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Abstract: As aviation technology advances, numerous new aircraft enter the market. These not only
offer airlines technological and fuel efficiency advantages but also present the challenge of how to
conduct pilots’ aircraft-type transition training efficiently and economically. To address this issue,
this study designed a methodology to quantitatively assess the similarity in panel display control
design and standard operating procedures (SOPs) between aircraft types. Then, by combining the
results of a questionnaire survey on A320, A330, B737, and B777 transition training and training cost
data, it was verified quantitatively that inter-aircraft similarity has a positive impact on reducing
the difficulty and cost of transition training. Taking the similarity in aircraft types as a feature, the
KNN algorithm was used to successfully construct a difficulty prediction model for the training
program of aircraft-type transition training. To overcome the limitation of insufficient training cost
data volume, this study adopts the transfer learning method to construct a prediction model of the
transition training cost, and the final significant prediction accuracy proves the effectiveness of the
method. The research in this paper not only provides strong data support for the resource planning
and cost management of airlines’ aircraft-type transition training but also provides new research
perspectives and methodological guidance for the field of aviation training.

Keywords: similarity assessment; aircraft-type transition training; cost prediction; training difficulty;
transfer learning

1. Introduction

With the progressive evolution of aviation technology, there is a consistent influx
of innovative aircraft models into the market. These aircraft are increasingly preferred
by airlines due to their superior technological advancements, enhanced fuel efficiency,
and enriched passenger experience. The incorporation of these new models necessitates
that pilots acquaint themselves with distinct operating protocols, system intricacies, and
technical nuances. To expedite their integration into service, airlines frequently adopt
aircraft-type transition training methodologies to prepare pilots for these new aircraft types.
Furthermore, as airlines augment and rejuvenate their fleet, pilots encounter the imperative
to operate a diverse array of aircraft, catering to the exigencies of various routes. Pilots,
post their transition training, can be adeptly allocated across differing routes and aircraft,
thereby amplifying the operational efficacy of airlines [1]. Consequently, aircraft-type
transition training emerges as a topic of concern for aviation enterprises.

In the domain of airline operations, a pivotal concern is the optimization of pilot
training for aircraft-type transition. This entails achieving minimal duration and cost
without compromising flight safety. A key consideration factor in this context is the
degree of similarity (or dissimilarity) between aircraft types [2]. For instance, the Flight
Standards Department of the Civil Aviation Administration of China (CAAC) [3] classified
aircraft type differences into five grades, A–E, in their 2019 document titled “Reduced-Time
Conversion Courses and Mixed-Fleet Flying”. The greater the differences between aircraft
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types, the more comprehensive the content required for transition training. Nonetheless,
this document only provides classifications of differences for a limited number of aircraft
types and does not offer an effective method for evaluating type differences. Notably, there
is a dearth of international scholarly focus on the evaluation of aircraft type differences, and
the exploration of pilot transition training methodologies and associated costs. However,
numerous academic endeavors have delved into factors influencing flight training, cost
analyses, and enhancements in training techniques, providing a foundational base for
our research.

Kreienkamp et al. [4] used the Myers–Briggs Type Indicator to gauge the personality
difference scores between male trainees and instructors, as well as the training duration for
student pilots. Their study revealed a correlation between personality difference scores and
the training time of student pilots. In a distinct study, Dennis et al. [5] assessed the impacts
of computer-based simulation on flight training. Their controlled experiment determined
that PC-based flight simulation serves as a cost-effective and efficient supplement to tradi-
tional flight training. Using regression analysis, Polstra Sr. and Philip A. [6] discerned that
students under the tutelage of senior instructors required less time to complete training
compared with those trained by junior instructors. Notably, total flight time emerged as
the most potent predictor of instructional efficacy. Their research advocates for prioritizing
flight instructors with extensive total flight time during recruitment. Li, Qiang et al. [7]
delved into factors influencing flight training efficiency for Chinese pilots. They identi-
fied pilot stress, training interaction, and the application of metacognitive strategies as
paramount. Their conclusions underscored that while stress indirectly affected simulator
training efficiency, training interaction directly influenced it as a dynamic process. The im-
plementation of metacognitive strategies was found to optimize pilots’ cognitive resource
coordination. Tatli, Ali and colleagues [8] explored the ramifications of meteorological
conditions on flight training. Their data-driven investigation highlighted that adverse
weather events augmented the workload of flight trainers, extended training durations,
and intensified maintenance and repair activities, culminating in a significant surge in flight
training expenses. Nikola Mostarac [9] investigated the structure of flight training syllabi
and their specific impact on the proactive planning of training operations for military air-
craft pilots. Vivek Sharma and colleagues [10] proposed a hypothetical model to illustrate
the direct and indirect relationships between certified flight instructors’ (CFIs’) personality
traits, self-efficacy, risk perception, safety climate, and other factors and safe behavior and
discuss their impact on flight training.

Orlansky et al. [11] explored whether the acquisition cost of flight simulators is
worth the flight training time savings and provided a preliminary cost model that iden-
tifies the data needed for cost estimates used in a cost–benefit analysis of flight training.
Hoeft et al. [12] analyzed and evaluated the cost–benefit of four helicopter flight training
programs to find the best option to train pilots for both the CH-6OS and SH-6OR models.
Young, P and Fanjoy, R [13] focused on the significance of new flight technology instrumen-
tation and the associated cost implications. They explored various methods and tools for
advanced university flight training and proposed a targeted approach to study the potential
for collaboration with aviation industry partners using high-cost instruments. Pope and
Talon, M [14] compared the initial, fixed, and variable costs between Pilot Training-Next
(PTN) and Undergraduate Pilot Training (UPT). The results show that PTN innovations
have not only resulted in significant cost savings for the U.S. Air Force but these savings
also accrue annually. Glen Ross [15] conducted a review and scope delineation of the
current state of research on the use of extended reality simulations as a replacement for
traditional flight simulators and aircraft. The conclusion drawn is that extended reality
technology has the potential to be successfully used in flight training—saving time and
money while also enhancing training efficacy.

Kardi and Koesnadi [16], using a comparative analysis of training methodologies
and objectives between Indonesian Air Force Undergraduate Pilot Training (IAF-UPT)
and U.S. Navy Undergraduate Pilot Training (USN-UPT), advocated for the integration
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of audio–visual and video instruction in flight training. They further emphasized the role
of simulator training and championed continuous innovation in foundational training. In
a distinct study, Johnson et al. [17] pioneered scenario-based simulation training (SBST)
to scrutinize pilots’ capabilities in threat and error management (TEM). Their findings
revealed that SBST adeptly bridges existing voids in primary flight training, fostering
enhanced simulation fidelity across all training tiers. McClernon et al. [18], using empirical
investigations, discerned that incorporating stress management techniques during flight
training augmented performance during genuine high-stress flight tasks, thereby highlight-
ing the potential benefits of embedding a stress training module within the flight training
curriculum. Lu, Jing [19] introduced a multivariate quantum sequence double-window
search (MSDW) algorithm predicated on Euclidean distance, aiming to ameliorate the
challenges associated with the suboptimal completeness of flight training subject identi-
fication within flight training datasets. Furthermore, they propounded an incremental
learning-centric predictive model tailored for flight training data [20]. This model, charac-
terized by its impressive predictive accuracy and real-time performance, augments safety
paradigms in flight training. Abiodun Brimmo Yusuf [21] developed a Fuzzy Cognitive
Map model driven by human factors for susceptibility to startling, which they used to
analyze the causality of startle in flight with the aim of enhancing future flight training
paradigms. Jiayuan Li [22] proposed an evaluation method that combines fuzzy compre-
hensive evaluation with the Analytic Hierarchy Process (AHP) to assess the competency
of pilots during flight training. The analysis of the evaluation results indicated that this
method is an effective integration of subjective and objective approaches, aligning with the
subjective scores given by instructors.

