integration of
APF as a heuristic within the training process, guided by rewards. This heuristic aids in
directing the search and training efforts, ensuring that the generated paths prioritize safety
alongside efficiency.

The heuristic can be represented as:

h̄ = αl h̄l + αs h̄s + αr h̄r + αt h̄t (13)

where α represents the rate of each heuristic. For a waypoint P = (Px, Py), the heuristics
h̄l(P), h̄s(P), h̄r(P), h̄t(P) are as follows.

h̄l represents the heuristic of large obstacles, combined as a repulsive potential that
influences a short distance but a large gradient. The purpose of h̄l is to make rovers move
away from the obstacles, especially when they become near enough. h̄l is given by a
repulsive artificial potential field Ul(qo) where qo is the distance between the rover and a
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large obstacle ol among all large obstacles Ol . Fl is the force generated by the field Ul .

Ul(qo) =

{
1
2 Kl(

1
qo
− 1

Dl
)2 , qo ≤ Dl

0 , qo > Dl
(14)

h̄l = − ∑
o∈Ol

Fl(qo) = − ∑
o∈Ol

−∇Ul(qo) = ∑
o∈Ol ,qo<Dl

Kl

(
1

Dl
− 1

qo

)
1

(qo)2 (15)

h̄s represents the heuristic of small obstacles, combined as a repulsive potential that
influences a long distance but a small gradient. The purpose of h̄s is to make rovers move
away from the obstacles. However, when rovers need to choose a long way to move around
small obstacles, the energy of moving across the small obstacles may be lower than moving
around. h̄l is given by a smaller repulsive artificial potential field Us(qo) where qo is the
distance between the rover and a small obstacle os among all small obstacles Os.

Us(qo) =

{
1
2 Ks(

1
qo
− 1

Ds
)2 , qo ≤ Ds

0 , qo > Ds
(16)

h̄s = − ∑
o∈Os

Fs(qo) = − ∑
o∈Os

−∇Us(qo) = ∑
o∈Os ,qo<Ds

Ks

(
1

Ds
− 1

qo

)
1

(qo)2 (17)

h̄r represents the heuristic of other rovers, combined as a repulsive potential that
influences a short distance but a large gradient. The purpose of h̄r is to keep the rovers
away from each other. When rovers become next to each other in areas except collaboration
areas, such as the mixture area, the h̄r will be given in a short distance. h̄r is provided by a
small size large gradient repulsive artificial potential field Ur(qi) where qi is the distance
between the i-th rover, q↓ is the minimum distance among all rovers.

Ur(qi) =

{
1
2 Kr(

1
qi
− 1

Dr
)2 , qi ≤ Dr

0 , qi > Dr
(18)

h̄r = −maxi∈N Fr(qi) = maxi∈N∇Ur(qi) =

{
Kr

(
1

Dr
− 1

q↓

)
1
q2
↓

, q↓ ≤ Dr

0 , q↓ > Dr
(19)

h̄t represents the current target heuristic, combined as an attractive potential. The
purpose of h̄t is to lead the rover to the target through a one-time given heuristic at different
distances. h̄r is provided by a quadratic curve and a linear artificial potential field Ut(qt)
where qt is the distance between the rover and the current target.

Ut(q) =
{ 1

2 Ktq2
t , qt ≥ Dt

DtKtqt − 1
2 KtD2

t , qt < Dt
(20)

h̄r = −Fr(qt) = ∇Ur(qt) =

{
Ktqt , qt ≥ Dt
KtDt , qt < Dt

(21)

3.5. Path-Planning Method Based on the Rainbow DQN

Our planning problem has discrete action and state spaces where DQN is widely
used. We choose the most developed DQN algorithm, called Rainbow DQN [22], which
combines several improved DQN algorithms into one algorithm and performs well in
multiple environments. The basic framework of Rainbow DQN and the combination of
heuristics of Section 3.4 are shown in Figure 3. The agent samples or predicts an action
from the environment in which the state and the reward are generated and stored in the
replay memory buffer with the action. Then the agent gains < s, a, r, s′ > from the buffer
and calculates the two Q-values through the network parameters θp and θt, respectively,
then the loss. Loss generates the gradient ∆θp and updates the Q-Predict Net through
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back-propagating. Q-Predict Net and Q-Target Net share the same network structure so that
Q-Predict Net can update itself through parameter copying. The heuristics are considered
to be rewards in the training period, which leads rovers away from obstacles and each
other while leading to the targets.

