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Abstract: To fully leverage the spatiotemporal dynamic correlations in air traffic flow and enhance
the accuracy of traffic flow prediction models, thereby providing a more precise basis for perceiving
congestion situations in the air route network, a study was conducted on a traffic flow prediction
method based on deep learning considering spatiotemporal factors. A waypoint network topology
graph was constructed, and a neural network model called graph convolution and self-attention-
based long short-term memory neural network (GC-SALSTM) was proposed. This model utilized
waypoint flow and network efficiency loss rate as input features, with graph convolution extracting
spatial features from the waypoint network. Additionally, a long short-term memory network based
on a self-attention mechanism was used to extract temporal features, achieving accurate prediction
of waypoint traffic. An example analysis was performed on a typical busy sector of airports in the
Central and Southern China region. The effectiveness of adding the network efficiency loss rate as
an input feature to improve the accuracy of critical waypoint traffic prediction was validated. The
performance of the proposed model was compared with various typical prediction models. The
results indicated that, with the addition of the network efficiency loss rate, the root mean square error
(RMSE) for eight waypoints decreased by more than 10%. Compared to the historical average (HA),
autoregressive integrated moving average (ARIMA), support vector regression (SVR), long short-term
memory (LSTM), and graph convolution network and long short-term memory network (GCN-LSTM)
models, the RMSE of the proposed model decreased by 11.78%, 5.55%, 0.29%, 2.53%, and 1.09%,
respectively. This suggests that the adopted network efficiency loss rate indicator effectively enhances
prediction accuracy, and the constructed model exhibits superior predictive performance in short-
term waypoint traffic forecasting compared to other prediction models. It contributes to optimizing
flight paths and high-altitude air routes, minimizing flight delays and airborne congestion to the
greatest extent, thus enhancing the overall efficiency of the entire aviation system.

Keywords: air traffic management; traffic flow prediction; spatiotemporal correlation; graph convo-
lution; long short-term memory network; self-attention mechanism

1. Introduction

To adapt to the construction and development of world-class airport groups in China
and meet the rapid growth in aviation transport demand within the airport group, the
structural layout and operational modes of the route network under the jurisdiction of the
airport group have become increasingly complex. As time progresses, the strong coupling
and correlation among multiple traffic flows running between various waypoints become
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evident, leading to spatial-temporal cascading reactions that extend to larger scales. This
results in a complex and variable operational situation, making it difficult to grasp short-
term changes in traffic flow patterns. Consequently, sudden capacity and flow imbalances
occur frequently, posing significant safety risks on the airspace operation of the airport
group. Accurate exploration of congestion patterns in the airport group requires urgent
attention. To gain a scientific understanding of the sudden changes in capacity and flow
imbalances at various waypoints within the group, it is crucial to study the spatiotemporal
characteristics of traffic data at specific waypoints within an airport group. This research
aims to develop short-term forecasting methods for traffic flow at waypoints within an
airport group.

Currently, research on air traffic flow forecasting both domestically and internationally
is mainly focused on two aspects. Firstly, it involves predicting traffic flow based on
the four-dimensional trajectories of aircraft, targeting different airspace units such as
waypoints, air segments, sectors, and airports. This is primarily carried out using flight
plan data and employing trajectory matching algorithms, adaptive trajectory clustering
algorithms, planned trajectory, and radar trajectory matching and correlation algorithms.
These methods perform four-dimensional trajectory prediction and forecast traffic flow
in airspace units [1–3]. Secondly, it relies on statistical analysis of historical traffic data
for different airspace units such as waypoints, air segments, sectors, and airports. This
includes classical models primarily based on historical average (HA) model, autoregressive
integrated moving average (ARIMA) model, machine learning methods dominated by
support vector machines (SVM) [4], and deep learning methods that perform better in
multidimensional data processing and spatiotemporal feature extraction [5,6]. These deep
learning methods utilize various models such as T-GCN [7], STS-DGCN [8], Location-
GCN [9], AFMSTGCN [10], DGC-GRU [11], Bi-AGGCN [12], ConvLSTM [13], SCLN-
TTF [14], AG2S-Net [15], AAGC-GRU [16], improved Cao method [17], ATFPNet [18],
etc. By considering issues, such as spatiotemporal dynamic correlation mining of traffic
flow [19] and external factors (weather [20], holidays), these methods construct congestion
indices [21], delay indices [22], and employ various techniques to predict traffic flow [23]
and congestion indices.

