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Abstract: The role of air traffic controllers is to direct and manage highly dynamic flights. Their
work requires both efficiency and accuracy. Previous studies have shown that fatigue in air traffic
controllers can impair their work ability and even threaten flight safety, which makes it necessary to
carry out research into how to optimally detect fatigue in controllers. Compared with single-modality
fatigue detection methods, multi-modal detection methods can fully utilize the complementarity
between diverse types of information. Considering the negative impacts of contact-based fatigue
detection methods on the work performed by air traffic controllers, this paper proposes a novel AF
dual-stream convolutional neural network (CNN) architecture that simultaneously extracts controller
radio telephony fatigue features and facial fatigue features and performs two-class feature-fusion
discrimination. This study designed two independent convolutional processes for facial images and
radio telephony data and performed feature-level fusion of the extracted radio telephony and facial
image features in the fully connected layer, with the fused features transmitted to the classifier for
fatigue state discrimination. The experimental results show that the detection accuracy of radio
telephony features under a single modality was 62.88%, the detection accuracy of facial images was
96.0%, and the detection accuracy of the proposed AF dual-stream CNN network architecture reached
98.03% and also converged faster. In summary, a dual-stream network architecture based on facial
data and radio telephony data is proposed for fatigue detection that is faster and more accurate than
the other methods assessed in this study.

Keywords: human factor; fatigue detection; dual-stream network; radio telephony; facial image

1. Introduction

The subsiding of the COVID-19 epidemic and the associated ongoing increase in the
number of flights is further increasing the workload of air traffic controllers, thereby increas-
ing the problem of controller fatigue [1]. At busy airports, controllers who continuously
issue control instructions are likely to experience fatigue symptoms such as dry mouth
and difficulty speaking [2]. Studies have shown that fatigue can significantly reduce the
reaction speed, judgment accuracy, and decision-making ability of controllers. Kelly D. [3]
studied the human factors in some aviation accidents from 2007 to 2017 and found that
fatigue is an important cause of accidents. Abd-Elfattah H. M.’s research shows that fatigue
has a negative impact on human perception and decision making [4]. Fatigue may cause
errors, omissions, and forgetfulness in the work of controllers, thereby threatening the
safe operation of flights [5]. In September 2011, a controller in Japan fell asleep while on
duty in the early morning, causing an incoming plane to lose contact with the ground for
more than 10 min. Civil aviation safety incidents have occurred due to controller fatigue
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resulting in sleeping on duty, indicating that controller fatigue has always been a potential
threat to the efficient and safe operation of civil aviation.

Interventions to effectively curb the negative impacts of fatigue require research
into controller fatigue detection. Fatigue detection methods are usually divided into
subjective and objective methods: subjective methods usually involve questionnaires,
while objective methods are based on objective data such as physiological indicators of
the subjects. Objective detection methods can also be divided into contact-based and
non-contact-based methods according to whether the detection equipment makes physical
contact with the subject. Based on detection indicators, fatigue detection methods can also
be divided into single-modality detection methods based on a single data source such as
audio or facial data and multi-modal detection methods based on multiple data sources.

Contact-based fatigue detection equipment can interfere with the work of controllers,
which has prompted many researchers to investigate non-contact-based fatigue detection
methods. Researchers have found that fatigue is associated with numerous facial features
such as eye closure rate, eyelid distance, percentage of eye open [6], blinking frequency,
mouth breathing [7,8], and other facial features [9,10]. Liang [11] analyzed eye features
when controllers were working and proposed a deep-fusion neural network for eye position
and eye state detection. Deng et al. [12] studied the relationship between the percentage
of the pupil covered by the eyelid over time and the fatigue state of controllers. Li K. [13]
focused on analyzing the information of the eyes and mouth and fused the fatigue infor-
mation from different facial regions through multi-source fusion, proposing an accurate
recognition algorithm called Recognizing the Drowsy Expression (REDE). Zhang et al. [14]
revealed the fatigue state of controllers based on changes in pupil size. These studies have
shown that fatigue information is indeed available from facial features. However, fatigue
is not only reflected in the eyes, so research focusing only on the eye area ignores other
information available from the face.