When the agent leads rovers to mining and blending, actions will be decided and
recorded, which can be defined as action sequences. The action sequences are the solution
to the planning problem, described as the actions transforming the environment from the
initial states to the target states.

Model

Q

Target Q

Params

Copy

Regularly

Agent

Q-Predict

Q-Target

Loss
Update Q

Replay Memory Buffer

Sample

Or

Predict 

Learn

a

a, s ,rs, a, r, s’

Double Q-

Learning

Prioritized 

Replay

Multi-step 
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Dueling 

Networks

Noisy

Nets

Origin   DQN

Target
Other 

Rovers
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obstacles

APF Heuristics

Small 

obstacles
Moving 
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left/right
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Reward
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Rover 0

Rover 1
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.

.
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Act 0
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Act 1
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Act n
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…

Act 0

Rover 1

Act 1

Rover 1

Act n

Rover 1
…

Act 0

Rover N

Act 1

Rover N

Act n

Rover N
…

Figure 3. The planning method of Rainbow DQN with heuristics.

4. Experiments

This section simulates the methods proposed in this paper for lunar rovers collaborated
operation with uncertainty through deep reinforcement learning. First, considering the real-
world tasks for exploring lunar rovers, we establish the training and validating environment
of the simulated DRL environment. Second, training and validation curves are provided to
prove the effectiveness of training.

4.1. Environment Establishment

We establish an environment with two rovers and two mining sites, which contain
different materials in each site. One blender and 80 obstacles where the ratio of small and
large obstacles is 7/3. It means

N = 2, Nm = N′m = Nmb = 2, Nrb ≥ 2 (22)

We select Nrb = 2 here. One rover can only collect its material from the mining area
and move near the blender together. If one rover moves to the target too early, it will wait
for the other rover, during which a penalty reward will be given. The size of the map is
20× 20, and each rover can access the nearby 4 points information, which means the size
of the input vision of each rover is (4× 2 + 1)2 = 81. The size of one rover is 1× 1 in the
grid. The size of each obstacle is also 1× 1 in the grid, but they can be contiguous.

Our simulation code is written in Python 3.10 and benefits from Tianshou 0.4.9 and
PyTorch 1.11 framework. The coding and running platform is a PC running Windows 10
with Intel Xeon Platinum 8269CY@2.50 GHz, 32 GB RAM, and NVIDIA GeForce 3080ti.
Parameters for training in Rainbow DQN modified through cycling action for multi-agents
are shown in Table 3. Table 4 shows the reward values in different situations. Heuristics
are also added to the rewards with the rate of 0.6 for repulsive potential and 5 for attractive
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potential. Eight threads have been used for training. Training has been run 3.24× 107 times.
Although the sum of the target reward is 800 + 50× 2 + 100× 2 = 1100, moving across
small obstacles will gain rewards below 0, so we consider convergence as the sum of the
reward exceeding 1000.

Table 3. Hyper-parameters for Rainbow DQN training.

Name Value

Epsilon 0.6
Buffer Size 80,000
Learning Rate 3× 10−5

Discount Rate 0.9
Batch Size 64
Neural Network Size [512, 256]
Target Update Freq 320

Table 4. Reward for each situation.

Name Value

Small Obstacles −3
Large Obstacles −8
Crash −10
Mining 100
Arrive to points 50
Put in blender 800
Wait −2
Normal −0.5

4.2. Multi-Agent Training

To train the agent to adapt to different terrains on the partially observed moon surface,
we employ a strategy of generating a new environment at each epoch during the training
phase. Obstacle points will be arranged in the new area randomly and separately to
simulate the moon. Furthermore, 200 environments are created as validation to verify the
training results and make a comparison with the A-Star algorithm. Comparisons among our
RL method with APF, the state-of-the-art multi-agent path planning RL algorithm Multi-
Agent Proximal Policy Optimization (MAPPO) [15], and the Rainbow DQN algorithm
without heuristics are also proposed to demonstrate the efficiency of our method.

