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Abstract: Geodetic coordinate information and attitude information of the observation platform are
necessary for multi-UAV position alignment and target tracking. In a complex sea environment, the
navigation equipment of a UAV is susceptible to interference. High-precision geodetic coordinate
information and attitude information are difficult to obtain. Aiming to solve the above problems,
a low-precision geodetic coordinate real-time systematic spatial registration algorithm based on
multi-UAV observation and an improved robust fusion tracking algorithm of multi-UAV to sea
targets considering attitude error are proposed. The spatial registration algorithm obtains the obser-
vation information of the same target based on the mutual observation information. Then, geodetic
coordinate systematic error is accurately estimated by establishing the systematic error estimation
measurement equation. The improved robust fusion tracking algorithm considers the influence of
UAV attitude error in the observation. The simulation experiment and practical experiment show that
the algorithm can not only estimate systematic error accurately but also improve tracking accuracy.

Keywords: systematic error; spatial registration; target tracking; robust tracking; filtering; coordinate
transformation

1. Introduction

UAVs have the advantages of high mobility, good concealment, high speed, and low
economic cost [1,2]. Using them to carry tracking radar and other long-range detection
sensors can achieve accurate tracking of over-the-horizon targets, and the demand for their
application in the military field is increasing day by day [3]. However, considering the
uncertainty of the marine environment, the instability of UAVs, and the error characteristics
of the radar itself, there are still many problems in achieving accurate tracking of sea targets.

Existing works have many research papers on autonomous positioning without geode-
tic coordinate information or with low-precision geodetic coordinate information, which are
mainly divided into autonomous positioning methods of single platforms, cooperative po-
sitioning methods based on auxiliary beacons, and cooperative positioning methods based
on multi-platform mutual observation. The autonomous positioning method [4] is mainly
divided into map matching [5–7] and projection tracking techniques. The map matching
technology uses external sensors of the platform to detect the surrounding environment
information and compare it with a built-in map for its own matching and positioning,
which has high time and space complexity and puts high requirements on the platform’s
own performance, making it difficult to meet the requirements of real-time scenarios. The
projection tracking technology relies on real-time calculation of the platform’s own dis-
placement for projection positioning, and the main methods are Inertial Navigation System
(INS) [8,9], Visual Odometry (VO) [10,11], and Simultaneous Localization and Mapping
(SLAM) [12–14], but these methods are unable to overcome the effect of cumulative er-
ror, which makes it difficult to maintain high-accuracy positioning over long periods of
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time. The cooperative positioning method based on auxiliary beacons [15,16] relies on
auxiliary beacons with known high-precision coordinates, which will fail in the complex
environment once the platform maneuvers or moves away from auxiliary beacons. The co-
operative positioning method based on multi-platform mutual observation relies on mutual
distance and angle measurements between platforms for cooperative positioning, which
will increase computational complexity as the number of platforms increases. Because this
method is a relative positioning method, it is difficult to calculate the geodetic coordinates
of other platforms if precise geodetic coordinates of one platform cannot be obtained in
advance. Most of the above research solves the problem of the platform’s own precise
positioning but does not combine their own precise positioning and target detection.

UAV attitude error consists of two parts: systematic error and random error. Systematic
error is eliminated by error alignment, and random error is eliminated by a filtering
algorithm. Spatial registration is a process of estimating or correcting sensor observation
systematic error and attitude systematic error through observing the same or a priori
information target. Systematic error estimation is an important part of target tracking,
which directly affects the target tracking effect. The existing systematic error estimation
methods are mainly divided into two categories: offline estimation and online estimation.
Offline estimation is a process of collecting the observed data from sensors over a period of
time for batch processing to estimate systematic error. The main methods include real-time
quality control (RTQC) [17], least square (LS) [18–20], maximum likelihood (ML) [21,22],
etc. Offline estimation methods can process more data and have higher estimation accuracy,
but these methods are pooled in real time and can only solve the case of constant or slowly
changing systematic error. Online estimation estimates systematic error of the sensor at
the current moment online through real-time data. The main methods include the joint
estimation algorithm [23] and decoupling estimation algorithm [24,25], which requires
setting the model of error change in advance and has limited applicability. These methods
are subject to external influence, and the estimation accuracy is not high. Ref. [26] proposed
a first-order differential data processing algorithm to correct the gyroscope data to improve
the attitude estimation accuracy. Ref. [27] developed a new polarized compass attitude
change heading error modeling and compensation method by means of gated recurrent unit
neural networks. Ref. [28] implemented trajectory tracking based on a quaternionic error
theoretic model for the linearization of attitude error. Ref. [29] proposed a fuzzy adaptive
error state Kalman filter algorithm for attitude estimation in a GPS-free environment.
Ref. [30] addressed the modeling uncertainty in attitude estimation of inertial measurement
units by combining an error state Kalman filter and a smooth variable structure filter
for attitude estimation based on quaternion theory. Ref. [31] estimated multi-UAV sensor
detection systematic error and attitude systematic error in an environment without geodetic
coordinate information. Most of the above studies on error estimation only focus on one
aspect of either the sensor detection systematic error or the attitude systematic error. Few
studies consider the alignment abatement of both errors at the same time.

