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Abstract: Flow through complex thermodynamic machinery is intricate, incorporating turbulence,
compressibility effects, combustion, and solid–fluid interactions, posing a challenge to classical
physics. For example, it is not currently possible to simulate a three-dimensional full-field gas flow
through the propulsion of an aircraft. In this study, a new approach is presented for predicting the
real-time fluid properties of complex flow. This perspective is obtained from deep learning, but it
is significant in that the physical context is embedded within the deep learning architecture. Cases
of excessive working states are analyzed to validate the effectiveness of the given architecture, and
the results align with the experimental data. This study introduces a new and appealing method for
predicting real-time fluid properties using complex thermomechanical systems.

Keywords: physics-embedded deep learning; flow parameter prediction; thermodynamic machinery;
aero-engine digital model

1. Introduction

Complex thermodynamic machinery has intricate flow characteristics. Among these,
turbulence is typically observed in engineering [1–3]. Turbulence is regarded as one of the
challenging problems in classical physics [4], characterized by complex flow parameters,
substantial temporal fluctuations, and marked features of non-uniformity and irregularity.
Considerable effort has been devoted to the analysis of complex flow, particularly the
internal flow through complicated thermodynamic machinery [5,6]. Unfortunately, it has
not been possible thus far to simulate a three-dimensional full-field gas flow through the
propulsion of an aircraft owing to the complexity of its structure and working process.
Therefore, real-time prediction of the flow parameter in complex thermodynamic machinery
is currently difficult. Furthermore, monitoring the operation of thermodynamic machinery
in real time, such as the safety monitoring of aircraft engine operations, is challenging.
Moreover, the lack of dual redundancy monitoring, which relies on real-time prediction,
poses significant hidden dangers to the safe operation of thermal machinery.

Deep learning is a class of computing systems designed to learn to perform tasks
directly from raw data without hard-coding task-specific knowledge, which has received
increasing attention in recent years [7–9]. This system has gained popularity due to its
versatility and revolutionary success in various domains [10–12]. In addition, deep learning
has raised optimism for solving complex flow problems in engineering [13,14]. However,
deep learning processes are generally not interpretable. It is critical to know the reasons
behind a decision made by a deep learning system to avoid hidden dangers in various
domains, such as aerospace, nuclear engineering, and civil aviation [15]. This is particularly
important for complex mechanical systems, such as aircraft engines, that operate in harsh
environments and require high levels of safety. Therefore, the explained deep learning
model has become an urgent topic of exploration [16,17].

Underlying the above comments is the notion that deep learning may provide a new
perspective for investigating flow through thermodynamic machinery, even though it is
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a complex phenomenon related to mathematics, physics, and engineering. A method
for discovering the fundamental links from complex flow architectures to deep learning
networks is an appealing prospect. The direct incorporation of differentiable physical
equations as network layers in a neural network is an interesting method for establishing
the fundamental links [18,19]. For instance, PINO, or Physics-Informed Neural Operator, is
an approach that models differential operators through neural operators and is particularly
tailored for addressing partial differential equations (PDEs) in physics [20–22]. Introducing
algebraic constraints into the loss function of a deep learning network to train a deep
learning model [23–25] is also a method for establishing the fundamental links.

Nevertheless, it is not easy to use differential equations describing the complete
working process in many mechanical engineering applications, such as the intricate flow
through an aircraft engine. This affects the development of the method for establishing
the fundamental links between complex thermodynamic machinery and deep learning
networks. In this study, an alternative approach called physics-embedded deep learning is
presented for linking physical and network architectures to facilitate the real-time prediction
of the fluid properties of complex flows for engineering. This approach refines the overall
mechanical system into a combination of individual component models, coupling those
models using physical architecture. It emphasizes the coupling relationship between the
components and the overall system, avoiding limitations introduced by strict adherence
to physical equations, while efficiently predicting the parameters of complex flow inside
the complete machinery system. Several challenging cases across a wide range of working
states and important scientific and engineering problems of aircraft engines are investigated.