Figures 4–7 show the agent’s response in the training process. The training figures
show the convergence of the training from 4× 106 steps. After that step, the agent explores
the environment and obtains a much better path and solution to the planning problem,
illustrated in Figure 5. The loss value decreases slightly after the 4× 106 steps, which
means that the agent has extensively explored the environment and becomes stable when
faced with different data from other environments. Furthermore, the length of an episode
decreases from the maximum of 650 to 250, which means that the trained agent can complete
the task in about 250 steps. However, the training process involves random decisions that
enhance the agent’s exploration. Even if there are random explorations, the agent can still
complete the planning task during this training period.

The MAPPO algorithm converges to a local optimum during training, but such an
agent is not enough to generate paths and plans for rovers, which is indicated in the
training reward. Even when we change the hyper-parameter related to exploring, it shows
no better result. So, we will not do any further tests on the algorithm. The pure Rainbow
DQN algorithm with only the reward for collecting and terminal will also converge to a
local optimum without the guidance of our proposed heuristic, which is treated as the
dense reward in the Rainbow DQN. Like MAPPO, the agent in such optima cannot plan
successfully either.
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The two algorithms will only explore the epsilon-greedy policy, which is used in most
RL algorithms. However, when it comes to the partially observable environment like the
lunar surface environment we have used, it lacks global information and guidance and will
only gain a positive reward when achieving the target of collection or mix. This cannot
support the long-term searching, so even if we have adjusted the hyper-parameter of explo-
ration (‘eps’ in figures), it does not show too much difference, as shown in Figures 8–15.
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Figure 4. Training reward in each step.
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Figure 5. Training loss of the RL.
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Figure 10. Different episode length in Rainbow DQN when ‘eps’ change.
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Figure 12. Different training reward in MAPPO when ‘eps’ change.
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Figure 13. Different training loss in MAPPO when ‘eps’ change.
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Figure 15. Different episode count in each training epoch when ‘eps’ change in MAPPO.

4.3. Comparison to the Multi-Agent A-Star Algorithm

This section presents a comparative analysis between our proposed algorithm and the
multi-agent A-Star path planning algorithm [23] with small and large obstacle avoidance
heuristics. Our DRL method can plan both the task and the path, during which the
cooperative actions are added to decrease wasted time and collision between rovers, with
the guide of 4 different kinds of heuristics through rewards. All the 200 randomly generated
validation environments are chosen as the comparison. The A-Star algorithm plans paths
by considering safety distances [24], accounting for the additional size of the rover and
assessing multiple nodes concurrently. However, it is still applied to the whole environment
rather than only the partially observed environment. In our comparison, the paths for two
rovers are planned independently, from the mining site to the blender, as A-Star primarily
serves as a path-planning method rather than a task-planning approach. In the visual
representations of the planned paths, initial and target points are denoted by circles, while
the direction of the paths is depicted by triangles. Both circles and triangles are color-coded
to correspond with the trajectory of the rover. This visual aid facilitates the direction of the
paths from the two algorithms.

Figure 16 shows the path lengths planned by RL and A-Star in a simulated area of size
20× 20. The agent in RL achieves a 91.5% success rate in task planning and path planning
in 200 validation environments. Most of the path lengths from A-Star are shorter than those
from RL because the agent in RL has been trained for resource optimization by reducing
the number of moves across small obstacles. The agent has also been designed to shorten
the path, and the average RL length (50.58) is slightly lower than A-Star’s (55.26). This
means that in the path planning part, the RL can plan an acceptable path compared to the
path of A-Star.
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Figure 16. Path length between RL and A*.

Figure 17 shows the paths generated by the RL planning method and A-Star in the
same environment. The A-Star path has longer turning times, making it more difficult
for the control program on the rovers. Also, the path from the RL moves across the small
obstacles less than the A-Star one because there is optimization in the DRL method, while
A* can only move according to the given heuristics. Table 5 shows the action sequences
for the rovers and the important actions after the path planning. The planning agent
can generate both actions for moving, which indicates the path planning, and actions for
executing, which means the task planning.

Figure 17. Path planned by RL and A*, the solid ones are from RL and the dashed ones are from A*.
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Table 5. Action sequences of rovers. The grey shows the two rovers have same action in different
action order. The pink demonstrates there are waiting actions in planning to align the termination
time. The yellow shows the rovers terminate at a similiar time.