Based on the above, there are two main difficulties in realizing UAV tracking of
maritime targets in a low-precision geodetic coordinate environment. One is the effect of
low-precision geodetic coordinates on target tracking, and the other is the effect of UAV
attitude error on target tracking. In order to solve the effect of low-precision geodetic
coordinates on target tracking, a real-time systematic error alignment algorithm for low-
precision geodetic coordinates based on multi-UAV observation is proposed to estimate
and reduce the geodetic coordinate systematic error in real time. In order to solve the effect
of UAV attitude error on target tracking, an improved robust fusion tracking algorithm for
multi-UAV to sea targets considering attitude error is proposed.

The main contributions of this paper are as follows:

(1) The proposition of a low-precision geodetic coordinate real-time system error align-
ment algorithm based on multi-UAV observation;

(2) The proposition of an improved robust fusion tracking algorithm for multi-UAV to
sea targets considering attitude error.
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The remainder of the paper is organized as follows. Section 2 describes the problem of
spatial registration. Section 3 introduces common coordinate transformations and proposes
a systematic error estimation method and target tracking method. In Section 4, a simulation
experiment and a practical experiment are conducted to verify the proposed novel method.
Finally, conclusions are drawn in Section 5. Explanation of main symbols and description
of acronym symbols are shown in Tables 1 and 2.

Table 1. Explanation of main symbols.

Symbol Explanation Symbol Explanation

ZAT1 Observation of A on T1 hctr(Z)
Conversion of spherical coordinates to

Cartesian coordinates
ZBT1 Observation of B on T1 XeT1 Earth coordinate of T1
ZAT2 Observation of A on T2 XeA Earth coordinate of A
ZBT2 Observation of B on T2 XeB Earth coordinate of B

µA Attitude of A XgBT1

Local geographic coordinates of T1
centered on B

µB Attitude of B XgAT1

Local geographic coordinates of T1
centered on A

XGA Geodetic coordinate of A XgAB
Local geographic coordinates of B

centered on A

XGB Geodetic coordinate of B XgAT2

Local geographic coordinates of T2
centered on A

Tge

Transformation matrix from
local geographic coordinate

system to Earth
coordinate system

XgBT2

Local geographic coordinates of T1
centered on B

Teg

Transformation matrix from
Earth coordinate system to

local geographic
coordinate system

XA
gFT2

Local geographic coordinates of T2 in
the fusion center coordinate system
based on A observation information

Tuts(µ)

Transformation matrix from
unstable carrier coordinate

system to stable carrier
coordinate system

XB
gFT2

Local geographic coordinates of T2 in
the fusion center coordinate system
based on B observation information

Table 2. Description of acronym symbols.

UAV Unmanned Aerial Vehicle
INS Inertial Navigation System
VO Visual Odometry

SLAM Simultaneous Localization and Mapping
RTQC Real-Time Quality Control

LS Least Square
ML Maximum Likelihood
GPS Global Positioning System

PLKF Pseudo Linear Kalman Filter
EKF Extended Kalman Filter
EC1 Error Compensatory Method 1
EC2 Error Compensatory Method 2

RMSE Root Mean Square Error

2. Problem Description

UAVs A and B detect the target in the designated sea area and find the sea targets T1
and T2. The simulated posture is shown in Figure 1. The observation information of UAVs
A and B on sea targets T1 and T2 is ZAT1 , ZBT1 , ZAT2 , ZBT2 . The attitude information is µA,
µB, and low-precision geodetic coordinate information is µA, µB, respectively.
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Accordingly, 

ZAT1 =
[
rAT1 bAT1 eAT1

]T

ZBT1 =
[
rBT1 bBT1 eBT1

]T

ZAT2 =
[
rAT2 bAT2 eAT2

]T

ZBT2 =
[
rBT2 bBT2 eBT2

]T

µA =
[
ΨA θA ϕA

]T

µB =
[
ΨB θB ϕB

]T

XGA =
[
BA LA

]
XGB =

[
BB LB

]
(1)

The observation information of UAV sensors usually consists of three parts: the true
value, systematic error of sensor measurement, and random error of sensor measurement.
Therefore, the observation information of UAVs A and B on sea targets is related as follows.

rAT1 = rAT1t + rAs + rAw
bAT1 = bAT1t + bAs + bAw
eAT1 = eAT1t + eAs + eATw

(2)


rBT1 = rBT1t + rBs + rBw
bBT1 = bBT1t + bBs + bBw
eBT1 = eBT1t + eBs + eBw

(3)


rAT2 = rAT2t + rAs + rAw
bAT2 = bAT2t + bAs + bAw
eAT2 = eAT2t + eAs + eATw

(4)


rBT2 = rBT2t + rBs + rBw
bBT2 = bBT2t + bBs + bBw
eBT2 = eBT2t + eBs + eBw

(5)



Aerospace 2024, 11, 162 5 of 22

The attitude information of the UAV is also composed of the true value, the systematic
error, and the random error. Therefore, the attitude information of UAVs A and B is related
as follows. 