2. Complex Flow in the Propulsion of Aircraft

A turbofan is a type of airbreathing jet engine widely used in aircraft propulsion [26].
A typical modern turbofan produces thrust to power aircraft by ingesting ambient air,
compressing the air, undergoing combustion, and expanding the hot gas through thrust-
producing exhaust nozzles, as shown in the schematic cross-section in Figure 1. As shown
in the figure, a low-pressure compressor, usually known as a fan, compresses air into a
bypass duct, and its inner portion supercharges the core compressor. A fan is often an
integral part of a multi-stage core low-pressure compressor. The bypass airflow either
passes through a separate ‘cold nozzle’ or mixes with hot gases from the low-pressure
turbine exhaust before expanding through the ‘mixed-flow nozzle’.
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The design of a turbofan typically begins with a study of the complete engine using
a relatively simple aerothermodynamic ‘cycle’ analysis. The operating characteristics of
turbofan components, such as the fan, compressor, and turbine, are represented in this
study by performance maps that are based on experimental test data [27,28]. The design
of individual engine components is further refined, simulated, and experimentally tested
in isolation by component design teams as the process progresses. These results are then
used to calibrate the component performance maps and improve the cycle analysis of the
complete engine. The process continues with the refined component designs until the
component and engine performance goals are met. The design trade-offs between engine
performance and component performance still deserve in-depth study [29]. Component
design teams rely on advanced numerical techniques to understand component opera-
tions and achieve optimal performance. Although advanced numerical simulations of
isolated components may yield detailed performance data at unique component operating
points, they do not account for the systematic interactions between the engine components.
The overall engine performance is dependent on the components working together effi-
ciently over a range of demanding operating conditions. However, several components are
sensitive to interactions with adjoining components [30]. Consequently, it is important to
consider the engine as a system of components that influence each other, and not simply
as isolated components. However, a detailed simulation of a complete turbofan engine
requires considerable computational capacity. A three-dimensional, viscous, and unsteady
aerodynamic simulation of a gas turbine engine requires approximately 1012 floating-point
operations per second, with a multidisciplinary analysis two to three times that value [31].
Today, this computing power is only available on a few expensive supercomputers with a
large number of processors.

As outlined above, traditional methods are not applicable for real-time fluid property
prediction. Thus, new methods are required to meet the increasing need for engineering
and fundamental research. Fortunately, recent advances in deep learning have created new
possibilities for real-time fluid property prediction in the field of complex flow, particularly
for the treatment of the internal flow of complex thermodynamic machinery.

Deep learning is the name used for ‘stacked neural networks’ that are composed of several
layers [32]. The layers are composed of nodes. A node is simply a place where computation
occurs and is loosely patterned on a neuron in the human brain that fires when it encounters
sufficient stimuli. A node combines the input from the data with a set of coefficients
or weights that either amplify or dampen that input, thereby assigning significance to
inputs regarding the task that the algorithm is trying to learn. Deep learning networks are
distinguished from the more commonplace single-hidden-layer neural networks by their
depth; that is, the number of node layers that data must pass through in a multistep process
of a scheduled task. Each layer of nodes in a deep learning network is trained on a distinct
set of features based on the output of the previous layer. The further one advances into
the neural net, the more the nodes can recognize complex features because they aggregate
and recombine features from the previous layer. Underlying the above comments on deep
learning is the fact that information in the nodes of a neural network is nonphysical and
driven by training data. Although classical deep learning has advantages, such as savings
in computational efficiency, it also has flaws concerning current engineering problems,
such as issues with generalization and the need for large amounts of training data [33].

A more recent strategy involves combining physical principles and traditional algo-
rithms with deep learning in a more nuanced manner to create more powerful models in
the burgeoning field of scientific deep learning [34]. An effective way to create a hybrid
model is to synergistically combine data-driven and model-based approaches [35]. Another
approach that has received significant attention is the use of physics-informed neural
networks that can be used to solve forward and inverse problems related to differential
equations [36,37]. In this approach, a deep neural network is used to represent the solution
of a differential equation that is trained using a loss function and directly penalizes the
residual of the underlying equation, as shown in Figure 2.



Aerospace 2024, 11, 140 4 of 21

Aerospace 2024, 11, x FOR PEER REVIEW 4 of 21 
 

 

of a differential equation that is trained using a loss function and directly penalizes the 
residual of the underlying equation, as shown in Figure 2. 

 
Figure 2. Schematic of physics-informed neural network. 

Physics-informed neural networks have multiple benefits in comparison with classi-
cal methods. For example, they provide approximate mesh-free solutions that have trac-
table analytical gradients and an elegant method of carrying out joint forward and inverse 
modeling [38]. Although popular and effective, this approach has significant limitations 
when compared with classical approaches, such as poor computational efficiency [39] and 
poorly understood theoretical convergence properties [40,41]. However, there are no dif-
ferential equations describing the complete working process in many complex mechanical 
engineering applications, such as the complex flow in an aircraft engine considered in this 
study. This not only affects the development of such approaches but also makes the in-
vestigation of complex physical problems in engineering very challenging. 