A thorough review of the extant literature reveals that the majority of academic endeav-
ors predominantly revolve around the determinants, cost implications, and methodological
enhancements of flight training. Notably, scant attention has been accorded to the niche
domain of aircraft-type transition training. Existing discourse concerning the influence
of aircraft-type similarity on the intricacy and financial aspects of pilot transition training
largely remains confined to qualitative elucidations and anecdotal accounts, conspicuously
devoid of rigorous quantitative scrutiny. Such a knowledge lacuna renders airlines bereft of
a robust reference during the formulation of pilot transition training strategies. In addition,
data-driven training cost prediction models in some specific training segments face the
challenges posed by the shortage of data volume. In light of this, this paper first provides
an in-depth analysis of the design of panel display controls and the characteristics of
their standard operating procedures (SOPs) across different aircraft types and constructs a
scientific similarity assessment methodology accordingly. Subsequently, this study quan-
titatively verifies the positive effect of inter-aircraft similarity on reducing the difficulty
and cost of transition training based on the results of a questionnaire survey on transition
training between A320, A330, B737, and B777. Further, utilizing the similarity in transition
training programs as a feature, a model predicting the difficulty of aircraft-type transition
training is established using the KNN algorithm. The model’s high predictive accuracy
substantiates its effectiveness. Finally, to overcome the difficulty of the insufficient data
volume of transition training costs, this study innovatively adopts the transfer learning
method to construct a transition training cost prediction model by utilizing the knowledge
learned from the training difficulty prediction model. The completely correct prediction
results on six validation samples not only validate the feasibility of the method but also
demonstrate its potential application in the field of aviation training. In the above research
work, the following innovations are distilled:

• A scientific and systematic methodology dedicated to the quantitative assessment of
similarity between civil aircraft types is developed.

• The quantitative analysis confirms the positive role of aircraft-type similarity in reduc-
ing the difficulty and cost of transition training.

• Using the KNN algorithm, this study successfully constructs a highly accurate model
for predicting the difficulty of transition training.
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• Facing the challenge of the insufficient data volume of transition training costs, this
study innovatively adopts the transfer learning method to construct a reliable training
cost prediction model, which further enhances the practical value of this study.

2. Quantitative Analysis of Aircraft-Type Similarity
2.1. Aircraft-Type Similarity Assessment Method

For pilots, as they move from one type of aircraft to another for training, it becomes
clear that while many airplanes may be similar in appearance and basic structure, there are
still many differences at the operational level [23]. These differences are usually manifested
in two main areas: operating objects and operating procedures. Operational objects refer
to the various instruments, levers, switches, and buttons on an airplane that are directly
related to flight operations. Operational procedures, on the other hand, relate to the specific
steps and processes that pilots need to follow during various phases of flight, such as
takeoff, cruise, and landing. While these processes may have commonalities across most
airplanes, each model may have its own specific requirements and details. Therefore, the
similarity in the models will be evaluated in terms of both their handling pieces and their
flight maneuvering processes.

Within an aircraft’s cockpit, the display and control components of each system
serve dual functions. They not only act as informational portals for pilots to discern the
operational status and planning of respective systems but also function as interactive
interfaces for pilots to convey control command information to the aircraft. Distinct types
of display and control components possess individual manipulation characteristics and
realize specific control functionalities. The design of these display controls is intrinsically
linked to both system functionalities and human–computer interaction dynamics. Relevant
data show that the design of control parts and the human–machine relationship is not
coordinated, which is one of the main reasons for accidents [24]. However, a degree of
similarity in the display and control components design facilitates pilots in transition
training to leverage their knowledge and proficiency from previous aircraft models. This
similarity enhances the coordination in the human–machine relationship, substantially
reducing the likelihood of such incidents.

In the domain of display control design, several pivotal elements are present, en-
compassing layout positioning, control types, symbolic representation, appearance, and
color coding [25]. It is imperative to highlight that a control’s appearance is intrinsically
intertwined with its specific type. For instance, button configurations typically adhere to a
matrix design, while knobs predominantly assume a circular form. Furthermore, there is a
prevalent consistency in color coding across various aircraft models; controls deemed of
paramount importance are often denoted with more vivid and conspicuous hues. Thus, in
our endeavor to assess the similarity in display controls within civil aircraft cockpits, our
analysis is channeled toward three cardinal components: layout positioning, control types,
and identifications.

The cockpit panel of a typical civilian aircraft is divided into several main areas including:

• Instrument panel: the area where the pilot has the best line of sight, generally laying
out some of the most frequently viewed display information.

• Center console: the area most accessible to the pilot, generally laying out the most
frequently operated or important control components.

• FCU: the second most accessible area to the pilot after the center console, and generally
lays out the more frequently operated controls and display components.

• Head panel: the largest area of a panel; the general layout operation using infre-
quent controls.

• MCDU/CDU panel: located on either side of the center console or under the dash-
board, it generally lays out the more frequently operated but less important con-
trol components.

• Communication Panel: located on the rear side of the center console, this panel
generally lays out the more frequently operated but less important control components.
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First, the display and controls are divided into these six panel regions and then the
similarity in the types and logos of the controls in each panel is evaluated.

Controls can be categorized by type as follows:

• Push switch: An interactive control that the user can press to trigger some action
or function.

• Knob: A circular control that is rotated to adjust or select a specific value.
• Toggle: Typically, an on/off design that allows the user to switch between two or

more states.
• Slide: Allows the user to select or adjust values within a range of values by sliding.
• Joystick: Usually used for control in two or three dimensions, such as a flight stick.
• Handwheel: Large knob, usually used for fine-tuning or manual control of a machine.
• Pedal: A control operated by the foot.

Display pieces can be categorized by type as follows:

• Indicator Light: A small electronic light that uses light to indicate a status or warning.
• Dial: An instrument with markers and pointers for displaying the values of certain

physical quantities.
• Digital display: A display that shows specific values by means of numbers.
• Display: An electronic screen that can display images, text, and video.

Each type of display control differs in terms of space required, visual effect, tactile
effect, and ease of operation, and the comparison results are shown in Tables 1 and 2.

Table 1. Table of characteristics of each type of control member.

Control Type Control Method Required Space Visual Effect Tactile Effect Operational Convenience

Button Finger press Small Poor Poor Slightly good
Knob Finger twist Slightly small Slightly poor Medium Slightly good

Toggle Finger flick Slightly small Medium Slightly poor Good
Slider Finger slide Medium Slightly good Medium Medium

Joystick Arm pull Slightly large Good Good Slightly good
Handwheel Arm twist Large Slightly good Good Medium

Pedal Foot press Slightly large Poor Slightly good Medium

Table 2. Table of characteristics of each type of display device.