ψA = ψAt + ψAs + ψAw
θA = θAt + θAs + θAw
ϕA = ϕAt + ϕAs + ϕAw

(6)


ψB = ψBt + ψBs + ψBw
θB = θBt + θBs + θBw
ϕB = ϕBt + ϕBs + ϕBw

(7)

The low-precision geodetic coordinate information of UAV is composed of the true
value, the systematic error, and the random error. Therefore, the geodetic coordinate
information of UAVs A and B is related as follows.{

BA = BAt + BAs + BAw
LA = LAt + LAs + LAw

(8)

{
BB = BBt + BBs + BBw
LB = LBt + LBs + LBw

(9)

When the original data are directly used to track the sea target, systematic error cannot
be eliminated by filtering. The tracking trajectory of the target will have a certain offset or
even divergence. Therefore, systematic errors in geodetic coordinate information, platform
observation information, and attitude information need to be estimated and eliminated.

3. Sea Target Tracking Method
3.1. Coordinate Transformation and Conversion Relation

In order to facilitate the elaboration of the subsequent process, the coordinate transfor-
mation and transformation relation used afterward are first introduced.

3.1.1. Local Geographic Coordinate System and Earth Coordinate System

The transformation matrix of the local geographic coordinate system to the Earth
coordinate system is Tge, and the transformation matrix of the local geographic coordinate
system to the Earth coordinate system is Teg. Both are transposed to each other with
the expression

Tge = TT
eg = T(B)T(L) (10)

where

T(B) =

1 0 0
0 cos B − sin B
0 sin B cos B

 (11)

T(L) =

− sin L cos L 0
0 0 1

cos L sin L 0

 (12)

3.1.2. Unstable Carrier Coordinate System and Stable Carrier Coordinate System

The transformation of the unstable carrier coordinate system to the stable carrier
coordinate system is Tuts(µ), and the expression is

Tuts(µ) = T(ψ)T(θ)T(ϕ) (13)

where

T(ψ) =

cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

 (14)



Aerospace 2024, 11, 162 6 of 22

T(θ) =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 (15)

T(ϕ) =

 cos ϕ 0 sin ϕ
0 1 0

− sin ϕ 0 cos ϕ

 (16)

3.1.3. Spherical Coordinate to Cartesian Coordinate

The conversion from spherical coordinate to Cartesian coordinate is hctr(Z), and the
expression is

hctr(Z) =

x
y
z

 =

r cos b cos e
r sin b cos e

r sin e

 (17)

Combining the equations in Sections 3.1.2 and 3.1.3, the expression for transforming
the observation Z into local geographic coordinates Xg is

Xg = Tuts(µ)hctr(Z) (18)

3.2. Novel Systematic Error Estimation Method
3.2.1. Acquisition of Observation Information Based on Low-Precision Geodesic Coordinates

Take the example of obtaining the position of UAV B in the local geographic coordinate
centered on UAV A.

The observation information of UAVs A and B on the sea target T1 is transformed to
the Earth coordinate system, respectively.

XeT1 = TgeAXgAT1 + XeA (19)

XeT1 = TgeBXgBT1 + XeB (20)

Equation (20) minus Equation (19) yields

XeB − XeA = TgeAXgAT1 − TgeBXgBT1 (21)

Therefore, the position of UAV B in the local geographic coordinate centered on UAV
A is

XgAB = TegA(XeB − XeA)
= TegA(TgeAXgAT1 − TgeBXgBT1)
= XgAT1 − TegATgeBXgBT1

(22)

3.2.2. Acquisition of Target Position Based on Mutual Observation Information

Position information of the sea target T2 in the local geographic coordinate system
centered on UAV A is

XgAT2 = TegATgeBXgBT2 + XgAB (23)

Therefore, the position information of the sea target T2 in the local geographic coordi-
nate system centered on UAV B is

XgBT2 = TegBTgeA(XgAT2 − XgAB) (24)

Substitute Equation (23) into Equation (24):

XgBT2 = TegBTgeAXgAT2 − TegBTgeAXgAT1 + XgBT1 (25)
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3.2.3. Systematic Error Estimation Method

If the geodetic coordinate information, sensor observation information, and attitude
information are true, the target position information derived from direct observation
information of UAV B on sea target T2 and the target position information derived from
mutual observation information are theoretically the same.

XgBT2 = Tuts(µB)hctr(ZBT2)
= TegBTgeAXgAT2 − TegBTgeAXgAT1 + XgBT1

(26)

First, Equation (26) is expanded by shifting the terms and refinement to obtain

0 = TT(LB)TT(BB)T(BA)T(LA)T(ψA)T(θA)T(ϕA)hctr(ZAT2)−
TT(LB)TT(BB)T(BA)T(LA)T(ψA)T(θA)T(ϕA)hctr(ZAT1)+
T(ψB)T(θB)T(ϕB)hctr(ZBT1)− T(ψB)T(θB)T(ϕB)hctr(ZBT2)

(27)

Then, the true value is considered as a function of the measured value and the error
value. The low-precision geodesic coordinate information, sensor measurement informa-
tion, and attitude information are expanded at their measured value in the first-order
Taylor expansion. Since systematic error and random error of the measured value are small
quantities compared to the true value and the measured value, the higher order can be
approximately neglected.