In traditional research, the focus has primarily been on different spatial units, pre-
dicting traffic by individual aircraft trajectories or statistical analysis of historical data.
However, superior deep learning methods target a broader spatial domain, including
airspace grids, route networks, and airport networks. These methods, based on indicators
like flight delays and congestion indices, often overlook the inherent complex network
characteristics of airport group systems and the spatial correlations of traffic flow with
distance at route points. Additionally, they tend to neglect the similarity in traffic flow
characteristics of non-adjacent but functionally similar route points. In light of this, our
study focuses on route points in typical busy sectors within airport groups. Considering
the spatiotemporal features and correlations of traffic flow at each route point, we selected
traffic flow and network efficiency loss rate as indicators. We constructed a short-term
traffic flow prediction model based on the GC-SALSTM model. The method was validated
and analyzed using route points in typical sectors of the airport group airspace system in
the Central and Southern China region. The research findings can contribute to ensuring
the safe operation of large busy airport group airspace, improving short-term traffic flow
prediction capabilities, and reducing scattered sudden imbalances in capacity and flow.

The remaining sections of the paper are organized as follows: Section 2 provides an
analysis of the spatiotemporal features of air traffic flow at waypoints, covering aspects
such as the construction of network topology, spatiotemporal feature analysis, and selection
of indicators. Section 3 introduces the research methodology, starting with the overall
framework of the prediction method and its constituent modules. Section 4 demonstrates
the implementation of the method using real ADS-B data, presenting a detailed analysis
of the impact of different model parameters and input indicators on the prediction of
waypoint traffic flow, including a comparison with other prediction models. Finally,
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Section 5 concludes this paper, offering further discussions on the proposed method and
suggesting possible directions for future research.

2. Analysis of Spatiotemporal Characteristics of Traffic Flow at Route Waypoints
2.1. Construction of Topological Structure for Airport Group Route Network

Using flight plan data from a typical busy sector ZGGGAR22 in the Central and
Southern region airport group for the period of 1 March to 31 March 2019, a total of
15,267 flight records were analyzed for spatiotemporal traffic flow characteristics. The data
includes flight numbers, departure and arrival airports, planned route points, estimated
time over (ETO), actual time over (ATO), speeds, altitudes, and other relevant information.
Utilizing the ATO of flights from ADS-B data, we compile the actual traffic at each route
point. Route points with lower traffic (flow could be skipped) and insufficient data coverage
(or a high number of missing ADS-B positions) were excluded, resulting in 15 route points
chosen as prediction targets, with their geographic locations shown in Figure 1. This paper
adopts the UTC+8 time zone throughout.
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Figure 1. Diagram of typical busy sector ZGGGAR22 with route waypoints.

Figure 2 shows a route point network topology structure with 15 route points as nodes
and connections (flight segments) between route points as edges. This diagram can be
represented as G = (V, E), where V is the set of nodes, denoted as V = {vi|i = 1, 2, . . . M},
M represents the number of nodes in the route point network topology diagram G, M = 15,
and E is the set of directed edges, denoted as E =

{
eij
∣∣i, j = 1, 2, . . . , M

}
.
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The adjacency matrix of the route point network topology diagram G is represented as
A = (aij) ∈ RM×M, where i and j, respectively, represent M nodes. If there is a connection
between node i and node j, then aij = 1; otherwise, aij = 0.

2.2. Spatiotemporal Analysis of Traffic Flow at Route Waypoints

The traffic flow at each route point within the sector comprises the data that possesses
both temporal and spatial attributes, displaying significant operational periodicity, spa-
tiotemporal correlations, and other characteristics. To balance time precision and data
density, we have chosen a 15 min interval to analyze traffic flow at route points. Figure 3
illustrates the distribution of traffic at 15 route points in sector ZGGGAR22 during typical
days, segmented into 15 min intervals. It reveals that, in the temporal dimension, there is a
similarity in the trend of traffic variation at different route points throughout the day. In
the spatial dimension, significant differences exist in the traffic volume at various route
points. Therefore, analyzing the spatiotemporal characteristics of traffic flow at route points
is crucial for subsequent traffic predictions. For analysis, MAMSI is selected as it represents
the busiest typical route point within the airspace of the Central and Southern region
airport group, with nearly a thousand flights passing through daily, involving airports such
as Guangzhou, Shenzhen, and Zhuhai.
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2.2.1. Temporal Characteristics of Traffic Flow at Route Waypoints

Figure 4 depicts the traffic distribution of MAMSI on every Monday over four consec-
utive weeks in March 2019. By examining the similarity in traffic on the same day over the
four weeks, there is a high degree of resemblance in the Monday traffic trends, indicating
a consistent characteristic of periodicity in the traffic distribution every Monday at this
route point. By analyzing the traffic variations throughout the day, the traffic distribution at
MAMSI exhibits irregular fluctuations and temporal regularities. The irregular fluctuations
are characterized by non-smooth variations (not following the expected smooth curve
changes) between adjacent time intervals, with unpredictable moments and amplitudes
of fluctuation (due to various factors such as weather conditions, airport operational sta-
tus, etc.). Temporal regularities include traffic decreasing to the daily minimum level
between 03:00 and 06:00, a rapid increase from 06:00 to 08:00, maintaining a high level with
fluctuations until around 22:00, followed by a continuous decrease until 03:00 the next day.