Control Type Display Method Required Space Visual Effect Tactile Effect Information Content

Indicator light Color, on/off Small Good None Small
Meter dial Pointer reading Medium Medium None Medium

Digital display Numeric display Medium Good None Medium
Display screen Graphics, position Large Medium None Large

An analysis of the data in Tables 1 and 2 indicates that each display control can
be categorized into five distinct levels based on the required space, visual effect, tactile
effect, and operational convenience. Accordingly, the levels “poor (small)”, “slightly poor
(slightly small)”, “average”, “slightly good (slightly large)”, and “good (large)” have
been transformed into numerical scores of 0.2, 0.4, 0.6, 0.8, and 1, respectively. With this
transformation, each operational method can be converted into a specific score sequence.
Taking the button as an example, its score vector can be represented as [0.2, 0.2, 0.2, 0.8]. The
disparity between any two operational methods can then be quantified by computing the
Euclidean distance between their respective score sequence. Consequently, the similarity
assessment value between various control types can be calculated as per Equation (1).

Ctype = 1−

√√√√∑k=4
k=0

(
xk

i − xk
j

)2
/

4
(1)
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where, xk
i denotes the score value of the k-th attribute of the ith object.

Utilizing Equation (1) in conjunction with the data presented in Tables 1 and 2, the
similarity assessment values between pairwise display control methods can be calculated,
as illustrated in Tables 3 and 4.

Table 3. Table of similarity assessment values of two-by-two manipulation types.

Button Knob Toggle Slider Joystick Handwheel Pedal

Button 1.00 0.88 0.87 0.79 0.68 0.68 0.78
Knob 0.88 1.00 0.91 0.88 0.79 0.79 0.87

Toggle 0.87 0.91 1.00 0.87 0.79 0.76 0.80
Slider 0.79 0.88 0.87 1.00 0.87 0.86 0.83

Joystick 0.68 0.79 0.79 0.87 1.00 0.91 0.79
Handwheel 0.68 0.79 0.76 0.86 0.91 1.00 0.83

Pedal 0.78 0.87 0.80 0.83 0.79 0.83 1.00

Table 4. Table of similarity assessment values of two-by-two display types.

Indicator Light Meter Dial Digital Display Display Screen

Indicator light 1.00 0.77 0.81 0.60
Meter dial 0.77 1.00 0.87 0.81

Digital display 0.81 0.87 1.00 0.77
Display screen 0.60 0.81 0.77 1.00

The identification of display controls plays a pivotal role, ensuring that pilots can
swiftly and accurately discern the functionality of each control, subsequently eliciting the
appropriate response. Identifications are typically represented by strings composed of
vocabulary, abbreviations, or simple symbols. Assessing the similarity between two display
control identifiers fundamentally entails contrasting the degree of similarity between two
strings. Within the domain of natural language processing, the Levenshtein distance, also
known as the Edit Distance, is a widely adopted method for gauging the similarity between
two strings [26]. The Edit Distance quantifies the minimum number of editing operations
required to transform one string into another [27]. The implementation steps are as follows:

(1) Initialize a matrix of size (m + 1)× (n + 1), where m and n represent the lengths of
the two strings, respectively.

(2) Set the values of the first row from 0 to m and the values of the first column from 0 to
n. This indicates the number of edits required to transform an empty string into the
other string.

(3) For each pair of characters, starting from each character in the two strings, calculate
each matrix element according to the following rules:

• If the two characters are identical, the value of the current cell is taken from the
cell diagonally above and to the left.

• If the characters differ, the value of the current cell is the minimum value from
the cell above, to the left, or diagonally above and to the left, incremented by 1.
This corresponds to an insertion, deletion, or substitution operation.

(4) Once the matrix is fully populated, the value in the bottom-right corner represents
the Levenshtein distance between the two strings.

(5) Calculate the similarity between the two strings using Equation (2).

Cmark = 1− lev
max{m, n} (2)

where lev denotes the Levenshtein distance between the two strings.
In the practical process of assessing the similarity between display and control compo-

nents of two aircraft types, there arises the challenge of how to pair-match the components
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from the two models. Our adopted approach is to match based on the functionality of the
components. The functional similarity in two display and control components is catego-
rized into three levels: high, medium, and low, with respective scores of 1, 0.66, and 0.33
assigned as weighting coefficients.

By synthesizing the similarity calculation methods for each design element of the
components described above, the evaluation of the similarity in the display and control
components in the cockpit of the two models is calculated as shown in Equation (3):

CManipulate =
1
6
(CInstrument + Ccontrol + CSunvisor + COverhead + CMCDU/CDU + CCommunication) (3)

The similarity in each panel is calculated as shown in Equation (4):

Cpanel =
1

Nnewaircra f t
∑n

i α(β ∗ Ci
type + (1− β)Cmark

i ) (4)

where α denotes the functional similarity coefficient; β represents the weight coefficient,
and in this study, it is believed that the type of control and its identification are of roughly
equal importance; hence, β is set to 0.5; Ci

type denotes the similarity in the manipulation
type of the i-th apparent components; Cmark

i denotes the identification similarity in the
i-th components; and Nnew_aircra f t represents the total number of display controls on that
panel of the new aircraft type. It is worth noting that the panel similarity assessment
between aircraft types might be influenced by the direction of transition training. This
design consideration is grounded on the perspective that the difficulty in transition training
varies with the change in transition training direction.

The flight maneuvering procedures of civil aircraft generally encompass standard
operating procedures (SOPs), supplementary procedures, and non-normal emergency
procedures. Notably, the most crucial and frequently used maneuvering procedure is
the SOP, and our evaluation of maneuvering procedure similarity among aircraft models
focuses on the SOP.

The standard operating procedures (SOPs) for each aircraft type are primarily divided
into stages such as pre-flight preparation, taxiing, takeoff, climb, cruise, descent, approach,
landing, and engine shutdown. Aircraft manufacturers customize a set of procedures for
each flying phase, requiring pilots to execute the respective operations in sequence. Taking
the A320 model as an example, in the pre-taxiing phase, pilots need to perform operations
in the following sequence: selecting the engine start mode, activating the main engine
power, monitoring engine parameters, shutting off the APU air supply, and activating the
engine anti-ice switch as required, among others. It is important to note that the pre-flight
preparation phase is an exception; during this phase, pilots are required to check the control
statuses across various cockpit panels without a strict sequential order.

To streamline computation, a labeling mechanism for these operations has been in-
troduced. The label assigned to each operation is based on the system its corresponding
control belongs to. For example, the operation “main engine power” is labeled as “power
system”, whereas the “APU air supply switch” falls under the “APU system”. Based on
data collation, controls within the cockpit of civil aircraft are grouped into the following
systems: air conditioning, automatic flight, communication, electrical, equipment, warning,
flight controls, fuel, hydraulic, anti-ice/de-ice, indication/recording, landing gear, navi-
gation, oxygen, APU, and power. As a result, the flight phase operations of any aircraft
type can be depicted as a sequence of these 16 systems. With this foundation, the task of
comparing flight operation procedures between aircraft models can be converted into an
assessment of the similarity between their label sequences.