Let
X =

[
BAs LAs BBs LBs

]T (28)

Xw =

[
BAw LAw BBw LBw ψAw θAw ϕAw ψBw
θBw ϕBw rAw bAw eAw rBw bBw eBw

]T

(29)

χ = TT(LB)TT(BB)T(BA)T(LA)T(ψA)T(θA)T(ϕA)hctr(ZAT2)−
TT(LB)TT(BB)T(BA)T(LA)T(ψA)T(θA)T(ϕA)hctr(ZAT1)+
T(ψB)T(θB)T(ϕB)hctr(ZBT1)− T(ψB)T(θB)T(ϕB)hctr(ZBT2)

(30)

Equation (30) has a first-order Taylor expansion in X = 0, Xw = 0

0 = χ−
[

∂χ
BAs

∂χ
LAs

∂χ
BBs

∂χ
LBs

]
X −

[
∂χ

BAw

∂χ
LAw

∂χ
BBw

∂χ
LBw

∂χ
ψAw

∂χ
θAw

∂χ
ϕAw

∂χ
ψBw

∂χ
θBw

∂χ
ϕBw

∂χ
rAw

∂χ
bAw

∂χ
eAw

∂χ
rBw

∂χ
bBw

∂χ
eBw

]
Xw

(31)

Let
Z = χ (32)

H =
[

∂χ
BAs

∂χ
LAs

∂χ
BBs

∂χ
LBs

]
(33)

M =

[
∂χ

BAw

∂χ
LAw

∂χ
BBw

∂χ
LBw

∂χ
ψAw

∂χ
θAw

∂χ
ϕAw

∂χ
ψBw

∂χ
θBw

∂χ
ϕBw

∂χ
rAw

∂χ
bAw

∂χ
eAw

∂χ
rBw

∂χ
bBw

∂χ
eBw

]
(34)

V = MXw (35)

The specific derivation of Equation (31) is shown in Appendix A.
In summary, we can obtain

Z = HX + V (36)

Equation (40) can be adopted as a measurement equation for error estimation.
In the sea environment, the sensor deviation and the heading angle error change

slowly. Therefore, the state equation of the error estimation is

X(k + 1) = X(k) + W(k) (37)
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So far, the real-time estimation of systematic error of the UAV geodesic coordinate
information can be completed, and the specific process is shown in Figure 2.
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Figure 2. Flow chart of systematic error estimation.

3.3. Target Tracking Method

Firstly, the corrected geodetic coordinate information is obtained by error reduction
based on the estimated geodetic coordinate systematic error BAs, LAs, BBs, LBs of the UAVs.

The original systematic error matrix Es only consists of the sensor systematic error
Ers, but when the UAV detects the target, the attitude angle systematic error Eps has a
non-negligible effect on measurement data, so the original systematic error matrix needs
dimensional expansion. However, this approach leads to dimensional mismatch. Therefore,
the systematic error matrix needs to be dimensionally reduced. The sensor measurement
error and attitude angle error are decoupled from the observed data, and a new systematic
error matrix is obtained:

Es = h f

[
Ers
Eps

]
(38)

where

h f =

1 0 0 0 0 0
0 1 0 0 xs

rxys
− ys

rxys

0 0 1 1 − yszs
r2

xys
− xszs

r2
xys

 (39)
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where
[
xs ys zs

]T is the position of the target in the stable carrier coordinate system
rxys =

√
x2

s + y2
s .

According to the observation model, the observation equation of the UAV is

Xum = hctr(Z + Es + Ew) (40)

Since Es, Ew is small compared to Z, it can be approximated by a first-order Taylor
linear expansion, which yields

Xum ≈ hctr(Z) + Hctr(Z)Es + Hctr(Z)Ew (41)

where Hctr(Zut) is the Jacobi matrix of hctr(Zut) with respect to Zut.
The target observation of UAVs A and B is located in the fusion center

XA
gFT2

= HXA + H1AhfAEsA + EwnA (42)

XB
gFT2

= HXB + H1Bh f BEsB + EwnB (43)

where

H =

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

 (44)

X =
[
x vx y vy z vz

]T is the state of the target in the local geographic reference
system of the fusion center.

H1 = TegFTgeTuts(µ)Hctr(Z) (45)

Ewn can be approximated as zero-mean Gaussian white noise.
By subtracting Equation (42) from Equation (43), the expressions for the sensor system-

atic error and attitude angle systematic error about the UAV measurement can be obtained.[
EsA
EsB

]
=

[
H1Ah f A−H1Bh f B

]T
•

(
[
H1Ah f A−H1Bh f B

][
H1Ah f A−H1Bh f B

]T
)
−1

(XA
gFT2

− XB
gFT2

− EwnA + EwnB)

(46)

Let
N =

[
H1Ah f AH1Bh f B

][
H1Ah f A−H1Bh f B

]T
•

(
[
H1Ah f A−H1Bh f B

][
H1Ah f A−H1Bh f B

]T
)
−1 (47)