Many studies on the facial fatigue features of car drivers have shown that actions such
as mouth breathing contain significant fatigue information [15]. Devi et al. [16] proposed
a fatigue state discrimination method based on a fuzzy inference system to perform car
driver fatigue state discrimination by fusing mouth breathing and the fatigue state of the
eyes. Li et al. [17] improved the Tiny YOLOV3 convolutional neural network and evaluated
the fatigue state of car drivers based on both eye and mouth features.

In contrast to car drivers, air traffic controllers need to speak as an integral part of their
workflow, which provides information for fatigue state detection. Moreover, collecting
radio telephony data has little impact on the work of controllers, making such data ideal for
controller fatigue detection. Audio features such as hesitations, silent pauses, prolongation
of final syllables, and the syllable articulation rate in a fatigue state differ significantly from
those in a normal state [18], thus confirming the possibility of analyzing controller fatigue
state through audio analysis. Wu [19] proposed an audio fatigue detection algorithm
based on traditional Mel-Frequency Cepstral Coefficients (MFCC) and added an adaptive
mechanism to the algorithm to successfully classify the fatigue audio of air traffic controllers.
Shen and others [20] revealed significant differences in the fractal dimensions of radio
telephony under different fatigue states. He [21] analyzed the radio telephony of controllers
under different fatigue states and found that features such as the audio rate and pitch
can be utilized by a k-means++ algorithm to classify the fatigue state. Shen [22] applied
a densely connected convolutional autoencoder to neural networks to classify fatigue
radio telephony.

In addition, there are fatigue detection studies based on other data sources. We
have summarized the fatigue detection methods according to the data sources of fatigue
detection in Table 1.
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Table 1. Summary of fatigue detection methods and characteristics.

Category Method Principle Accuracy Usability

Subjective
Detection
Methods

Subjective Feeling Rating Method Determine fatigue level based on
subjective fatigue feeling. Medium Low

Fatigue Rating Scale Method
Design scales to rate fatigue level
based on fatigue characterization
indicators.

Medium Medium

Objective
Detection
Methods

Contact Type

Electroencephalogram
Measurement Method

Different brain wave frequencies
when the cerebral cortex is in
different states.

High Low

Electrocardiogram
Measurement Method

Heart rate time–frequency domain
indicators are significantly related to
the degree of fatigue.

High Low

Electromyogram
Measurement Method

Monitor the bioelectric changes when
muscle cells are active. High Low

Dynamic Heart
Rate Method

There is a close relationship between
heart rate and muscle fatigue when
engaging in physical operations.

High Medium

Non-contact Type

Facial State Recognition
Method

Detect fatigue by analyzing and
recognizing facial features. Medium High

Voice Frequency
Analysis Method

Voice features change under
fatigue state. Medium Medium

In comparison, multi-modal fatigue state detection data contain richer and more-
detailed fatigue information since they are affected by multiple aspects of the fatigue
state. The processing of weights for different types of modal information is a major
difficulty when fusing multi-modal information. In order to dynamically adjust the degree
of influence of two types of features on the detection results, the fusion of audio features and
facial features can be weighted separately as δsum = ϑδv + (1 − ϑ)δa and weighted product
δprod = δϑ

v δ1−ϑ
a , where the weight factor ϑ ∈ [0, 1] and δv and δa are facial features and audio

features, respectively [23]. Authors have adjusted the weight factors through experiments to
achieve the optimal fusion of audio features and facial features and used δsum and δprod as
the fusion features. However, manual adjustments are both time-consuming and inefficient.

In order to solve the problem of accurately detecting the fatigue state of controllers
without affecting their work, this paper proposes a multi-modal fatigue feature detection
network for controllers based on audio data and facial data. The proposed network applies
two independent convolution processes to audio data and facial data, fuses audio features
with facial features at the feature level, and finally realizes fatigue state discrimination
using the Softmax function. Compared with the weighted feature-fusion method, the
feedforward neural network can automatically correct the weights of each neuron during
backpropagation, not only by dynamically adjusting the weights between different modali-
ties of features but also between different features within the same modality and between
different elements within the same feature. This approach can reveal key information in
multi-modal features and improve the accuracy of fatigue state discrimination.