In the realm of biology, the comparison of the similarity between two gene segments
typically uses the Needleman–Wunsch algorithm. This algorithm calculates the similarity
in two sequences using the scoring of matches, mismatches, and gaps between sequence
units [28]. Inspiration is drawn from this method, and its adaptation for computing the
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similarity between flight operation action sequences of two aircraft types is proposed. The
implementation steps of this approach are as follows:

(1) Matrix initialization: Create a matrix of size (m + 1)× (n + 1), where m and n are the
lengths of the two sequences, respectively, and the values of the first row and column
are usually initialized to the cumulative gap penalty value.

(2) Filling the matrix: Use a predefined scoring scheme to fill the matrix (for the scheme
in this paper, the match score is 1 and the mismatch penalty and gap penalty are 0).
For each cell in the matrix, consider the following three possible scores:

(a) From the value of the previous cell plus the gap penalty.
(b) From the value of the cell on the left plus the gap penalty.
(c) From the value of the cell on the upper left plus the match or mismatch score.

The maximum of these three scores is selected as the current cell value.

(3) Read the comparison score S from the lower right corner of the matrix.
(4) Obtain the similarity by comparing the score S to the upper score limit, which, in this

paper, is equal to the length of the SOP sequence of the new aircraft type Nnew as in
Equation (5).

Csop =
S

Nnew
(5)

Having accomplished the quantitative assessment of similarity in operational objects
and procedural flow between two aircraft types during transition training, the similarity
between the aircraft types can be derived from a weighted sum of the similarity evaluation
values from the panel and the SOP. This is formally expressed as:

C =
ϕ

6

6

∑
i=1

Ci
panel + (1− ϕ)Csop (6)

where ϕ is the weight coefficient. This paper considers that the similarity in the panel and
the similarity in the SOP are equally important in transition training, so it takes the value
of 0.5.

2.2. Aircraft-Type Similarity Assessment Cases and Analysis

To validate the aircraft-type similarity quantification methodology proposed in this
study, the similarity evaluation between Airbus models A320 and A330, and Boeing models
B737NG and B777 was taken as case studies. By referencing the FCOM manuals of each
aircraft type, comprehensive data on display controls and operational procedures were
gathered. Using the assessment method delineated in Section 2.1, the similarity in controls
across these aircraft models was evaluated. The results of this assessment are presented in
Table 5.

Table 5. Cockpit panel similarity assessment results between two aircraft types.

FCU MCDU Center
Console

Communication
Panel

Instrument
Panel

Head
Panel

Average
Value

A320 to A330 0.86 0.75 0.77 0.87 0.70 0.56 0.75
A330 to A320 0.91 0.90 0.72 0.87 0.60 0.51 0.75

B737 NG to B777 0.38 0.63 0.20 0.47 0.24 0.29 0.37
B777 to B737 NG 0.48 0.49 0.32 0.57 0.46 0.20 0.42
A320 to B737 NG 0.28 0.30 0.30 0.36 0.37 0.12 0.29
B737 NG to A320 0.40 0.33 0.34 0.34 0.22 0.08 0.29

As can be seen from the data in Table 5, in the comparison of the same manufacturer’s
types, also evaluated as short- and medium-range narrow-body aircraft versus long-range
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wide-body aircraft, the average degree of similarity across the panels between Airbus’s
A330 and A320 is very high reaching 0.75, while the average degree of similarity across the
panels between Boeing’s B737 and B777 is only about 0.4. This indicates that Airbus retains
a high degree of commonality in the design of the model panels, while Boeing utilizes a
more different design between the two types. In the comparison of models from different
manufacturers, the average value of panel similarity between A320 and B737NG, which
are also narrow-body aircraft, is only about 0.3, providing further evidence of the different
strategies and philosophies of the different manufacturers in terms of aircraft design and
cockpit layout. Taken together, the panel similarity in types from the same manufacturer
is higher than the panel similarity in models from different manufacturers, and the panel
similarity between Airbus’s A330 and A320 is much higher than that between Boeing’s B737
and B777. This result is also more in line with the empirical perceptions of the majority of
the population, thus proving the reliability of the present methodology for the assessment
of the inter-aircraft panel similarity.

The similarity in the SOP between the four types including Airbus’s A320 and A330
and Boeing’s B737NG and B777 is also evaluated according to the evaluation methodology
in Section 2.1, and the results are shown in Table 6.

Table 6. Results of the SOP similarity assessment between two aircraft types.

Transition Training SOP Similarity

A320 to A330 0.66
A330 to A320 0.58

B737 NG to B777 0.30
B777 to B737 NG 0.41
A320 to B737 NG 0.51
B737 NG to A320 0.44

Based on the data in Table 6, it can be determined that the SOP similarity between
Airbus’s A320 and A330 reaches an approximate level of 0.6, while the similarity between
Boeing’s B737NG and B777 is about 0.3. This difference suggests that there is a significant
difference in the philosophies adopted by the two manufacturers in the design of their new
aircraft. Specifically, Airbus seems to focus more on consistency across its models, while
Boeing may be more inclined to introduce technical performance innovations in its new
models. In addition, the similarity in the SOP between A320 and B737NG from the two
different manufacturers is approximately 0.5, which may reflect the fact that although each
manufacturer has its own unique design philosophy, there are some commonalities at the
operational level as both are short- and medium-haul narrow-body aircraft.

3. Difficulty and Cost Analysis of Aircraft-Type Transition Training
3.1. Analysis of the Difficulty of Transition Training

In the previous section, a quantitative assessment of the similarity between models was
performed. The next challenge was the quantitative assessment of the difficulty of transition
training between aircraft types. Given that the assessment of training difficulty involves
the subjective experience of individuals, a questionnaire method was chosen to collect
data on human perception of difficulty. Subsequently, these data were analyzed using
mathematical and statistical methods to obtain quantitative indicators of training difficulty.

A questionnaire was designed for the six scenarios of A320 to A330, A330 to A320,
B737 to B777, B777 to B737, B737 to A320, and A320 to B737, where the questions required
choices to be made on how much effort was spent on the FCU panel, CDU/MCUD, center
console, instrument panel, communication panel, top panel, and SOP training, respectively,
in the course of transition training. The options were: A. none, B. very little, C. average, D.
a lot, and E. very much.

Our questionnaire was administered to model instructors of a Chinese flight training
company, which better meets the needs of our data source. While a comprehensive survey,
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i.e., a survey of each training session, would be preferable, it is difficult to achieve with
objective resources and organizational conditions, so this paper adopts a sampling method.
In order to ensure the reliability of the data, real-name and on-site collection methods were
used to conduct questionnaire surveys for each type of instructor.

A total of 66 valid questionnaires were received, of which 15 were for A320 to A330
scenarios, 18 for A330 to A320 scenarios, nine for B737 to A320 scenarios, five for B737 to
B777 scenarios, 14 for B777 to B737 scenarios, and five for A320 to B737 scenarios. The
statistics of the questionnaire results are shown in Table 7.

Table 7. Results of the questionnaire on the difficulty of transition training.