Adding Equation (42) to Equation (43) and eliminating systematic error, we obtain

(E3×3 − N)XA
gFT2

+ (E3×3 + N)XB
gFT2

= 2HX + (E3×3 − N)EwnA + (E3×3 + N)EwnB (48)

where E3×3 is the third-order unit array.
Let

z = (E3×3 − N)XA
gFT2

+ (E3×3 + N)XB
gFT2

(49)

Ew f = (E3×3 − N)EwnA + (E3×3 + N)EwnB (50)

In summary, Equation (49) can be written as

z = 2HX + Ew f (51)

where Ew f is approximated as zero-mean Gaussian white noise.
Finally, combined with the Kalman filtering technique, the fast tracking of sea targets

can be completed.
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4. Experimental Verification

To verify the feasibility of the proposed algorithm, a simulation experiment and a prac-
tical experiment were conducted and compared with the methods in references [24,25,32].
Ref. [24] estimated the attitude systematic error and observation systematic error of the
missile by simultaneous observation of the target by multiple missiles. Ref. [25] designed
a two-stage EKF to accomplish the estimation of the navigation error and observation of
the systematic error. Ref. [32] estimates the state of a target without estimating systematic
errors based on observations of multiple platforms with multiple identical targets. For the
convenience of description, the error estimation method in reference [24] is denoted as
EC1, and the error estimation method in reference [25] is denoted as EC2. EC1 and EC2
are combined with the linear filter PLKF and the nonlinear filter EKF to obtain EC1-PLKF,
EC1-EKF, EC2-PLKF, and EC2-EKF, respectively. The method in reference [32] is denoted
as RT, and the proposed new method is denoted as IRT.

4.1. Simulation Experiment
4.1.1. Parameter Setting

To facilitate the display and comparison of experimental results, the initial posi-
tion of the offshore target T1 is used as a reference point, and some parameters are set
in the local geographic coordinate system centered on the reference point. The data
rate is set to f = 20 Hz, which means every 0.05 s, the platform sensor observes the
sea target to obtain observation information, and the inertial guide updates its own atti-
tude information and low-precision geographic coordinate information. The coordinates
of UAVs A and B in the local geographic coordinate system of the reference point are[
6500 m 8500 m 2500 m

]
,
[
−4500 m 8500 m 2500 m

]
; the standard deviations of sen-

sor errors (distance, azimuth, azimuth) and attitude angle errors (yaw, pitch, roll) of UAVs
A and B are shown in Tables 3 and 4, respectively.

Table 3. Error characteristics of UAV A.

Standard Deviation of
Systematic Error

Standard Deviation of
Random Error

Geodetic coordinate error
(
0.000125

◦
0.00025

◦) ∗ λe
(
0.000125

◦
0.00025

◦)
Sensor error

(
40 m 0.3

◦
0.2

◦) (
10 m 0.02

◦
0.02

◦)
Attitude angle error

(
0.01

◦
0.01

◦
0.01

◦) ∗ λp
(
0.05

◦
0.05

◦
0.05

◦)
Table 4. Error characteristics of UAV B.

Standard Deviation of
Systematic Error

Standard Deviation of
Random Error

Geodetic coordinate error
(
0.000125

◦
0.00025

◦) ∗ λe
(
0.000125

◦
0.00025

◦)
Sensor error

(
60 m 0.25

◦
0.2

◦) (
10 m 0.02

◦
0.02

◦)
Attitude angle error

(
0.01

◦
0.01

◦
0.01

◦) ∗ λp
(
0.05

◦
0.05

◦
0.05

◦)
Where λe and λp are the geodesic coordinate systematic error scaling factor and

attitude angle systematic error scaling factor, respectively, which are used to facilitate the
adjustment of error variation in the simulation experiment. The flow of simulation data
generation is shown in Figure 3.
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The motion posture is set as follows: the initial position of the sea target T2 with
respect to the reference point is 198,000 m in geodetic length and 0 in geodetic azimuth.
Both sea targets T1 and T2 move 2000 m in the direction of geodetic azimuth of 0 in 200 s.

The root mean square error (RMSE) is used for the error evaluation index. The root
mean square error of the systematic error of the geodesic coordinate estimation and the
position estimation error are calculated as

ΩRMSE =

√√√√ 1
T f

T

∑
i=1

(
Ω̃i − Ωs

)2
(52)

where Ω can be taken as Bi, Li, Si. T is the total duration. Bi, Li denotes the latitude
systematic error and longitude systematic error of the UAV at moment i, and S is the
position estimation error.

In order to visualize the degree of error reduction, the error reduction rate τ is calcu-
lated by Equation (53)

τ =
Ωs − ΩRMSE

ΩRMSE
(53)

4.1.2. Simulation Experimental Result

In the above scenario taken from λe = 10, λp = 10, the simulation is carried out in the
set experimental scenario. The estimated effect of the geodesic coordinate systematic error
of UAVs A and B is shown in Figures 4 and 5.