This paper was organized as follows: Section 2 introduces the proposed AF dual-
stream CNN architecture, explaining the processing of audio data and facial data as well as
the fusion and discrimination steps of the two features. Section 3 introduces comparative
experiments of the AF dual-stream CNN to verify the effectiveness of the network. Finally,
conclusions are drawn and future work is discussed in Section 4.

2. AF Dual-Stream CNN: A Dual-Stream CNN for Audio and Facial Images

This section first introduces the extraction of audio features in the dual-stream network
and then introduces the proposed AF dual-stream CNN architecture.

2.1. Audio Feature Extraction

Various vocal feature extraction methods have different focuses on the features they
extract. Therefore, the simultaneous use of multiple vocal feature extraction methods can
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comprehensively reflect the differences before and after vocal fatigue. This study selected
five commonly used audio features from five perspectives as audio fatigue features [24], as
briefly introduced below.

(a) Zero-crossing rate

In the waveform diagram, the zero-crossing rate (ZCR) [25] represents the number of
times the waveform crosses the X-axis. The short-time zero-crossing rate of an audio single
Ai is calculated as

Zn(A i) = ∑∞
m=−∞

∣∣∣sgn[Ai(m)]− sgn[Ai(m − 1)]
∣∣∣w(m) (1)

where sgn(n) is the following sign function:

sgn[Ai(n)] =

{
1 Ai(n) ≥ 0
−1 Ai(n) < 0

(2)

The w(n) function is

w(n) =

{
1/2N 0 ≤ n ≤ N − 1
0 otherwise

(3)

This feature can be used to represent spectral and noise changes.

(b) Chromagram

Chromaticity features [26] are collectively referred to as the chroma vector and the
chromagram. The chromaticity vector is a vector containing 12 elements, which represent
the energy in 12 levels within a period of time. Energy of the same level in different octaves
is accumulated. The chromaticity diagram is a sequence of chromaticity vectors. The
chroma features of an audio sample Ai are represented as

C(Ai) = C(FFT(Ai)) (4)

where FFT is the fast Fourier transform.
C(Ai) can capture harmonic information in an audio signal and has high robustness.

(c) Mel-frequency cepstral coefficients

MFCC [27] are a widely used cepstral parameter extracted in the mel-scale fre-
quency domain:

M f (Ai) = DCT(Mel(FFT(Pre(Ai)))) (5)

The MFCC feature of an audio signal Ai can be obtained by applying preprocessing, the
fast Fourier transform, triangular mel-filter processing, and the discrete Fourier transform.
This feature conforms to the auditory characteristics of human ears and can convert raw
audio into separable and recognizable feature vectors.

(d) Root mean square

The size of a frame of signals can be quantified as its root mean square (RMS) value [28],
which is essentially a set of arithmetic mean values:

RMS(Ai) =

√
1
K
· ∑(t+1)·K−1

k=t·K s(k)2 (6)

where 1
K · ∑

(t+1)·K−1
k=t·K s

(
k)2 represents the average energy at all sampling points in frame t.

RMS(Ai) has the advantage of not being sensitive to outliers.

(e) Mel spectrogram
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The mel-spectrogram [29] is calculated by mapping the power spectrum onto the mel
frequency scale. This can capture the spectral information of audio signals and reflect
changes therein over time. The mel-spectrogram of an audio signal Ai is

Ms(Ai) = MelSpectrogram(Ai) (7)

We concatenate the five types of audio features of an audio signal to obtain its feature
matrix Ai f :

Ai f =


Zn(Ai)
C(Ai)

M f (Ai)
RMS(Ai)
Ms(Ai)

 (8)

We then input the combined audio features Ai f of each audio Ai into the designed
audio data stream network.

In Figure 1, blue, yellow, and green, respectively, represent the distribution of voice
feature values when “Notfatigue”, “Mildfatigue”, and “Fatigue” are present, and we can
see that the voice features of the three fatigue states are intertwined with each other, so the
classification of fatigue speech is difficult.
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Figure 1. A 30–40 voice feature clustering scatter plot.