To analyze the correlation of traffic time series at different time intervals for the
route point, Pearson’s correlation coefficients [24] were calculated between 10 adjacent
time intervals for route point MAMSI, with each time interval spanning 15 min. For
instance, when calculating the correlation between the 1st and 2nd time intervals, the
two sets of traffic time series data used were X = { f low1, f low2, . . . f low96} and Y =
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{ f low2, f low3, . . . f low97}. The results of the Pearson’s correlation coefficient calculations
for the 10 time intervals are shown in Figure 5, indicating a strong correlation between
adjacent time intervals. As the distance between time intervals increases, the correlation
between traffic time series gradually weakens.
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Figure 5. Pearson’s coefficient of the time series traffic flow at waypoint MAMSI for each time
interval.

2.2.2. Spatial Characteristics of Traffic Flow at Route Waypoints

Considering the topological network structure, we selected four typical route points
for spatial feature analysis. As shown in Figure 1, the four route points, SJG, MAMSI, JW,
and Y, are all located near the geometric center of the sector and serve as crossing points of
flight trajectories. They exhibit similarity in their physical spatial distribution. Building
upon this, Figure 6 displays the traffic distribution of these four typical route points at
various time intervals throughout a typical day. In Figure 6, the traffic distribution at each
route point shows spatial variations, indicating differences in traffic volume and trends
during different time intervals. For example, the traffic at waypoints SJG and MAMSI is
significantly higher than at waypoints JW and Y. However, within these differences, there
are also similarities.
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Figure 6. Traffic distribution chart for different waypoints on a specific day.

We calculate Pearson’s correlation coefficients between traffic flow time series of the
15 route points within the ZGGGAR22 sector for all 96 time intervals throughout the day
on 1 March 2019. We select any two waypoints, for instance, ELKAL and AKNAV, and
calculate Pearson’s correlation coefficients for the traffic flow time series. The two sets
of time series data used for calculation are X =

{
f lowELKAL

1 , f lowELKAL
2 , . . . f lowELKAL

96
}

and Y =
{

f lowAKNAV
1 , f lowAKNAV

2 , . . . f lowAKNAV
96

}
. The results of Pearson’s correlation

coefficients for the time series of the 15 route points are shown in Figure 7. In combination
with Figure 1, it can be observed that the traffic flow time series of adjacent and directly
connected route points exhibit stronger correlation. Additionally, there is a strong corre-
lation between the traffic flow time series of route points that are not directly connected
but functionally similar (different locations share similarities in their geographical features,
purposes, or services), such as between ELKAL and LAGEX, despite not being directly
connected, both serve as sector boundary points. Conversely, route points that are not
adjacent and not directly connected tend to have weaker correlations in their traffic flow
time series.

Figure 7. Pearson’s coefficients of the traffic time series for 15 waypoints.
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2.3. Selection of Spatiotemporal Feature Indicators

It is crucial to judiciously select the spatiotemporal feature indicators for predicting
model inputs to enhance prediction accuracy. In addition to historical route point traffic,
this study incorporates the route point network efficiency loss rate, a metric commonly
used to gauge the importance of nodes in complex networks [25]. While historical traffic
reflects temporal characteristics, the route point network adjacency matrix only considers
spatial connections between route points, neglecting factors such as the length of segments
connecting route points and their impact on spatial correlations of route point traffic.
Therefore, this study augments the input indicators with the route point network efficiency
loss rate, aiming to comprehensively incorporate spatial features of the route point network
into the model. This approach aims to improve prediction accuracy, particularly for crucial
bottleneck route points.

2.3.1. Traffic Flow at Route Waypoints

Route point traffic flow refers to the number of flights passing through a specific route
point within a given statistical time, reflecting the traffic load at that route point. Commonly
used time intervals for traffic statistics include 15 min, 30 min, and 60 min. In this context,
the actual traffic flow at each route point within a 15 min interval is denoted as f .