Scenario Object A B C D E Scenario Object A B C D E

A320 to A330

FCU 3 11 1 0 0

A330 to A320

FCU 9 7 1 1 0
MCDU 2 12 1 0 0 MCDU 9 8 0 1 0

Center console 3 7 4 1 0 Center console 7 7 3 1 0
Communication panel 5 9 1 0 0 Communication panel 11 6 0 1 0

Instrument panel 3 9 3 0 0 Instrument panel 9 8 0 1 0
Head
panel 1 7 7 0 0 Head

panel 2 15 0 1 0

SOP 0 7 6 1 1 SOP 1 7 6 3 1

B737 to B777

FCU 0 2 2 1 0

B777 to B737

FCU 3 9 2 0 0
MCDU 0 3 1 1 0 MCDU 5 9 0 0 0

Center console 1 1 1 2 0 Center console 1 4 5 4 0
Communication panel 0 4 1 0 0 Communication panel 6 8 0 0 0

Instrument panel 1 1 1 2 0 Instrument panel 2 12 0 0 0
Head
panel 0 1 2 2 0 Head

panel 2 4 1 4 3

SOP 0 0 2 3 0 SOP 1 3 4 5 1

A320 to B737

FCU 0 1 1 3 0

B737 to A320

FCU 1 2 4 1 1
MCDU 0 1 2 2 0 MCDU 0 1 5 2 1

Center console 0 1 1 2 1 Center console 0 0 6 2 1
Communication panel 0 2 2 1 0 Communication panel 0 5 3 1 0

Instrument panel 0 1 2 1 0 Instrument panel 0 4 4 1 0
Head
panel 0 0 1 0 2 Head

panel 0 1 1 3 4

SOP 0 1 2 2 0 SOP 0 3 3 2 1

The training difficulty level was categorized into A, B, C, D, and E (in increasing order
of difficulty) based on the answers collected to the question “How much effort is spent”.
The most frequently selected option was the result of the training difficulty. If two options
were selected with the same frequency, then whichever option’s neighboring option was
selected with a higher frequency was counted as the result of the training difficulty rating.
For example, in the A320 to B737 training, in the learning difficulty questionnaire results for
the communication panel, the probability of options B and C being selected was 40%, but
the probability of B’s neighbor, option A, being selected was greater than the probability
of C’s neighbor, option D. Therefore, it was determined that the learning difficulty of the
communication panel in the A320 to B737 training was rated as B. The final ratings are
shown in Table 8.

Table 8. Results of the evaluation of the difficulty of transition training.

Scenario FCU MCDU Center
Console

Communication
Panel

Instrument
Panel

Head
Panel

Panel
Average Value SOP

A320 to A330 B B B B B B B B
A330 to A320 A A B A A B C A
B737 to B777 C B D B D D D C
B777 to B737 B B C B B D D B
A320 to B737 D C D C C E C D
B737 to A320 C C C B D E C C

Average value B B B B B B B B

Based on the analysis of the data in Table 8, the variability in training difficulty across
panels is clearly visible. Among them, the top panel presents the highest training difficulty,
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while the communication panel, on the contrary, shows a relatively low learning burden.
This phenomenon can be attributed to the fact that in the cockpit of civil aircraft, the top
panel often serves as the most complex control panel, carrying the centralized control of
numerous systems. In contrast, communication panels are more simple and intuitive, with
a limited number of controls, making them less difficult to learn.

Among the different aircraft-type transition scenarios, A320 and B737 have the most
significant changeover difficulties, especially in the core panels such as the instrument
panel, MCDU, and FCU. There may be significant differences in the operating logic and
interface layout between the two models, so pilots may need to spend extra time and
effort to adapt during the transition. In the case of the A320 and A330 transition, the
learning difficulty is relatively low, thanks in part to Airbus’s strategy of consistency and
standardization in product design.

Further comparing the difficulty of panel learning with SOP learning, it is found that
SOP is generally more difficult to learn than a single-panel operation. This is mainly due to
the fact that SOP consists of multiple steps that need to be executed in a specific order and
timing. Pilots not only need to memorize these steps but also need to deeply understand
the logic behind each step and its timing. In addition, SOP may involve multiple aircraft
systems and panels, which naturally increases the difficulty by requiring more knowledge
from the pilot.

Considering the context of the same pair of aircraft types but with different transition
directions, differences in learning difficulty are also observed. As an example, the panel
learning difficulty of A320 to A330 is 0.26 on average, while the difficulty of A330 to A320
drops to 0.18. This can be explained by the fact that the systems and functions of A330,
which is a long-haul, wide-body aircraft, may surpass those of A320 in terms of complexity.
Therefore, pilots transferring from A320 to A330 will need to adapt to a greater number of
new functions and systems during the learning process.

As shown in Figure 1, an obvious trend can clearly be observed: with the gradual
increase in the difficulty of transition training, the similarity between different types of
aircraft in terms of training objects shows a significant decreasing trend. This finding not
only visualizes the relationship between inter-aircraft differences and training difficulty
but also further confirms the important role of inter-aircraft similarity in streamlining the
transition training process by means of quantitative assessment. Therefore, this result not
only provides us with an in-depth understanding of the challenges faced by pilots during
the transfer training process but also highlights the importance of considering inter-aircraft
similarity when designing training programs in order to develop refined transition training
programs and improve training efficiency.
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Figure 1. Graph comparing transition training difficulty with the average similarity in the corre-
sponding training objects.
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3.2. Analysis of the Cost of Transition Training

Transition training for pilots primarily encompasses two segments: ground theory
training and simulator training. Typically, professional training institutions plan the dura-
tion of a pilot’s study in these two areas based on relevant regulations and the characteristics
of each aircraft type. Generally, the per-unit-time cost of ground theory training does not
show significant variation across different transition training programs. However, there is a
noticeable discrepancy in the per-unit-time cost of simulator training, mainly influenced by
the scale and model of the simulator’s construction. In this study, it was observed that the
four aircraft models focused on—A320, A330, B737, and B777—do not present significant
differences in the procurement costs of simulators. From this, it can be inferred that the
cost of transition training for these models is primarily driven by the differences in aircraft
types. Detailed transition training cost data (2020 data) was obtained from a flight training
company in China, as shown in Table 9.

Table 9. Data related to the cost of training for aircraft type transition.

Scenario
Duration of
Theoretical
Training (h)

Duration of
Simulator

Training (h)

Cost of
Theoretical

Training
(RMB 10,000)

Cost of
Simulator
Training

(RMB 10,000)

Total Cost
(RMB 10,000) Cost Level

A320 to A330 40 16 0.5 6.08 6.58 B
A330 to A320 40 16 0.5 6.08 6.58 B
B737 to B777 140 64 2.5 24.32 26.82 D
B777 to B737 140 56 2.5 21.28 23.78 C
A320 to B737 140 56 2.5 21.28 23.78 C
B737 to A320 140 56 2.5 21.28 23.78 C

According to the data in Table 9, the training costs for a single-person transition from
A320 to A330 are significantly lower than other scenarios, totaling only RMB 65,800, com-
pared with RMB 268,200 for single-person transition from B737 to B777. This observation
further confirms that the similarity between aircraft types largely influences the training
cost of transition. It is worth noting that the single-person transition training cost from
B777 to B737 and the single-person transition training cost between A320 and B737 both
amounted to RMB 237,800. This may imply that the training providers regarded the differ-
ences among the three aircraft types as being at the same level. Therefore, in developing
the training course program, the agency has adopted a uniform and standardized program.
Considering that training costs are affected by annual price fluctuations and standardized
training programs of airlines, it is more practical to classify training costs. Based on the rec-
ommendations of relevant professionals, this study grades training costs in 2020 according
to the following intervals: [0, 5), [5, 15), [15, 25), [25, 35), and [35, ∞), which correspond to
the five grades A, B, C, D, and E, respectively. The cost grades for the six tranche types of
training are shown in Table 9.