2.2. AF Dual-Stream CNN

In order to accurately and rapidly detect a controller’s fatigue state, the characteristics
of the controller’s work [30] are utilized in this paper to propose a fatigue detection network
AF dual-stream CNN based on audio data and facial data. The network architecture
includes an audio convolution module, a facial convolution module, and a fully connected
layer.

(a) Audio data stream: convolution module based on audio data

In Section 2.1, we introduced the five types of features of audio. In our model, we
pass audio feature Ai f to a one-dimensional audio convolution module that includes four
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convolution layers and four pooling layers. The audio features are used as audio fatigue
features after convolution processing. The essence of the audio convolution module is
performing function mapping with Ai f as an independent variable so that the convolu-

tion operation of the audio data stream can be recorded as function ADS
(

Ai f

)
, and the

convolution operation process of the audio data stream is

A f f = ADS
(

Ai f

)
(9)

where audio fatigue feature A f f is produced by the convolution processing of the audio
features.

(b) Facial data stream: convolution module based on facial data

We designed a two-dimensional convolution module for processing facial features.
This convolution module first performs three convolution operations, followed by pooling
operations, two further convolution operations, and, finally, more pooling operations.
Suppose a facial picture with a resolution of n × n Pi is denoted as Pn×n:

Pn×n =

x1,1 · · · x1,n
...

. . .
...

xn,1 · · · xn,n

 (10)

where xi,j ∈ (0, 255) and i, j ∈ (1, n); xi,j represents the value of a pixel in a facial image.
This means that the independent variable in the convolution operation of the facial

data stream is Pn×n, and the convolution mapping of the facial data stream can be written as

Ff f = FDS(Pn×n) (11)

where Ff f is an m×m matrix representing the facial fatigue features after convolution
processing of the facial image. In our network, n = 48 and m = 12.

(c) Feature fusion and fatigue state discrimination

The processing results for the audio and facial data streams are fused in the fully
connected layer, and, finally, the fused features are input into the Softmax classifier for
classifying three fatigue states.

For a facial image output Ff f =

 x1,1 · · · x1,m
...

. . .
...

xm,1 · · · xm,m

 after the facial convolution data

stream, we extend it to Ff f
′ =

 x1,1
...

xm,m

 and then perform feature concatenation in the input

layer of the fully connected layer. The feature concatenation process is as follows:

Ff =

[
A f f
Ff f

′

]
=



Zn(Ai)
C(Ai)

M f (Ai)
RMS(Ai)
Ms(Ai)

x1,1
...

x12,12


(12)
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We then input fatigue feature FFf containing audio information and facial information
into the trained fully connected layer for feature fusion. The fully connected layer as a
function FCL

(
Ff

)
results in the process of feature fusion and detection being described as

FF = FCL
(

Ff

)
(13)

result = Solftmax(FF) (14)

where result ∈ {NoFatigue, MildFatigue, Fatigue}. The detailed network architecture is
shown in Figure 2. The detailed algorithm process is shown in Algorithm 1.
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Figure 2. Network structure of the AF dual-stream CNN that includes three modules: audio data
stream, facial data stream, and feature fusion.

Algorithm 1: AF dual-stream CNN

Input: Ai, Pi
Output: result
Initialize: initialize Ff

Step 1: initialize Aff and Fff
’

For Ai, initialize Zn(Ai), C(Ai), Mf(Ai), RMS(Ai), and Ms(Ai) and, by using Equations (1) and
(4)–(7), initialize Aif.

Aif =


Zn(Ai)
C(Ai)

Mf(Ai)
RMS(Ai)
Ms(Ai)


Then, Aff = ADS

(
Aif

)
according to Equation (9).
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Algorithm 1: Cont.

For Pi, initialize Fff =


x1,1 · · · x1,m

...
. . .

...
xm,1 · · · xm,m

 according to Equation (11), Fff’ =


x1,1

...
xm,m


Step 2: initialize Ff

Ff =

[
Aff
Fff

′

]
Step 1: Fully connected layer update

For E = 1 to the number of iterations,
train the fully connected layer using Ff of each Aj and Pj in the training set;
according to the difference between the input and output labels, update the parameters in the fully connected
layer using a backpropagation algorithm;
E = E + 1.