NO. Rover 0 Action Name NO. Rover 1 Action Name

6 Moving down 19 Moving right
7 Collect 20 Collect
8 Moving up 21 Moving left
... ... ... ...
37 Wait 36 Moving left
38 Moving up 37 Moving left
39 Moving up 38 Moving left
40 Moving up 39 Moving down
41 Mix 40 Mix

Figure 18 shows how often the rovers move across the small obstacles, indicating the
quality of the path-planning solution. It appears that most of the solutions from the RL
agent have fewer small-obstacle crossing times than the A-Star solution. The average time
of the RL plan is also less than that of the A-Star plan. For validation environments, the RL
agent performs better than the A-Star.

Figure 19 indicates the dangerous situations in which the algorithm leads the rovers.
The number of RL agents that perform better is greater than the A-Star ones, and the
average is better. In some of the validation environments, A-Star performs better because
the RL agent only has partially observed information. Even if it can avoid large obstacles,
sometimes it will still be near large obstacles.

Figure 20 shows the entire planning time and response time of the two methods.
Here, we define the response time as the time until the agent can generate one action or
path after the rovers complete tasks. The planning time of the RL agent also includes
the planning time for collecting and delivering actions. The figure shows that even with
the task planning time, the calculating time is still slightly lower than the A-Star, which
only plans the paths. However, regarding the response time, the RL agent performs better
than the A-Star method. Because the RL agent can generate one action according to the
current state in the environment, the A-Star method needs to search till the target and
then return the whole plan, which costs more time. Response time is valuable, especially
in emergencies.
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Figure 18. Moving across small obstacle times.
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Figure 19. Being near large obstacle times.

Table 6 illustrates the statistics of paths from the RL-trained agent and the multi-agent
A* with improved obstacle avoidance. Our RL with APF training and planning method
performs better than multi-agent A* from all aspects except the standard derivation of the
path length. It performs better, especially with the calculation and responding duration.
The multi-agent A* needs to plan separately, combine paths, and solve conflicts among
paths, which costs more time than the direct decisions made by the RL agent.

We have identified two primary reasons for the occurrence of planning failures within
the RL. First, the local optima in training. Most cases should have had a better planning
result, but all of them terminate after several decisions when one rover starts to make an
incorrect decision. For example, consider a scenario where two rovers approach each other
closely. When they decide to move closer, If both rovers decide to move even closer, they
will incur punishment rewards from the heuristic proposed in our methodology, signaling
the undesirability of the action due to safety concerns. However, the rovers may persist
in attempting to move closer, perpetually receiving penalization until the environmental
step limit is reached. This should be blamed on the deficiencies in the training algorithm or
shortcomings in the exploration period, leading to the local optima.
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Figure 20. Calculating and responding duration.
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Table 6. Statistics of paths from RL and Multi-Agent A* with a format of Average (Standard derivation).
Only successful plans are encountered here.

RL MA-A*

Path length 50.68 (15.46) 55.26 (14.05)
Moving across small-obstacle times 4.96 (2.71) 8.64 (3.59)
Being nearby large obstacle times 19.47 (10.54) 24.44 (16.47)
Calculating duration (ms) 14.08 (4.36) 6640.72 (812.75)
Responding duration (ms) 0.25 (0.006) 3435.64 (657.75)

Second, another contributing factor to planning failures lies in the proposed heuristic’s
inability to consistently fulfill the current target under all circumstances. When rovers
move into an area encircled by large obstacles, a conflict emerges between the heuristic
guiding obstacle avoidance and the heuristic directing movement toward the target. Conse-
quently, the rovers persist in attempting to advance towards the large obstacles despite the
impossibility of reaching them, resulting in gaining a punishment reward. Furthermore, it
did not find a better solution because of the local optima in training. Some of the failure
planning results are indicated in Figure 21.

(a) Rovers moving to the edge (b) Rovers meeting
(c) Rovers trapped by 

surrounded large obstacles

Figure 21. Examples of failure path planning.