2.3.2. Network Efficiency Loss Rate

The network efficiency loss rate is a metric used to assess the importance of node i in a
network and is expressed as follows:

Eloss
i =

E − Eremain
i

E
(1)

where E is the initial network efficiency, Eremain
i is the remaining network efficiency after

removing node i and its edges, and Eloss
i is the network efficiency loss rate after removing

node i. A higher network efficiency loss rate for node i indicates greater importance of the
node in the network. The formula for calculating network efficiency E is as follows:

E =
1

p(p − 1)∑
i ̸=j

1
Dij

(2)

where p is the total number of nodes in the network, and Dij is the shortest distance between
node i and node j. If there is no edge between node i and node j, then Dij = ∞. If there is
an edge between node i and node j, Dij is calculated based on the latitude and longitude of
nodes i and j using the great circle distance formula. The calculation formula is as follows:

Dij = [arccos(sin(lati)× sin(latj) + cos(lati)× cos(latj)× cos(lonj − loni)]× R (3)

where lati, loni, latj, and lonj are the latitude and longitude of node i, and the latitude and
longitude of nodes j, respectively, and R are comprise the radius of the Earth. The closer
the distance between nodes, the higher the network transmission efficiency between nodes,
and the greater the correlation between the traffic of the nodes.

We calculate the network efficiency loss rates for each route point, as shown in Figure 8.
The yellow dashed line in Figure 8 represents the boundary between the network efficiency
loss rates of the first third and the last two-thirds of the nodes. It can be observed that route
points SJG, QP, VQ, MAMSI, and AKNAV have relatively high network efficiency loss rates,
indicating that these nodes have a significant impact on the reliability and performance of
the system. They are thus considered critical nodes in the assessment of node importance.
In actual operation, these route points serve as crossing points of multiple flight trajectories
with a high node degree.
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Figure 8. Efficiency loss rate for each waypoint in the network.

3. Methodology
3.1. Overall Framework of Prediction Process

Assuming a time interval of 15 min (i.e., two time steps), the node feature matrix of
the route point network topology diagram G at a particular time step can be represented
as follows:

Xt =

 f1 E1
...

...
fM EM

 ∈ RM×P (4)

where P represents the feature dimensions for each node (in this research P equals to 2),
with fi and Ei (i = 1, . . . , M) representing the traffic and network efficiency loss rate of the i-
th node at this time step, respectively. The route point traffic prediction studied in this paper
is a rolling prediction: using the spatiotemporal feature indicators of the route points from
the preceding T continuous time intervals (specific indicators are detailed in Section 2.3),
the route point traffic for the subsequent Q continuous time intervals is predicted.

To extract the spatiotemporal features of route point traffic data more accurately, a neu-
ral network model based on graph convolutional network (GCN) and self-attention based
long short-term memory network (SALSTM) is constructed, referred to as GC-SALSTM.
This model is designed for short-term route point traffic prediction. The framework of the
model is illustrated in Figure 9, comprising a GCN module and a LSTM module based
on the self-attention mechanism. Firstly, the input consists of the route network topology
diagram and the features of each route point over consecutive T time steps in the network.
Then, the graph convolution module is employed to extract spatial features of the route
point network. The LSTM module captures the temporal features of route point traffic,
and the self-attention mechanism assigns different attention weights to each time step,
further enhancing the prediction model accuracy. Lastly, a fully connected layer outputs
predictions for the traffic at each route point over consecutive Q time steps.
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Figure 9. Framework diagram of GC-SALSTM model’s composition.

3.2. Spatial Feature Extraction of Route Waypoint Traffic Based on GCN

A GCN is an approach for semi-supervised learning on graph-structured data and
based on an efficient variant of convolutional neural networks operating directly on graphs.
The input to the graph convolution module includes the route point network topology dia-
gram G, the adjacency matrix A, and the feature matrix Xt for each time step. Considering
self-connection, the calculation formulas for the adjacency matrix Ã, the degree matrix D̃
of route points, and the Laplacian matrix L are as follows:

Ã = A + IM (5)

D̃ = diag(D̃11, D̃22, . . . , D̃MM) (6)

L = D̃− 1
2 ÃD̃− 1

2 (7)

where IM is the identity matrix, D̃ii = ∑
j

Ãij; hence, the graph convolution formula is as

follows:
H(l+1) = σ(D̃− 1

2 ÃD̃− 1
2 H(l)W(l)) (8)

where H(l) is the activation matrix for the layer l, with dimensions [M, P], serving as the
input to the layer l + 1; H(0) = X represents the initial input feature matrix of route points.
W(l) is the trainable weight matrix used to modify the feature dimensions of route points,
with dimensions [Pl , Pl+1]; Pl and Pl+1 are the feature dimensions of route points in the
layer l and l + 1, respectively. σ is the activation function. Additionally, in this study, the
ReLU activation function [26] is employed. The graph convolution module is illustrated
in Figure 10. After the graph convolution operation, spatial features of the route point
network can be extracted.
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Figure 10. Illustration of graph convolutional module.