End
Step 2: Fatigue state discrimination

Initialize FF of Ai and Pi according to Equation (13).
Output the fatigue label according to Equation (14): result = Solftmax(FF)

3. Fatigue Detection Experiments

This section introduces the experimental environment, including the experimental data
and parameter settings of the proposed network used in the experiments. The comparative
experiments performed with other mainstream methods are also described.

3.1. Experimental Setup

In collaboration with the Jiangsu Air Traffic Control Bureau, we collected radio tele-
phony data and facial data from 14 certified air traffic controllers while they were working.
We used the same aircraft model as the Jiangsu Air Traffic Control Bureau to ensure that
the simulation environment was identical to the actual working environment. The data col-
lection experiments were conducted on a control simulator produced by China Electronics
Technology Group Corporation. The control simulator system was divided into two parts:
the tower seat and the captain’s seat. The experimental environment of the control tower
seat is shown in Figure 3. The subjects were located in the tower seat, and the equipment
used included apron display screens, electronic progress sheet display screens, control call
recording equipment, and facial data collection cameras. The subjects comprised seven
males and seven females, all of whom were licensed tower controllers in the Air Traffic
Management Bureau and came from East China; hence, their radio telephony had similar
pronunciation characteristics. They had between 3 and 8 years of work experience, and the
workload of the air traffic controllers in the simulation scenario was similar to the workload
in their actual working environment. All the subjects had rested sufficiently (>7 h) for the
two nights before the experiments and were prohibited from consuming food or alcohol
that might affect the experimental results. All the experimenters were fully familiar with
the control simulator system. All the subjects were informed of the experimental content
and had the right to withdraw from participating in the experiments at any time.
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The experiments were conducted at 14:00 every day from 4 April to 27 April 2023.
During this period, one controller was assigned to conduct experiments in the control seat
every day. During each experimental day, we asked the subjects to complete six sets of
control simulation tasks, each set of which had a volume of 20 flights and lasted for 30 min,
and with radio telephony and facial data only recorded while they were in the control
seat during the experiments. After each set of tasks had been completed, we allowed the
subjects to rest for 5 min and complete the 9-point Karolinska Sleepiness Scale during this
rest period to assess their fatigue status as a score from 1 to 9 [31]. The result was used to
categorize the controller’s fatigue status as no fatigue, mild fatigue, or severe fatigue [32].
At the beginning of the experiment, the scale assessment results showed that the subjects
were mostly in a no-fatigue state. After the experiment had been conducted for a while, the
assessment results of some scales showed that the subjects appeared to be fatigued. The
typical fatigue features are shown in Figure 4.
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Figure 4. Facial schematic diagram of the controller in a fatigued state (left image) and in a non-
fatigued state (right image).

After the experiments, we preprocessed the facial and radio telephony data. After
processing, each radio telephony sample lasted about 2 s and was associated with a facial
image, with both of them being used as a set of data. Finally, 1602 facial images were
obtained, corresponding to 1602 radio telephony samples for the same period. The data
of all the subjects were processed, which finally yielded 496, 543, and 563 sets of data for
the no-fatigue, mild-fatigue, and severe-fatigue states, respectively. The average age of the
participants was 29.2, with a standard deviation of 2.9. The data distribution is presented
in Table 2.

Table 2. Data distribution.

Subject Number Gender Age, Years No Fatigue Mild Fatigue Severe Fatigue Total

1 Male 30 35 39 40 109
2 Male 28 30 40 41 116
3 Male 27 34 38 39 111
4 Male 28 35 39 40 109
5 Male 30 42 46 47 127
6 Male 29 30 34 35 104
7 Male 32 32 36 37 105
8 Female 35 33 37 38 108
9 Female 28 37 41 42 120

10 Female 29 38 42 43 123
11 Female 31 39 43 44 121
12 Female 30 40 44 45 118
13 Female 29 36 40 41 117
14 Female 29 35 39 40 114
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Our dual-stream network was trained using each set of data as an input sample, and
each set of data participating in the network training had undergone data-enhancement
processing. For the radio telephony data, we injected noise and performed slice processing
as well as compression and expansion processing in the time domain. For the facial images,
we used an iterator to introduce random disturbances into the data for each round of
training, including scaling and slight rotation of the images. Using these preprocessing
methods helped us to increase the generalization of the model.