Figures 3 and 4 show the relationship between estimated value of the geodesic coor-
dinate systematic error and the true value of the geodesic coordinate systematic error of
UAVs A and B. It is obvious that the estimated value of systematic error all converges to
the true value. Table 5 shows the estimated error of the geodetic coordinate systematic
error, which is already a small amount compared to the set true value. The systematic error
reduction rate exceeds 70% in different platforms. It shows that the proposed geodetic co-
ordinate systematic error estimation method is effective. The proposed geodetic coordinate
systematic error estimation method estimated the systematic error by using EKF in essence.
Therefore, the initial value of the system error should be set reasonably.
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Figure 5. Error estimation of geodesic coordinate system of UAV B. (a) Effect of longitude systematic
error estimation. (b) Effect of latitudinal systematic error estimation.

Table 5. Systematic error estimation error.

Latitude Longitude

UAV A 2.7 × 10−5◦ 6.9 × 10−5◦

τ 78.4% 72.4%
UAV B 2.7 × 10−5◦ 6.9 × 10−5◦

τ 78.4% 72.4%

Figure 6 shows the tracking effect using different algorithms in scenario one, and
Table 6 shows the position estimation error of different algorithms. Figure 6 shows that it
is obvious that IRT has the best tracking result compared to comparing algorithms. The
reason for the error in EC1-PLKF and EC1-EKF is that these error estimation methods do
not take the effect of attitude angle error and random error in geodesic coordinates into
account. EC2-PLKF and EC2-EKF do not take the effect of geodesic coordinate error into
account. RT ignores the effect of attitude angle error and geodesic error. In addition, the
estimation of the nonlinear filter is slightly better than that of the linear filter.

Figure 7 shows the tracking position error versus time, from which the conclusion of
the tracking performance of various algorithms is approximately the same as above. In
addition, it can be obtained that the tracking methods using EC1 and EC2 have a better
performance in terms of convergence speed, converging in about 5 s, while RT and IRT have
a larger initial error and converge slightly slower than the other algorithms because they
use the observed value of the target position as the initial tracking condition, which has a
larger error compared to other algorithms that have gone through initial compensation.
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Table 6. Position estimation error.

Direction EC1-PLKF EC1-EKF EC2-PLKF EC2-EKF RT IRT

X (m) 515.2469 495.0732 192.4268 176.0022 254.1025 65.1038
Y (m) 25.3540 26.2744 155.9639 156.8133 188.1933 57.1544
R (m) 515.8703 495.7700 247.6950 235.7270 316.2037 86.6321
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Figure 7. Tracking position error versus time.

Table 7 shows the average single-step time of different algorithms, where RT has the
shortest time because it does not need to estimate any systematic error value but directly
estimates the target state. IRT has the longest time because it adds a new proposed geodesic
systematic error estimation algorithm compared to RT and considers the influence of
attitude angle. Although the time consumption is increased, it remains in the millisecond
range and does not affect the performance of the algorithm for practical application.
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Table 7. Average single-step elapsed time.

Algorithm EC1-PLKF EC1-EKF EC2-PLKF EC2-EKF RT IRT

Average single-step
elapsed time (ms) 0.3731 0.3784 0.3735 0.4126 0.1269 0.4138

In order to fully represent the performance of each algorithm under different system-
atic errors, simulation experiments are performed for λe, λp varying from 1 to 100.

Figure 8 shows the variation of the position estimation error of different algorithms
as the geodetic coordinate systematic error increases, where λe varies from 1 to 100 and
λp = 10, focusing on the influence of geodetic coordinate systematic error on the tracking
algorithm. Figure 9 and Table 8 reflect the position estimation error data under typical
geodetic coordinate systematic error.

Table 8. Position estimation errors under typical geodetic coordinate systematic errors.

λe EC1-PLKF EC1-EKF EC2-PLKF EC2-EKF RT IRT

1 501.5194 482.9426 411.7133 396.3883 74.5472 80.8931
4 527.1254 492.8536 479.0727 463.6634 125.6417 76.1921
5 528.6481 509.1664 533.6186 517.2158 167.4348 79.2646
6 509.9069 491.4717 536.2056 523.9095 165.0914 85.7293

20 556.5248 537.5296 924.8624 909.0243 560.2978 102.9847
100 615.5925 598.7947 3078.7228 3064.2358 2717.6483 192.2335
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Figure 8 shows that IRT, EC1-PLKF, and EC1-EKF can effectively suppress the effect
brought by the error as the geodesic coordinate systematic error increases, while the error of
EC2-PLKF, EC2-EKF, and RT keeps increasing. When λe is larger than 20, the tracking effect
of EC2-PLKF, EC2-EKF, and RT starts to be worse than that of IRT because the influence of
the geodesic coordinate systematic error on the target position estimation starts to dominate
at this time.

When λe is greater than 5, the tracking effect of EC1-PLKF and EC1-EKF is gradually
superior to EC2-PLKF and EC2-EKF. When the geodesic systematic error is small, random
error affects the estimation effect of the systematic error of method EC1, which affects the
tracking effect. When the systematic error of the geodesic coordinate becomes larger, the
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effect of random error gradually becomes smaller, and the tracking effect of EC1-PLKF and
EC1-EKF is always better than that of EC2-PLKF and EC2-EKF.
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When the systematic error increases, the position estimation error of IRT becomes
slightly larger because IRT assumes that the geodesic coordinate is true when constructing
the coordinate transformation of the observed data by measurement equations. When the
geodesic coordinate systematic error keeps increasing, the error from this assumption will
keep increasing.