3.3. Route Waypoint Traffic Prediction Based on Self-Attention LSTM

LSTM, a type of gated recurrent neural network (RNN), is effective in capturing
temporal features of data and has been successfully applied to capture temporal features in
traffic flow data [27–31]. In comparison to a traditional RNN, LSTM addresses the issues of
vanishing and exploding gradients in longer time series prediction by introducing input
gates, forget gates, and output gates to capture temporal dependencies over extended
sequences effectively. The self-attention mechanism introduces attention at each time step
of the input sequence to extract temporal correlation information from the input sequence.
To enhance the accuracy of route point traffic prediction, this paper employs a route point
traffic prediction method based on self-attention LSTM. Building upon the spatial features
extracted via the GCN, the method focuses on extracting temporal features, as illustrated
in the specific process outlined in Figure 11.
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The module based on the self-attention LSTM consists of two LSTM layers and one
self-attention layer. The spatial features xt at time step t, extracted using the GCN module,
serve as the input to the LSTM module. Passing through the forget gate, input gate, update,
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and output gate, it outputs the hidden state ht and LSTM cell state Ct. Subsequently,
utilizing the self-attention mechanism, the attention size (i.e., the weight) between these T
time steps is calculated. Based on these weights, a weighted average of the hidden states at
these T time steps is obtained. This weighted hidden state is then used as the input to the
next layer of LSTM for further temporal feature extraction. The formula for calculating the
LSTM unit is as follows:

ft = σ(W f · [ht−1, xt] + b f ) (9)

σ(x) =
1

1 + e−x (10)

it = σ(Wi · [ht−1, xt] + bi) (11)

C̃t = tanh(WC · [ht−1, xt] + bC) (12)

tanh(x) =
ex − e−x

ex + e−x (13)

Ct = ft ⊙ Ct−1 + it ⊙ C̃t (14)

ot = σ(Wo · [ht−1, xt] + bo) (15)

ht = ot ⊙ tanh(Ct) (16)

where Equations (9) and (10) represent the forget gate of the LSTM unit, with ft representing
the output of the forget gate, xt representing the input to the current state (i.e., the output
of the GCN module at time t), ht−1 representing the output of the previous hidden state,
W f being the weight matrix, b f being the bias term, and σ being the sigmoid activation
function. Equations (11)–(13) represent the input gate of the LSTM unit, where Wi and WC
are the weight matrices, bi and bC are the bias terms, and tanh is the activation function.
Equation (14) is used to update the LSTM cell state, where Ct−1 is the LSTM cell state from
the previous time step, Ct is the updated LSTM cell state at the current time step, and ⊙
represents the Hadamard product. Equations (15) and (16) represent the output gate, where
Wo is the weight matrix and bo is the bias term.

The formula for calculating the self-attention mechanism is as follows:

hr · Wq = qr (17)

hr · Wk = kr (18)

hr · Wv = vr (19)

at,r =
qt · kT

r√
d

(20)

⌢
a t,r =

exp(at,r)

∑
r

exp(at,r)
(21)

h′t = ∑
r

⌢
a t,rvr (22)

In Equations (17)–(19), hr represents the hidden state of the input time step
r(r = t − T + 1, t − T + 2, . . . , t) output from the LSTM module; Wq, Wk and Wv are weight
matrices. In Equations (20) and (21), d represents the variance of the matrix elements of
Q × KT ; matrixes Q and K are defined as Q = (qt−T+1, . . . , qt)

T and K = (kt−T+1, . . . , kt)
T ,

respectively.
⌢
a t,r denotes the attention weights from time step r to time step t. In Equa-

tion (22), h′t represents the feature vector after attention weighting at time step t.
The weighted features h′t from each time step are used as the input to the next layer

of the LSTM network to further extract temporal features. The hidden state output from
this LSTM layer is then fed into a fully connected layer, ultimately yielding the route point
traffic predictions for the next consecutive Q time steps.
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3.4. Definition of Loss Function

The objective of the GC-SALSTM model is to minimize the error between the predicted
and actual route point traffic values. Mean square error (MSE), representing the Euclidean
distance between predicted values and actual values, is employed as the model’s loss
function and calculated as follows:

Loss =
1

Mn

M

∑
p=1

n

∑
q=1

(ŷp,q − yp,q)
2 (23)

where M is the number of route points, n is the number of time steps, ŷp,q is the predicted
traffic value for route point p at time step q, and yp,q is the actual traffic value for route
point p at time step q.