The experiments were conducted using Python 3.6 in the Windows operating system.
To ensure the reliability of the experimental results, the experiments were repeated multiple
times, from which average values were determined.

The framework of the proposed dual-stream network used in the experiments is
shown in Figure 1, and the detailed parameter settings are listed in Table 3.

Table 3. Parameter settings for the audio data stream. The same padding method was applied in
all cases.

Network Layer Number of Kernels Kernel Size Stride Dropout Activation Function Output Size

Audio feature 162 × 1
Conv1D 256 5 1 0 Relu 162 × 256

MaxPooling1D 0 2 2 0 81 × 256
Conv1D 256 5 1 0 Relu 81 × 256

MaxPooling1D 0 2 2 0 41 × 256
Conv1D 128 5 1 0 Relu 41 × 128

MaxPooling1D 0 2 2 0.2 21 × 128
Conv1D 64 5 1 0 Relu 21 × 64

MaxPooling1D 0 2 2 0 11 × 64

The parameter settings of the facial data stream are as shown in Table 4.
The features obtained from the facial data stream and the voice data stream are trained

in the fully connected layer to achieve fatigue classification. The parameter settings of the
fully connected layer are as shown in Table 5.

During the experiments, in order to facilitate the display of the detection results
for a single modality, we used the network formed by connecting Tables 3 and 5 as the
audio data stream model. The network formed by connecting Tables 4 and 5 as the facial
data stream model. We subsequently conducted experiments on single-modality and
multi-modal networks.

Table 4. Parameter settings for the facial data stream. The same padding method was applied in
all cases.

Network Layer Number of Kernels Kernel Size Stride Dropout Output Size

Facial data 48 × 48 × 1
Conv2D 32 1 × 1 1 Relu 48 × 48 × 32
Conv2D 64 3 × 3 1 Prelu 48 × 48 × 64
Conv2D 64 5 × 5 1 Prelu 48 × 48 × 64

MaxPooling2D 0 2 × 2 2 24 × 24 × 64
Conv2D 64 3 × 3 1 Prelu 24 × 24 × 64
Conv2D 64 5 × 5 1 Prelu 24 × 24 × 64

MaxPooling1D 0 2 × 2 2 12 × 12 × 64

Table 5. Parameter settings for the fully connected layer.

Network Layer Input Output Activation Function Dropout Classifier

Fully connected 2048 9920 2048 Relu 0.5 None
Fully connected 1024 2048 1024 Relu 0.5 Softmax
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3.2. Experimental Results

For the radio telephony data, we selected commonly used and classic methods to
classify the audio features. In the experiments, when we only used the audio data stream to
train the fully connected layer of the neural network, the accuracy of the audio data stream
model reached 62.88%, while the AF dual-stream CNN detection accuracy based on the
radio telephony data and the facial data reached 98.03%. In the experiments, we aimed to
set other model parameters to their optimal values in order to ensure that all comparisons
were unbiased. The parameter settings for the other models were as follows:

a. For the SVC model, the penalty coefficient C was 10, the kernel function used the
radial basis function, and the randomness was set to 69.

b. For the KNN model, the number of neighbors was set to five, the prediction weight
function was inversely proportional to the distance, and the brute force algorithm
was used. The leaf size passed to the nearest-neighbor search algorithm was 30.

c. For the random forest model, the number of trees was set to 500, the random state
was 69, and the maximum number of features was the square root of the number of
sample features. The node split criterion was the information gain entropy.

d. For the multilayer perceptron classifier unscaled MLP model, randomness was set to
69, and data scaling was not performed during testing.

e. For the multilayer perceptron classifier standard scaled MLP model, randomness
was set to 69, and data scaling was performed during testing.

The experimental results are presented in Table 6.

Table 6. Comparison of audio detection model accuracies for different models.

Model Name Accuracy

SVC model (C = 10) 51.40%
KNN model (K = 5) 46.10%

Random forest model 77.57%
Unscaled MLP model 67.13%

Standard scaled MLP model 76.01%
Audio data stream model 62.88%

AF dual-stream CNN 98.03%

ResNet18 and VGGNet16 have been used previously for facial fatigue feature ex-
traction [33]. Inspired by this, we selected related models for testing with the air traffic
controller facial fatigue dataset. The experimental results are presented in Table 7.