Equation (6) was used to calculate the assessed values of similarity between the
different models. These values were combined with the data on the cost of transition
training provided in Table 9 to plot the relationship between similarity and the cost of
transition training, as shown in Figure 2.

According to the demonstration in Figure 2, the single-training cost of transition train-
ing shows a clear decreasing trend with increasing type similarity, providing quantitative
evidence for the positive effect of aircraft type similarity on reducing training costs for
transition training. These findings and research efforts can provide valuable data support
for airlines and training organizations when developing transition training strategies and
cost control measures.



Aerospace 2024, 11, 166 13 of 19

Aerospace 2024, 11, x FOR PEER REVIEW 13 of 20 
 

 

Scenario 

Duration of 

Theoretical 

Training (h) 

Duration of 

Simulator 

Training (h) 

Cost of Theoretical 

Training (RMB 

10,000) 

Cost of Simulator 

Training (RMB 

10,000) 

Total Cost 

(RMB 10,000) 

Cost 

Level 

A320 to A330 40 16 0.5 6.08 6.58 B 

A330 to A320 40 16 0.5 6.08 6.58 B 

B737 to B777 140 64 2.5 24.32 26.82 D 

B777 to B737 140 56 2.5 21.28 23.78 C 

A320 to B737 140 56 2.5 21.28 23.78 C 

B737 to A320 140 56 2.5 21.28 23.78 C 

According to the data in Table 9, the training costs for a single-person transition from 

A320 to A330 are significantly lower than other scenarios, totaling only RMB 65,800, 

compared with RMB 268,200 for single-person transition from B737 to B777. This 

observation further confirms that the similarity between aircraft types largely influences 

the training cost of transition. It is worth noting that the single-person transition training 

cost from B777 to B737 and the single-person transition training cost between A320 and 

B737 both amounted to RMB 237,800. This may imply that the training providers regarded 

the differences among the three aircraft types as being at the same level. Therefore, in 

developing the training course program, the agency has adopted a uniform and 

standardized program. Considering that training costs are affected by annual price 

fluctuations and standardized training programs of airlines, it is more practical to classify 

training costs. Based on the recommendations of relevant professionals, this study grades 

training costs in 2020 according to the following intervals: [0,5), [5,15), [15,25), [25,35), and 

[35,∞), which correspond to the five grades A, B, C, D, and E, respectively. The cost grades 

for the six tranche types of training are shown in Table 9. 

Equation (6) was used to calculate the assessed values of similarity between the 

different models. These values were combined with the data on the cost of transition 

training provided in Table 9 to plot the relationship between similarity and the cost of 

transition training, as shown in Figure 2. 

 

Figure 2. Relationship diagram between model similarity and transition training cost. Figure 2. Relationship diagram between model similarity and transition training cost.

4. Predictive Modeling of the Difficulty and Cost of Transition Training
4.1. Predictive Modeling of Transition Training Difficulty

In the aviation industry, the process of transitioning a pilot from one aircraft type
to another is challenging. This transition not only requires pilots to master the technical
characteristics and operational requirements of the new aircraft type but also to adapt
to different flight environments and emergency response mechanisms. Therefore, an
accurate training difficulty prediction model can provide important guidance to pilots in
the transition and reduce the risks associated with unfamiliarity with the new aircraft type.
In addition, for airlines, effective training resource allocation and cost control are key to
improving competitiveness. Using predictive modeling, companies can arrange training
courses and simulator resources more rationally, thus improving training efficiency and
reducing unnecessary expenses.

In this paper, it is verified that the similarity in training programs between models is
an important factor affecting the difficulty of training. Therefore, a prediction model for
transition training difficulty based on the similarity between models is built. As mentioned
in the previous section, the main content of the training for the conversion model is the
difference training of the operation panel and the difference training of the operation
process. The following prediction of training difficulty also focuses on these two aspects.

In the previous section, the similarity in the panel between models was quantified as a
value of 0–1, and the training difficulty was divided into five grades A–E. Therefore, the
prediction model of the training difficulty of the panel of rotary models was established, i.e.,
a classification model of the training difficulty of the panel was established according to the
panel similarity. Given the limitations in sample size and the number of features, machine
learning and deep learning algorithms such as the convolutional neural network (CNN)
and support vector machine (SVM) are prone to overfitting. After exploring a variety of
traditional classification methods, including nonlinear regression, random forest, decision
trees, etc., it was found that the best performance was demonstrated by the K-nearest
neighbor (KNN) algorithm. Therefore, this study ultimately selected the KNN algorithm to
construct a predictive model for the difficulty of type conversion training.

The KNN algorithm, as an instance-based learning method, is mainly applied to
classification and regression tasks. The core of this algorithm is based on the intuitive
assumption that similar data points tend to be close to each other [29]. It defines “proximity”
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by measuring the distance between data points, thus identifying the K closest neighbors
to the new data point. The categories of these neighbors are then used to predict the
category of the new data point using a majority voting mechanism, i.e., the new data point
is classified into the most common category among its K nearest neighbors. The steps in
the application of the algorithm are as follows:

1. Select the value of K: Determine the value of K. The choice of the value of K affects the
results of the algorithm; too small a value of K may lead to overfitting of the model
and too large a value may lead to overgeneralization. Often, it is necessary to choose
the best K value using cross-validation [30].

2. Calculate the distance: For each test data point, calculate the distance between it and
all the training data points. Common distance metrics include Euclidean distance,
Manhattan distance, and Chebyshev distance. In this paper, Euclidean distance
(Equation (1)) is used to build the model.

3. Find the nearest K neighbors: For each test data point, find the nearest K training
data points.

4. Voting decision: Determine which category among these K neighbors has the most,
and then categorize the test data points into this category.

5. Output the prediction result: Use step 4 to determine the predicted categorization of
the new data point.

The similarity assessment values between panels in Table 5 are taken as the sample
features, and the assessment results of panel transition training difficulty in Table 8 are
taken as the classification results. A total of 36 sets of samples divided into the training set
and the test set according to the ratio of 8:2 to build the panel training difficulty prediction
model. Based on cross-validation (Figure 3), the optimal K value is 3, and the prediction
effect of the established model is shown in Figure 4.
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Figure 3. K-value cross-validation results of the training difficulty prediction model.

The prediction model of panel transition training built by the KNN model achieves a
prediction accuracy of 90% and 86% on the training set and test set, respectively. The high
accuracy on the training set indicates that the model can effectively learn and recognize
the panel differences between different models to predict the training difficulty, while the
same good accuracy on the test set further validates that the model has high reliability and
generalization ability. Overall, this model can be used as an effective tool for predicting the
transition training difficulty of the panel.

When the model for predicting the transition training difficulty of the SOP was being
built, the problem of insufficient sample data (only six samples) was encountered. The
calculation of the SOP similarity between models is completely different from the panel
similarity calculation method, and this difference means that the model originally used
to predict panel training difficulty cannot be directly applied to predict SOP transition
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training difficulty. However, considering the consistency in the effect of the similarity in
training objects on transition training difficulty, a solution is proposed: utilizing a transfer
learning approach. The core of transfer learning lies in the reuse of existing knowledge [31],
which can originate from models trained on similar tasks or from tasks in different domains
but with transferable characteristics. Especially when facing the challenge of data scarcity,
transfer learning shows its unique advantages [32]. By migrating knowledge from existing
models, effective learning with fewer data on the target task for application purposes can
be achieved.
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Figure 4. Visualization of the results of the prediction of the transition training difficulty of the panel.