4. Experimental Analysis and Validation
4.1. Data

Air traffic and airspace data from 1 to 31 March 2019 in the Central and Southern
Control Area were utilized. Traffic flow and network efficiency loss rate of 15 route points in
sector 22 served as input features for the GC-SALSTM model. Experiments were conducted
to validate the proposed prediction method’s effectiveness in the established environment.

4.2. Experimental Setup

The computer software and hardware configuration used for the calculations had
the following specifications: operating system-Windows 11 (64-bit); processor-Intel(R)
Core(TM) i7-1165G7 @ 2.80 GHz; CPU frequency-2.80 GHz; RAM-16.0 GB; programming
language-Python 3.10.5; deep learning framework-TensorFlow 2.12.0.

To ensure the stability of the training process, data between 2:00 A.M. and 6:00 A.M.
each day were excluded from the calculations of traffic and network efficiency loss rates.
RMSProp optimizer is utilized. The specific model parameters are shown in Table 1. The
division of the training set, validation set, and test set was performed using a time-series
splitting method. This involved allocating the dataset into training, validation, and test
sets based on the chronological order of time, following a specified ratio.

Table 1. Model parameters.

Parameter Value

Training set ratio 75%
Validation set ratio 5%

Test set ratio 20%
Number of graph convolution layer 1

Dimension of graph convolution layer 32
Number of hidden neurons 64

Training epochs 300
Batch size 64

Learning rate 0.0006
Input sequence length 12

Prediction sequence length 4

The model’s predictive performance was assessed using two metrics: mean absolute
error (MAE) and RMSE.

4.3. Experiments and Analysis
4.3.1. Comparative Experiments on the Impact of Model Parameters on Prediction
Performance

1. Comparison experiments for different numbers of GCN layers and dimensions
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The number of convolutional layers in graph convolution and the different dimensions
of each layer will affect the spatial feature extraction of the graph and the predictive
performance of the model. Experiments were conducted to select parameters. The impact
of different hidden layer dimensions under one layer of graph convolution and two layers
of graph convolution on the model’s prediction results was tested, and the specific results
are shown in Table 2.

Table 2. Comparison of performance based on different graph convolutional layer numbers and di-
mensions.

The First Convolutional Layer The Second Convolutional Layer

Dimension MAE RMSE Dimension MAE RMSE

16 1.7145 2.3284
8 1.7985 2.4538

16 1.7962 2.4818

32 1.6111 2.1994
8 1.7772 2.4672

16 1.8943 2.5784
32 2.0171 2.8346

64 1.6187 2.2151

8 1.8883 2.6100
16 1.8284 2.5696
32 1.7989 2.4462
64 1.8189 2.5872

128 1.6661 2.2912

8 1.8931 2.5782
16 1.8598 2.6035
32 1.9479 2.7601
64 1.8528 2.4914
128 1.8019 2.4952

From Table 2, it can be observed that when there is only one convolutional layer
and the dimension is set to 32 (both MAE and RMSE are minimized), indicating the
optimal predictive performance of the GC-SALSTM model. This is because, with a smaller
dimension, there is less spatial feature extraction, resulting in poorer model prediction
performance. On the other hand, with a larger dimension, although more spatial features
can be extracted, it also introduces more parameters, leading to increased training time and
a higher risk of overfitting, making it difficult to achieve the best predictive results.

Adding one more convolutional layer, when the dimension of the first convolutional
layer is set to 32 and the second layer is set to 8, yields better prediction results. However,
compared to having only one convolutional layer (with a dimension of 32), the prediction
results are worse, with an increase of 12.18% in the RMSE. This suggests that, for the
data used in this study, too many convolutional layers may not be suitable. A single
convolutional layer can achieve good prediction results, and having too many layers may
increase the risk of overfitting, thereby reducing the model’s predictive performance, which
requires further research.

2. Comparison experiments for different numbers of LSTM hidden neurons

The number of LSTM hidden neurons affects the extent to which historical information
is memorized, significantly impacting the model’s predictive results. To select a suitable
number of LSTM hidden neurons, experiments were conducted with different numbers
of hidden neurons (16, 32, 64, 128) for comparison. The results of the model’s MAE and
RMSE are shown in Figure 12.

From Figure 12, it can be observed that the model achieves the best predictive results
when the number of LSTM hidden neurons is set to 64. When the number of hidden
neurons is less than 64 or greater than 64, the performance deteriorates. This indicates that
with fewer neurons, the model’s ability to memorize historical information is poorer. On
the other hand, with more neurons, the increased parameters lead to longer computation
times and a higher risk of overfitting, resulting in reduced prediction accuracy.
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Figure 12. Experimental results on the comparison of the number of hidden neurons in LSTM.