Figure 10 represents the variation of position estimation error for different algorithms
as the attitude angle systematic error increases, where λp varies from 1 to 100 and λe = 1,
focusing on the effect of attitude angle systematic error on the tracking algorithm. Figure 11
and Table 9 reflect the position estimation error under typical attitude angle systematic error.

Table 9. Position estimation error under typical attitude angle systematic error.

λp EC1-PLKF EC1-EKF EC2-PLKF EC2-EKF RT IRT

10 695.4483 670.7257 498.9983 480.6455 111.5386 83.5826
20 1038.7536 1003.8747 618.8116 596.9019 185.6085 130.7296
50 2146.0147 2078.5758 1132.9168 1096.0553 462.5494 377.4476
70 2899.9472 2809.4746 1623.2628 1571.6147 658.4474 560.0724
100 3991.6147 3867.8343 2282.0557 2210.2137 962.0755 837.2423

The EC1-PLKF and EC1-EKF have the fastest tracking error growth rate because
their error estimation algorithms do not estimate the attitude error, and the effect of the
increasing attitude error is directly applied to the observation data. The EC2-EKF has a
certain suppression effect on the attitude systematic error, but the estimation capability of
the algorithm is limited and cannot completely suppress the effect caused by the attitude
systematic error. RT and IRT are least affected by the attitude systematic error, and the
tracking effect of IRT improves by about 25% compared with RT when the attitude system-
atic error is 0.1◦ and about 13% compared with RT when the attitude systematic error is 1◦,
indicating that the tracking effect of IRT improves with the decreasing attitude error. The
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reason for this is that when considering the attitude systematic error, it is assumed that the
attitude angle is true during the derivation process, and when the attitude angle systematic
error is increasing, the error brought by this assumption will increase continuously. IRT
The method should be used in the presence of geodetic coordinate system errors that are
not excessive.
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Figure 11. Position estimation error under typical attitude angle systematic error.

In addition, the tracking performance of the EKF filter is slightly better than that of the
PLKF filter, as seen in Tables 8 and 9, which can improve the tracking accuracy by about
20 m to 30 m.

4.2. Practical Experiment

To further verify the effectiveness of the algorithm, an on-lake experiment was con-
ducted in a certain water.
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4.2.1. Introduction to the Practical Experiment

The experimental system consists of an information processor, YAR28(N) radar, Ku02
radar, combined navigation equipment, and RTK. Two small boats equipped with angular
reflectors were used as targets in the experiment, and two radars were used to simulate two
air platforms for cooperative observation of the targets. Figure 12 shows the experimental
procedure. Table 10 shows radar-related parameters.
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Table 10. Radar-related parameters.

Distance Precision Angular Precision

YAR28(N) 30 m ≤1◦

Ku02 ≤2 m ≤1◦

4.2.2. Practical Experiment Result

Figures 13 and 14 show the tracking effect of different algorithms under scenarios two
and three, and Table 11 shows the position estimation errors of different algorithms under
scenarios two and three.

Table 11. Position estimation error for scenarios two and three.

Case EC1-PLKF EC1-EKF EC2-PLKF EC2-EKF RT IRT

2 18.8101 18.0890 63.2112 26.1082 55.0181 9.9282
3 20.8712 17.8308 59.5094 35.2506 58.0717 8.9113

From Figures 13 and 14 and Table 11, it can be seen that under the actual test ex-
periment, only the tracking accuracy of IRT is below 10 m. The tracking performance of
IRT is still better than that of EC1-PLKF, EC1-EKF, EC2-PLKF, EC2-EKF, and RT, which
is about 1 times better than that of EC1-PLKF and EC1-EKF, 6 times better than that of
EC2-PLKF, 2 times better than that of EC2-EKF, and 5 times better than that of RT. The
tracking effect of RT decreases, which indicates that the systematic error of the geodesic
coordinate has a greater influence on the RT algorithm during the actual measurement
experiment, which reflects the necessity of error compensation for the systematic error of
the geodesic coordinate.
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The novel proposed algorithm is able to perform accurate position estimation of the
target with better performance than existing algorithms, which is valuable in engineering
applications.