4.4. Test in a Real Moon Topography from the Digital Elevation Model (DEM)

To further validate the efficacy of our task and path-planning methodology in a real
lunar surface context, a map from Leibnitz beta plateau near the moon’s south pole sites
is selected as the planning map of two rovers. The processing site for lunar materials is
located within a flat region, while the rovers are tasked with collecting lunar soil or rocks
from areas adjacent to small obstacles positioned at the periphery of the flat terrain. The
agent trained with the randomly generated environments plans the action sequence of
moving and collecting, and the paths for two rovers is shown in Figure 22. This visual
representation serves to illustrate the planned trajectories of the rovers, affirming the
effectiveness of our task and path-planning approach in real lunar surface scenarios.
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Figure 22. Path planned by RL in an area from DEM near the south pole.

Figure 22 and Table 7 demonstrate the ability of the trained agent. It can complete
the entire planning period even if it has not been trained in this area, indicating that the
planning agent can generalize and plan in similar areas at an acceptable cost.

Table 7. Plan statistics from RL for the DEM map.

Parameter Name Value

Moving across small-obstacle times 0
Being nearby large obstacle times 2
Calculating duration 152.73 ms
Responding duration 0.38 ms

4.5. Training and Testing for More Rovers

The proposed method based on Rainbow DQN for task and path planning can also
be adapted to more than two rovers. However, one single trained agent can only solve
the planning problem of one certain number of rovers, which means solving three rovers’
planning problems requires additional training. So, we trained again for a three-rover task
and path-planning problem with the proposed heuristics and randomly generated maps.
Comparisons between two and three-rover training are demonstrated in Figures 23–26.

Smooth training rewards converge until 500, and original training rewards reach above
1000 many times after steps 4.6× 106, indicating convergence. Furthermore, the length
of episodes in Figure 25 demonstrates that the average length of each training episode
has reached 400 from the limitation length of 1000, indicating the agent has learned how
to plan for three agents. However, when faced with three agents instead of two agents,
Figure 23 illustrates that the agent needs to explore the environment and learn more times to
understand the available planning experiences. It needs more steps to achieve convergence.
Figure 27 is the path planned by the trained agent. All three agents can collect the resource
from the mining point and reach the destination safely without accessing the large obstacles
and moving across the less small ones.
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Figure 23. Training reward in each step.
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Figure 24. Training loss of the RL.
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Figure 27. Path planned by RL for three agents.

5. Conclusions

We introduce a novel approach to task and path planning utilizing multi-agent deep
reinforcement learning (DRL) in conjunction with artificial potential fields. The randomly
generated obstacles are represented as points in the grid-simulated world with extra
information. These obstacles are categorized into two types: small barriers, which impose
increased energy costs but do not impede rover movement, and large barriers, which are
impassable for rovers. To train our path-planning agent, we employ Rainbow DQN, a
variant of the DRL methodology, to navigate the complex obstacle-laden environment
and determine optimal paths to collect materials and deliver them to the blender. In our
simulation setup, two rovers are deployed, operating collaboratively to handle materials
efficiently. To augment the training process, we propose the incorporation of heuristic
strategies based on repulsive potential fields for obstacle and rover avoidance, as well
as attractive potential fields for continuous reward guidance towards the target. These
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heuristics serve to enhance the efficiency and effectiveness of our proposed path-planning
methodology in training.

We also proposed a new way of representing the state of the environment and the
rovers, aiming to reduce the complexity of the state space by consolidating observations
and adopting a cyclical decision-making approach. Through experimental evaluations, we
have demonstrated the effectiveness of our approach. Our findings illustrate that rovers
can move, avoiding large barriers and reducing the number of small barriers that pass. The
agent guides the rovers on a path and tries to avoid small obstacles while decreasing the
waiting time near the blender to improve collaborative efficiency. The comparison between
our method and the multi-agent A-Star path-planning algorithm with improved obstacle
avoidance shows that our approach can plan a better path on which fewer small obstacles
will be passed without largely increasing the paths’ length and guide the rovers through
heuristics in training even if there are continuous targets while A-Star needs to pre-define
targets. Our method can generate the path and the action sequence together faster than the
multi-agent A-Star algorithm, which purely plans paths. This indicates that our method
can solve certain jobs quickly and safely. Our method is also suitable for more rovers’ path
planning, and it can also help them plan a safe path quickly on a real moon map from DEM.
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