In the transfer learning model, Professor Yang Qiang [33] proposed the Marginal
Distribution Adaptation (MDA) method, whose goal is to reduce the distance between the
marginal probability distributions of the source domain Xs and the target domain Xt, so as
to accomplish transfer learning. The method assumes that there exists a feature mapping Φ
such that the mapped data distribution P(Φ(Xs)) ≈ P(Φ(Xt)), and continues with the as-
sumption that if the marginal distributions are close, the conditional distributions of the two
domains will be close as well, i.e., the conditional distribution P(ys|Φ(Xs)) ≈ P(yt|Φ(Xt)).

The panel transition training data are used as the source domain and the SOP transi-
tion training data as the target domain. Since the features are one-dimensional, the linear
kernel mapping Φ needs to be found to achieve the feature distributions that are close
to each other. The Anderson–Darling method, which is applicable to small samples, is
used to test the normality of the source domain data features. The calculated statistic is
0.71, which is smaller than the critical value of 0.721 at the 5% significance level. There-
fore, it can be assumed that the source domain features obey the normal distribution
Xs ∼ N(0.478, 0.0546). Then, feature scaling is used to find the linear kernel mapping
function y = 1.997 ∗ x − 0.487 for the target domain features so that the characteristics
of the target domain and the source domain are approximately equally distributed (as
shown in Figure 5). Then, the transformed target domain features are substituted into the
panel transition training difficulty prediction model to predict the SOP transition training
difficulty, and the prediction results are shown in Figure 6.

As can be seen in Figure 6, the application of the transfer learning method to the
prediction of the transition training difficulty of the civilian aircraft SOP shows remarkable
results, with a prediction accuracy of 83%. The prediction of the training difficulty of five
out of the six samples is completely correct. The difficulty prediction of only one sample
was biased, i.e., the prediction result of the questionnaire result of level B difficulty was
judged to be level C difficulty. This may be because there are too few characterizing factors,
which prevented the model from fully capturing all the key factors that affect training
difficulty. Overall, however, this result fully demonstrates the effectiveness and feasibility
of the transfer learning model for SOP training difficulty prediction. The model successfully
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utilizes knowledge gained in other related tasks and successfully applies it to new specific
tasks, resulting in highly accurate predictions on a limited dataset.
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4.2. Predictive Modeling of Transition Training Cost

With the rapid development of aviation technology and the continued expansion
of route networks, pilots need frequent training to change types of aircraft in order to
adapt to different types of aircraft. However, such training is usually accompanied by
significant costs, including direct financial overhead and indirect time costs. Therefore,
the establishment of an effective model for predicting the cost of transition training is of
great significance for airlines in planning their budgets, optimizing resource allocation, and
improving training efficiency.

The previous section quantitatively verified that inter-aircraft similarity is a key factor
affecting the transition training cost, so the training cost can be predicted based on the
evaluated value of inter-aircraft similarity. However, the problem of insufficient sample
data was also encountered. Drawing on the successful experience of the SOP training
difficulty prediction model, the transfer learning model is used to establish a training cost
prediction model. The panel similarity data is taken as the source domain and the whole
aircraft type similarity data as the target domain, and the knowledge learned from the panel
transition training difficulty prediction model is used to predict the transition training cost.
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Feature scaling is used to find the linear kernel mapping function y = 1.5792 ∗ x− 0.2807
for the feature of aircraft type similarity so that it is close to the distribution of the feature
data in the source domain. Then, substituting the transformed target domain features into
the panel transition training difficulty prediction model can predict the transition training
cost level, and the prediction results are shown in Figure 7.
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As can be seen in Figure 7, the model constructed based on similarity and the transfer
learning method for predicting the transition training cost shows remarkable results. The
model successfully and accurately predicted the training cost level for each of the six differ-
ent aircraft-type transition training cases. This important achievement not only highlights
the efficiency and accuracy of the model but also provides a reliable cost prediction tool for
airlines in transition training resource planning. However, due to the limited number of
validation samples, these results are not sufficient to fully demonstrate the model’s gener-
alization ability. Nonetheless, they fully demonstrate the great potential of inter-aircraft
similarity and transfer learning-based approaches in solving the problem of transition
training cost prediction.

5. Summary

In this study, a set of scientific quantitative evaluation methods was constructed to
assess the similarity of the panel display control design and standard operating procedures
(SOPs) of different aircraft types. Questionnaires and mathematical statistics were used to
quantitatively assess the learning difficulty of each panel and SOP in transition training.
The transition training between A320, A330, B737, and B777 was chosen as the research
samples to quantitatively verify the influence of inter-aircraft similarity on the difficulty
and training cost of transition training. Finally, the KNN algorithm was used to establish a
training difficulty prediction model, and the knowledge learned from the training difficulty
prediction model was used to predict the training cost of transition training using the
transfer learning method. Based on the above research, this paper draws the following
main conclusions:

(1) The assessment system constructed in this study can accurately quantify the similarity
between different aircraft types.

(2) With the application of the assessment method in this paper, it is quantitatively
verified that inter-aircraft similarity has a significant positive effect in reducing the
difficulty and cost of transition training.

(3) The prediction model established by using the KNN algorithm featuring the sim-
ilarity of training objects can predict the difficulty of transition training programs
more accurately.
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(4) The transfer learning method can effectively solve the problem of insufficient sample
size. Combined with the results of an inter-aircraft similarity assessment, it can accu-
rately predict the cost of transition training, which provides reliable decision support
for airlines in terms of transition training resource planning and cost management.

In summary, by predicting training difficulty and costs through the assessment of
similarity in product controls and operational processes, this study has paved new paths
for research in training for product transitions. It directly ties to human cognitive processes,
namely, by enhancing the similarity between learning materials to reduce cognitive load,
accelerate the learning process, and improve overall learning efficiency. Our research
suggests that by analyzing and evaluating the similarity between different products’ control
elements and operational processes, the training process can be predicted and optimized.
This strategy is not limited to the aviation sector but is also applicable to multiple industries
such as automotive, shipping, and heavy machinery. For example, in the automotive
industry, the difficulty and cost of driver training can be assessed by comparing the control
systems of new and old vehicle models; in the shipping industry, more efficient training
plans can be designed by analyzing the similarity in operational processes, ensuring
that crew members can quickly master new technologies. Therefore, our study not only
emphasizes the importance of similarity in assessing and optimizing the training process
but also demonstrates how this concept can be applied to training design across different
products and industries, offering a productive route for future research and practice. To
further enhance the model’s accuracy and universality, future research could focus on
expanding the size of the data sample, delving deeper into the key factors affecting training
costs, and optimizing the algorithm and feature selection processes.
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9. Mostarac, N.; Reščić, A.; Mihetec, T.; Novak, D. Flight Training Syllabus Structure Impact on Proactive Planning of High-

Performance Military Aircraft Pilot Training Operations in Flexible Airspace Structures. Promet-Traff. Transp. 2022, 34, 839–848.
[CrossRef]