5. Conclusions

The alignment of platform position error is accomplished by multi-UAV observation
of sea targets, which can effectively reduce the influence brought by geodesic coordinate
error. When tracking the sea target, the influence of platform attitude error is considered,
the robust fusion algorithm is improved, and the novel algorithm has better tracking
accuracy compared with the traditional robust algorithm and other spatial registration
algorithms. The proposed geodetic coordinate systematic error estimation method can
reduce systematic error by 70%. IRT has high accuracy when the systematic error is small.
The method in this paper has potential applications in realizing accurate target tracking
using UAVs in low-accuracy geodetic coordinate environments.
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In the future, we will further study the error alignment and target tracking methods in
the multi-target case, which may involve the rational allocation of observation resources
and heterogeneous data process.
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Appendix A

0 = χ−
[

∂χ
BAs

∂χ
LAs

∂χ
BBs

∂χ
LBs

]
X −

[
∂χ

BAw

∂χ
LAw

∂χ
BBw

∂χ
LBw

∂χ
ψAw

∂χ
θAw

∂χ
ϕAw

∂χ
ψBw

∂χ
θBw

∂χ
ϕBw

∂χ
rAw

∂χ
bAw

∂χ
eAw

∂χ
rBw

∂χ
bBw

∂χ
eBw

]
Xw

(A1)

Equation (A1) is expanded to

0 = TT(LB)TT(BB)T(BA)T(LA)T(ψA)T(θA)T(ϕA)hctr(ZAT2)−
TT(LB)TT(BB)T(BA)T(LA)T(ψA)T(θA)T(ϕA)hctr(ZAT1)+
T(ψB)T(θB)T(ϕB)hctr(ZBT1)− T(ψB)T(θB)T(ϕB)hctr(ZBT2)+

[TT(LB)TT(BB)
∂T(BA)

∂BAs
T(LA)T(ψA)T(θA)T(ϕA)(hctr(ZAT1)− hctr(ZAT2))

TT(LB)TT(BB)T(BA)
∂T(LA)

∂LAs
T(ψA)T(θA)T(ϕA)(hctr(ZAT1)− hctr(ZAT2))

TT(LB)
∂TT(BB)

∂BBs
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∂TT(LB)
∂LBs

TT(BB)T(BA)T(LA)T(ψA)T(θA)T(ϕA)(hctr(ZAT1)− hctr(ZAT2))]•X+

[TT(LB)TT(BB)
∂T(BA)
∂BAw

T(LA)T(ψA)T(θA)T(ϕA)(hctr(ZAT1)− hctr(ZAT2))

TT(LB)TT(BB)T(BA)
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TT(LB)
∂TT(BB)
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TT(LB)TT(BB)T(BA)T(LA)T(ψA)
∂Tθ(θA)

∂θAw
T(ϕA)(hctr(ZAT2)− hctr(ZAT1))+

TT(LB)TT(BB)T(BA)T(LA)T(ψA)T(θA)
∂Tϕ(ϕA)

∂ϕAw
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∂ψBw
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∂(hctr(ZAT2 )

∂rAw
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(A2)

Therefore,
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M =



TT(LB)TT(BB)
∂T(BA)
∂BAw

T(LA)T(ψA)T(θA)T(ϕA)(hctr(ZAT1)− hctr(ZAT2))

TT(LB)TT(BB)T(BA)
∂T(LA)
∂LAw
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TT(LB)
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∂Tθ(θA)

∂θAw
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)
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∂bAw
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∂eAw
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

T

(A3)

H =


TT(LB)TT(BB)

∂T(BA)
∂BAs

T(LA)T(ψA)T(θA)T(ϕA)(hctr(ZAT1)− hctr(ZAT2))

TT(LB)TT(BB)T(BA)
∂T(LA)

∂LAs
T(ψA)T(θA)T(ϕA)(hctr(ZAT1)− hctr(ZAT2))

TT(LB)
∂TT(BB)

∂BBs
T(BA)T(LA)T(ψA)T(θA)T(ϕA)(hctr(ZAT1)− hctr(ZAT2))

∂TT(LB)
∂LBs

TT(BB)T(BA)T(LA)T(ψA)T(θA)T(ϕA)(hctr(ZAT1)− hctr(ZAT2))


T

(A4)

where ∂T(B)
∂B and ∂T(L)

∂L are the derivatives of T(B) and T(L) with respect to B and L, and
the expressions are

∂T(B)
∂B

=

0 0 0
0 − sin B − cos B
0 cos B − sin B

 (A5)

∂T(L)
∂L

=

− cos L − sin L 0
0 0 0

− sin L cos L 0

 (A6)

∂Tψ(ψ)
∂ψ , ∂Tθ(θ)

∂θ and ∂Tϕ(ϕ)
∂ϕ are the derivatives of T(ψ), T(θ), and T(ϕ) with respect to ψ,

θ, and ϕ, and the expressions are

∂Tψ(ψ)

∂ψ
=

− sin ψ cos ψ 0
− cos ψ − sin ψ 0

0 0 0

 (A7)

∂Tθ(θ)

∂θ
=

0 0 0
0 − sin θ cos θ
0 − cos θ − sin θ

 (A8)

∂Tϕ(ϕ)

∂ϕ
=

− sin ϕ 0 − cos ϕ
0 0 0

cos ϕ 0 − sin ϕ

 (A9)
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∂hctr(Z)
∂r , ∂hctr(Z)

∂b , and ∂hctr(Z)
∂e are the derivatives of hctr(Z) with respect to r, b, and e,

and the expressions are

∂hctr(Z)
∂r

=

cos b cos e
sin b cos e

sin e

 (A10)

∂hctr(Z)
∂b

=

−r sin b cos e
r cos b cos e

0

 (A11)

∂hctr(Z)
∂e

=

−r cos b sin e
−r sin b sin e

r cos e

 (A12)
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