3. Comparison experiments for learning rate, training epochs, and batch size

A learning rate that is too small may result in slow model convergence, while a learning
rate that is too large may cause the model to oscillate near the minimum or even fail to
converge. When the learning rate is small, more training epochs are needed to converge
to the optimal result. However, excessively large training epochs may lead to overfitting,
reducing prediction accuracy. A smaller batch size reduces the risk of overfitting, enhances
generalization, but may result in lower prediction accuracy. Conversely, a larger batch size
increases training time and the risk of overfitting, leading to suboptimal results on the test
set. Therefore, careful selection of learning rate, training epochs, and batch size is crucial to
further improve the model’s prediction accuracy.

Figure 13 shows the comparative experimental results for different learning rates and
batch sizes. It can be observed that the model achieves the best prediction performance
when the learning rate is 0.0006 and the batch size is 64.

Figure 13. Experimental results on the comparison of learning rates and batch data processing sizes.

Figure 14 illustrates the MAE and RMSE of the model’s predicted values for different
numbers of training epochs (100, 200, 300, 400, 500). It can be observed that the prediction
accuracy of the model decreases when the number of training epochs is too low or too high.
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Figure 14. Experimental results on the comparison of training epochs.

In summary, selecting appropriate learning rates, batch sizes, and training epochs
plays a significant role in enhancing the predictive accuracy of the model.

4. Experiment on input sequence length comparison

The output sequence length of the model in this paper is 4, predicting the future
one-hour route point traffic flow. By testing different input sequence lengths of the model
(4, 8, 12, 16, 20), it allows us to compare the prediction results to find the optimal input
sequence length.

As shown in Figure 15, when the input sequence length is 12, i.e., predicting future
one-hour traffic based on the past three hours of data, the model achieves the best predic-
tion performance. With a shorter input sequence length, the prediction results are more
influenced by individual data, leading to larger fluctuations and higher errors. On the other
hand, with a longer input sequence length, the prediction results tend to be more averaged,
making it difficult to capture fluctuations, resulting in larger errors.

Figure 15. Experimental results on the comparison of input sequence lengths.

4.3.2. Comparative Experiments on the Impact of Input Indicators on Prediction
Performance

The input features of this model include the traffic of each waypoint and the network
efficiency loss rate of waypoints. To validate the effectiveness of the network efficiency loss
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rate indicator, we compare the model’s prediction results when considering only traffic
as input features versus when considering both traffic and network efficiency loss rate.
We calculate the percentage change in RMSE after adding the network efficiency loss
rate indicator.

The experimental results indicate that when adding the network efficiency loss rate
indicator, the RMSE of the prediction results (2.0446) decreases by 17.42% compared to the
RMSE of the predictions without this indicator (2.4760), showing a significant improvement.

Figure 16a presents the RMSE of the model predictions at each waypoint when con-
sidering only the input parameter of flow and when considering two input parameters,
namely the flow and network efficiency loss rate. Figure 16b illustrates the rate of change
in the RMSE at each waypoint. In Figure 16a, RMSE1 refers to the prediction error of the
model when the input metric is only the flow rate, while RMSE2 refers to the prediction
error of the model when the input metrics are both the flow rate and network efficiency
loss rate. It can be observed that after adding the network efficiency loss rate indicator, the
RMSE of 14 route points decreases to varying degrees. Only one route point (JW) shows an
increase of 1.83%, which is within an acceptable range. It is evident that adding the route
point network efficiency loss rate indicator considers both the connectivity and distance
factors, incorporating additional spatial correlation information extracted from the route
point network, thereby enhancing the model’s prediction accuracy.
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The impact of adding the network efficiency loss rate indicator on flow prediction
accuracy of different route points was analyzed. The RMSE values for 8 route points
decrease by more than 10%, including P168 (49.76%), SJG (27.66%), ONEMI (20.56%),
QP (18.49%), MUBEL (18.30%), ELKAL (14.71%), VQ (13.02%), and MAMSI (11.20%).
Among them, 5 route points have monthly traffic exceeding 10,000 flights, namely ONEMI
(15,599 flights), SJG (18,193 flights), MAMSI (28,373 flights), VQ (15,757 flights), and QP
(15,461 flights). There are four route points with a network efficiency loss rate exceeding 0.2,
including SJG, MAMSI, VQ, and QP. If using monthly traffic exceeding ten thousand flights
and a network efficiency loss rate exceeding 0.2 as criteria to identify key route points, then
the key route points under this standard are SJG, MAMSI, VQ, and QP. These critical route
points are the ones with a significant decrease in RMSE values after adding the network
efficiency loss rate indicator. This indicates that the addition of the network efficiency loss
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rate indicator significantly enhances the prediction accuracy of the model, especially for
critical route points. This has important implications for implementing real-time traffic
management, thus optimizing slot and route resource allocation based on critical route
points in air traffic. For instance, this provides more accurate traffic forecast values for
resource allocation issues in flow constrained areas, etc.