Table 7. Comparison of facial detection model accuracies.

Model Name Accuracy

VGG19 35.94%
VGG16 96.81%

ResNet50 97.82%
LeNet 95.01%

Facial data stream model 96.0%
AF dual-stream CNN 98.03%

The experimental results show that our dual-stream network exhibited high accuracy,
0.21% higher than that for ResNet50. In addition, our network converged markedly faster
during training, requiring only 50 iterations to converge.

As indicated in Table 8, although the number of parameters of our model was almost
the same as that for ResNet50, the number of iterations required for convergence was only
20% of those for ResNet50. This indicates that our network model converges rapidly, so it
is particularly well suited to air traffic controller fatigue detection. Table 8 lists the values
of four evaluation parameters for our AF dual-stream CNN model.
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Table 8. Comparison of the numbers of detection model parameters and iterations required for
convergence.

Model Name Number of Nontrainable
Parameters

Number of Trainable
Parameters Number of Iterations

VGG19 0 21,601,219 1000
VGG16 0 16,291,523 300

ResNet50 53,120 23,534,467 1200
LeNet 0 3,627,573 200

AF dual-stream CNN 0 23,582,979 50

We use four metrics, Precision, F1 Score, Recall, and Support, to evaluate the recogni-
tion results of our model, as shown in Table 9.

Table 9. Detection performance of our AF dual-stream CNN.

Label Precision F1 Score Recall Support

Severe fatigue 0.98 0.99 1.00 97
Mild fatigue 1.00 0.99 0.98 129
No fatigue 0.99 0.99 0.99 95

The comparative experimental results for the audio data show that the fatigue char-
acteristics of audio were difficult to categorize into the three fatigue states. Even when
using audio features that performed well in previous studies, the highest accuracy of the
various test models for fatigue audio detection did not exceed 77.57%. The comparative
experimental results for facial data show that our facial data stream model performed
well but was not the best. In order to overcome the shortcomings of audio features and
improve the detection accuracy of facial features, we combined facial data with audio data
to judge the fatigue state of the air traffic controllers. The experimental results show that
this combination approach resulted in the detection accuracy of our AF dual-stream CNN
model increasing by 2.03%, reaching 98.03%.

4. Conclusions

This paper proposes an AF dual-stream CNN based on radio telephony data and
facial data for the first time in the field of fatigue detection. The dual-stream convolutional
network architecture designed in this study effectively utilizes the complementarity be-
tween multi-modal data sources. The experimental results show that the fatigue detection
accuracy of our dual-stream network was 35.15% higher than that for using the radio
telephony data alone and 2.03% higher than that for using the facial data alone, reaching
98.03%, which is better than the other algorithms and models tested in this study. In
addition, during the training process, the neural networks assessed in experiments such as
VGG16 also achieved detection accuracies as high as 96.81%, but the required number of
iterations exceeded 300 times, and the training of ResNet50 required more than 1000 itera-
tions; in contrast, our network model needs fewer than 50 training iterations to achieve
convergence. The experimental results also show that networks such as VGG19, which
have performed well in previous studies, did not perform well for our dataset, suggesting
that such neural network models are not suitable for facial data, and their generalizability
is not sufficient to support their implementation for classifying facial fatigue states. Our
AF dual-stream CNN designed for fatigue detection effectively realizes the classification of
controller fatigue states based on radio telephony data and facial data. The method in this
paper can intervene in time when a controller shows fatigue, thereby contributing to the
safe operation of flights.

The dual-stream convolutional neural network requires fewer iterations to reach
convergence. In addition, we believe that there is still a better form of this structure,
which can be further improved in the future. In our future work, we plan to focus on
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solving two problems. Firstly, when an air traffic controller issues control instructions, their
mouth movements will negatively impact the detection of their facial fatigue status, so
how to further reduce the impact of such factors needs to be determined. Secondly, due
to the diversity of audio features, it is necessary to identify those audio features and their
combinations that are optimal for fatigue detection.
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