10. Sharma, V.; Carroll, M.B. CFIs’ Safety Behaviors at Flight Training Schools: Understanding the Effects of Personality Traits,
Self-Efficacy. Available online: https://commons.erau.edu/cgi/viewcontent.cgi?article=1500&context=ntas (accessed on 10
January 2024).

https://doi.org/10.2514/1.C033646
https://doi.org/10.1088/1742-6596/1678/1/012037
http://www.caac.gov.cn/XXGK/XXGK/GFXWJ/201905/t20190530_196484.html
http://www.caac.gov.cn/XXGK/XXGK/GFXWJ/201905/t20190530_196484.html
https://doi.org/10.2466/pr0.1985.57.2.465
https://doi.org/10.1207/s15327108ijap0803_6
https://doi.org/10.1108/AEAT-10-2021-0295
https://doi.org/10.7307/ptt.v34i6.4158
https://commons.erau.edu/cgi/viewcontent.cgi?article=1500&context=ntas


Aerospace 2024, 11, 166 19 of 19

11. Orlansky, J.; String, J. Cost-Effectiveness of Flight Simulators for Military Training, Volume I: Use and Effectiveness of Flight
Simulators. Inst. Def. Anal. 1977.

12. Hoeft, T.A.; Anderson, T.P. An Economic Analysis of Restructuring Undergraduate Helicopter Flight Training; University of Florida:
Gainesville, FL, USA, 1990.

13. Young, P.; Fanjoy, R. Advanced Collegiate Flight Automation Training: What is Needed and at What Cost. Int. J. Appl. Aviat. Stud.
2003, 3, 215–225.

14. Pope, T.M. A Cost-Benefit Analysis of Pilot Training Next. Theses Diss. 2019, 2314, AD1077553.
15. Ross, G.; Gilbey, A. Extended Reality (Xr) Flight Simulators as an Adjunct to Traditional Flight Training Methods: A Scoping

Review. CEAS Aeronaut. J. 2023, 14, 799–815. [CrossRef]
16. Kardi, K. Innovations in Basic Flight Training for the Indonesian Air Force; Naval Postgraduate School: Monterey, CA, USA, 1990.
17. Johnson, C.M.; Wiegmann, D.A. Scenario-Based Flight Simulation Training: A Human Factors Analysis of its Development and

Suggestions for Better Design. In Proceedings of the 16th International Symposium on Aviation Psychology, Dayton, OH, USA,
2–5 May 2011; pp. 662–667.

18. McClernon, C.K.; McCauley, M.E.; O’Connor, P.E.; Warm, J.S. Stress Training Improves Performance During A Stressful Flight.
Hum. Factors. 2011, 53, 207–218. [CrossRef]

19. Lu, J.; Deng, J.; Ren, Z.; Shi, Y. Flight Training Subject Identification Method Based on Multivariate Subsequence Search With
Double Windows. IEEE Access 2022, 11, 3221–3231. [CrossRef]

20. Lu, J.; Shi, Y.; Ren, Z.; Zhong, Y.; Bai, Y.; Deng, J. Research on Flight Training Prediction Based on Incremental Online Learning.
Appl. Intell. 2023, 53, 25662–25677. [CrossRef]

21. Yusuf, A.B.; Kor, A.-L.; Tawfik, H. Integrating the HFACS Framework and Fuzzy Cognitive Mapping for In-Flight Startle Causality
Analysis. Sensors 2022, 22, 1068. [CrossRef]

22. Li, J.; Sun, H.; Li, F.; Cao, W.; Hu, H. Non-technical Competency Assessment for the Initial Flight Training Based on Instructor
Measurement Data. In Proceedings of the 2022 2nd International Conference on Big Data Engineering and Education (BDEE),
Chengdu, China, 5–7 August 2022; pp. 1–7.

23. Zhang, Y.; Kang, C.; Liang, K.; Yongqi, Z.; Wenjun, D. A Serialized Civil Aircraft R&D Cost Estimation Model Considering
Commonality Based on BP Algorithm. Chin. J. Aeronaut. 2022, 35, 253–265.

24. Zhixue, S. Analysis and Control of Accident Causes in Machinery Manufacturing. Ind. Saf. Environ. Prot. 2006, 32, 63–64.
25. Chunling, Z. Civil Aircraft Cockpit Integrated Design and Airworthiness; Shanghai Jiao Tong University Press: Shanghai, China, 2019.
26. Zhang, S.; Hu, Y.; Bian, G. Research on String Similarity Algorithm Based on Levenshtein Distance. In Proceedings of the 2017

IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, 25–26
March 2017; pp. 2247–2251.

27. Su, Z.; Ahn, B.-R.; Eom, K.-Y.; Kang, M.-K.; Kim, J.-P.; Kim, M.-K. Plagiarism Detection Using the Levenshtein Distance and
Smith-Waterman Algorithm. In Proceedings of the 2008 3rd International Conference on Innovative Computing Information and
Control, Washington, DC, USA, 18–20 June 2008; p. 569.

28. Likic, V. The Needleman-Wunsch Algorithm for Sequence Alignment; 7th Melbourne Bioinformatics Course; Bio21 Molecular Science
Biotechnology Institute, The University of Melbourne: Melbourne, Australia, 2008; pp. 1–46.

29. Imandoust, S.B.; Bolandraftar, M. Application of K-Nearest Neighbor (KNN) Approach for Predicting Economic Events: Theoreti-
cal Background. Int. J. Eng. Res. Appl. 2013, 3, 605–610.

30. Zhang, S.; Li, X.; Zong, M.; Zhu, X.; Cheng, D. Learning K for KNN Classification. ACM Trans. Intell. Syst. Technol. 2017, 8, 1–19.
[CrossRef]

31. Xu, C.; Wang, J.; Zhang, J.; Li, X. Anomaly Detection of Power Consumption in Yarn Spinning Using Transfer Learning. Comput.
Ind. Eng. 2021, 152, 107015. [CrossRef]

32. Li, Z.; Kristoffersen, E.; Li, J. Deep Transfer Learning for Failure Prediction Across Failure Types. Comput. Ind. Eng. 2022,
172, 108521. [CrossRef]

33. Yang, Q.; Zhang, Y.; Dai, W.; Pan, S.J. Transfer Learning; Cambridge University Press: Cambridge, UK, 2020.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s13272-023-00688-5
https://doi.org/10.1177/0018720811405317
https://doi.org/10.1109/ACCESS.2022.3232808
https://doi.org/10.1007/s10489-023-04930-9
https://doi.org/10.3390/s22031068
https://doi.org/10.1145/2990508
https://doi.org/10.1016/j.cie.2020.107015
https://doi.org/10.1016/j.cie.2022.108521

	Introduction 
	Quantitative Analysis of Aircraft-Type Similarity 
	Aircraft-Type Similarity Assessment Method 
	Aircraft-Type Similarity Assessment Cases and Analysis 

	Difficulty and Cost Analysis of Aircraft-Type Transition Training 
	Analysis of the Difficulty of Transition Training 
	Analysis of the Cost of Transition Training 

	Predictive Modeling of the Difficulty and Cost of Transition Training 
	Predictive Modeling of Transition Training Difficulty 
	Predictive Modeling of Transition Training Cost 

	Summary 
	References