Figure 17 displays the predicted traffic results for each route point throughout the
day after adding the network efficiency loss rate indicator. From Figure 17, it can be
observed that the MAMSI route point has significant traffic volume, with a peak prediction
of 17 flights per 15 min. The VQ, ONEMI, QP, and SJG route points also have substantial
traffic, with peak predictions of 9, 9, 9 and 10 flights per 15 min, respectively.

Figure 17. Predicted traffic volumes for each waypoint throughout the day in different time periods.

4.3.3. Comparative Experiments on Prediction Model Performance

When selecting the HA, ARIMA, SVR, LSTM, and GCN-LSTM models, a comparison
of predictive performance was conducted against the GC-SALSTM model proposed in this
study. The comparative results are shown in Table 3.

Table 3. Prediction error results for each model.

Model MAE RMSE

HA 1.6928 2.3176
ARIMA 1.7556 2.1647

SVR 1.5367 2.0506
LSTM 1.5306 2.0977

GCN-LSTM 1.5386 2.0672
GC-SALSTM 1.5074 2.0446

From Table 3, it can be observed that the GC-SALSTM model’s MAE and RMSE
are reduced compared to the comparative models. Compared to the HA, ARIMA, SVR,
LSTM, and GCN-LSTM models, the RMSE is reduced by 11.78%, 5.55%, 0.29%, 2.53%,
and 1.09%, respectively. The MAE metric also shows a varying degree of improvement
compared to the comparative models. The HA and ARIMA models, considering only
temporal features and affected by the volatility of the data, exhibit relatively poor predictive
performance. The SVR and LSTM models focus solely on temporal features without
considering spatial features. Both the GCN-LSTM and the proposed model account for
spatiotemporal correlation in traffic flow. The proposed model incorporates a self-attention
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mechanism, assigning different attention to different time steps, providing better modeling
and prediction of spatiotemporal dependencies.

Figure 18 illustrates the comparison between the predicted traffic values using the
GC-SALSTM model for 15 waypoints and the actual values, where the red line represents
the predicted values, the blue line represents the actual values, the vertical axis denotes
traffic flow, and the horizontal axis denotes the time steps. From the graph, it can be
observed that the proposed model effectively captures the fluctuation trends in the traffic
flow of the waypoints.

Figure 18. Comparison between predicted and actual traffic values for 15 waypoints.

5. Conclusions and Further Discussion

In this paper, a neural network model combining graph convolution and self-attention
long short-term memory was constructed, considering the spatial features of waypoint
networks and the spatiotemporal characteristics of waypoint traffic. This model achieves
the prediction of waypoint traffic for the next hour. The advantages of the model in this
article are as follows. In addition to utilizing traffic flow data containing historical patterns,
the input features of the model have been enhanced by incorporating the waypoint network
efficiency loss rate indicator, further improving the prediction accuracy of traffic flow for
critical waypoints.

By analyzing and validating the ZGGGAR22 sector waypoints in the Central and
Southern region in China, the results indicate that the predictive accuracy of the GC-
SALSTM model is improved compared to typical forecasting models such as the HA,
ARIMA, SVR, LSTM, and GCN-LSTM models. With the addition of the waypoint network
efficiency loss rate as an input feature, the RMSE for 8 waypoints has decreased by more
than 10%. This provides an effective method for identifying and predicting congestion
points and congested periods in the waypoint network, offering more accurate information
for real-time air traffic management and resource allocation in air traffic control.

The drawbacks of the model in this article include a limited number of input indicators
and a lack of consideration for external factors, such as weather conditions. Future research
directions: This paper focuses on the spatiotemporal correlation features of waypoint
traffic flow within the sector for waypoint flow prediction. The research scope can be
further expanded by constructing a wide-area waypoint-connected traffic network topology,
incorporating external factors such as weather, and effectively utilizing and integrating
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multi-source data into the prediction method. Considering the practical application needs
of traffic flow prediction, the goal is to enhance and improve prediction effectiveness with
a focus on predictive applications. In addition to traffic flow, various prediction contents,
such as traffic operation speed, traffic complexity, delays, etc., can also be considered for
analysis and prediction.
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