3. Physics-Embedded Deep Learning for Investigating Complex Flow in  
Turbofan Engines 

A new domain decomposition approach, called physics-embedded deep learning, is 
presented in this study for solving large, multi-scale physical problems related to complex 
mechanical engineering. As mentioned previously, a turbofan operates by ingesting am-
bient air through the inlet, compressing the air through the fan and compressor, undergo-
ing combustion through the combustor, generating work through high- and low-pressure 
turbines to drive the fan and compressor, respectively, and expanding the hot gas through 
the nozzles. In particular, a fan, usually known as a low-pressure compressor, compresses 
air into a bypass duct as its inner portion supercharges the compressor. The bypass airflow 
is passed to a mixing chamber with low-pressure turbine exhaust gases before expanding 
through the nozzle. These various component systems work together according to certain 
physical laws during the operation of an aircraft engine, as shown in Figure 3. The main 
goal of physics-embedded deep learning is to address the coupling of the working process 
and mechanism described above, which is achieved using domain decomposition. 

 
Figure 3. Working process of a turbofan engine. 

Engineers are expected to understand how these components work together. In con-
trast, researchers normally emphasize the discovery of physical laws. Therefore, 

Figure 2. Schematic of physics-informed neural network.

Physics-informed neural networks have multiple benefits in comparison with classical
methods. For example, they provide approximate mesh-free solutions that have tractable
analytical gradients and an elegant method of carrying out joint forward and inverse mod-
eling [38]. Although popular and effective, this approach has significant limitations when
compared with classical approaches, such as poor computational efficiency [39] and poorly
understood theoretical convergence properties [40,41]. However, there are no differential
equations describing the complete working process in many complex mechanical engineer-
ing applications, such as the complex flow in an aircraft engine considered in this study.
This not only affects the development of such approaches but also makes the investigation
of complex physical problems in engineering very challenging.

3. Physics-Embedded Deep Learning for Investigating Complex Flow in Turbofan Engines

A new domain decomposition approach, called physics-embedded deep learning, is
presented in this study for solving large, multi-scale physical problems related to complex
mechanical engineering. As mentioned previously, a turbofan operates by ingesting ambi-
ent air through the inlet, compressing the air through the fan and compressor, undergoing
combustion through the combustor, generating work through high- and low-pressure
turbines to drive the fan and compressor, respectively, and expanding the hot gas through
the nozzles. In particular, a fan, usually known as a low-pressure compressor, compresses
air into a bypass duct as its inner portion supercharges the compressor. The bypass airflow
is passed to a mixing chamber with low-pressure turbine exhaust gases before expanding
through the nozzle. These various component systems work together according to certain
physical laws during the operation of an aircraft engine, as shown in Figure 3. The main
goal of physics-embedded deep learning is to address the coupling of the working process
and mechanism described above, which is achieved using domain decomposition.
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Engineers are expected to understand how these components work together. In con-
trast, researchers normally emphasize the discovery of physical laws. Therefore, compo-
nents are transferred from physical to digital space matching to facilitate using an artificial
intelligence network. Each independent learning network is used to represent the physical
components, such as the inlet, fan, and compressor, as shown in Figure 4. In the physical
space, air enters the fan and compressor components through the inlet; therefore, there is
a data transmission relationship between the inlet, fan, and compressor networks in the
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digital space. The cooling air system in an aircraft engine includes a compressor bleed con-
duit extending from the compressor to the turbine blade cooling fluid supply that provides
cooling fluid to at least one turbine blade. Therefore, an air system network was created
in the digital space that transmitted data from the compressor network to the turbine
network. The primary purpose of a lubrication system is to deliver oil to the internal engine
components. These components are directly related to the fans, compressors, and high- and
low-pressure turbines. Thus, the lubricating network inputs data into the fan, compressor,
and high- and low-pressure turbine networks. Furthermore, the data link relationship of
the control system network has a one-to-one correspondence with the physical aircraft
engine. The test parameters are sent to their corresponding networks during the data
training process. For example, the compressor speed is sent to the compressor network
rather than to the fan network.
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The domain decomposition method involves dividing the entire computational do-
main into several subdomains, solving each subdomain, and finally coupling the solutions
of subdomains through coordination strategies. In physics-embedded deep learning, the
independent learning network used to represent the physical component is collectively
referred to as a component network. Assuming a node within a component network is
represented by θ, and a component network is represented by NN, the complex connections
between nodes form a component network. The specific ways of connection between nodes
are not discussed here (discussed in Section 4), and the structure of a component network
is represented by NN(θ). The output of a component network is:

Hi = NNi
(
xi, Hi−1, ∑ Hk; θ

)
(1)

where H represents the output of a component network, i indicates the location of the com-
ponent network, xi is the input parameters corresponding to the component/system i, and
Hk represents the component network output that is unidirectionally linked to component
network i. The equation reveals that the decoupling of the independent computational
domain is determined by the relationship between the engine’s physical components.
This relationship denotes a direct connection between a physical component of the engine
and other physical components, leading to data transmission in the corresponding com-
putational domain. Therefore, solving the entire computational domain is equivalent to
learning the coupling relationships between all of the engine components:

y(xi) = f
(

Hg, Hs
)
= f

(
NNg

(
xg; θg

)
, NN(xs; θs)

)
(2)

Here g denotes engine components in the air system, s represents system or bypass,
y(xi) signifies the output of the entire computational domain, xi refers to input parameters,
and xg and xs, respectively, represent the inputs to the corresponding component networks,
including input parameters and outputs from other component networks.
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Representation learning involves the acquisition of effective features from data to
enhance the representation and capture vital information. Deep learning serves as an
approach to representation learning, as it views the hidden layers of neural networks as
hierarchically learning representations of input data, succinctly expressed by:

y(xi) = f (NNh(NNi(xi; θi); θh)) (3)

Here i denotes input, NNi represents the input layer, and NNh represents the hidden
layer in deep learning. Comparing Equations (2) and (3) reveals that in physics-embedded
deep learning, the embedded physical knowledge restricts the number of parameters enter-
ing the component network. Different input parameters define the output representation
of independent computational domains and mitigate the impact of irrelevant input param-
eters on independent computational domains. From the above equations, it is inferred that
the solution of the independent component network is equivalent to the performance of the
related physical components/systems, and the coupling between component networks is
analogous to the co-working relationship in engine components. In the equivalent relation-
ship, the operation of an aircraft engine conventionally represented by physical equations
is directly substituted with network learning. The physics-embedded deep learning fun-
damentally avoids the human-made factors introduced by physical modeling, making
it easier to characterize the operation of complex thermodynamic machinery. Therefore,
physics-embedded deep learning explicitly articulates the hierarchical features of the data,
facilitating the prediction of complex flow parameters on the engine component section.

4. Component Networks

Component networks played a critical role in training the presented deep learning
approach. In addition, the influences of the measurement parameter space and time series
must be considered within networks. One alternative approach is to use a mature artificial
intelligence network, such as a recurrent neural network (RNN) [42]. An RNN is a deep
learning network that is ideal for sequential data because it uses iterative calculations
that enable nodes to incorporate current inputs and past results. In an RNN, a structure
composed of nodes participating in iterative calculations is called a cell. This is unlike
conventional network architectures that process inputs as separate independent nodes.
Cells at different iterative times are linked in a chain by unfolding the iterative calculation
in sequential order. This represents the transfer of information in a time or space sequence,
as shown in Figure 5. However, RNNs lose past information in deep sequential data owing
to the vanishing gradient problem. A long short-term memory (LSTM) neural network
was introduced to address this problem, which is a memory cell with three gate units that
increase the flexibility of information processing [43].
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Compared with conventional RNNs, the processing of information flow in an LSTM
cell is multi-threaded instead of single-threaded. The inner components of an LSTM cell
are presented in Figure 6.
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At the t-th time, an LSTM cell receives an input vector xt, the hidden state is the same
as the previous output of cell ht−1, and one output vector ht is produced. For a forward
pass, a combined vector of the input x and hidden state ht−1 is fed into the cell. The vector
is controlled by the input, forget, and output gate functions, which determine the amount
of information that should be kept, forgotten, and outputted for the current state of the cell,
respectively. These gate functions are respectively expressed as:

ft = σ
(

W f [ht−1, xt] + b f

)
(4)

it = σ(Wi[ht−1, xt] + bi) (5)

Ot = σ(Wo[ht−1, xt] + bo) (6)

where σ denotes the sigmoid function, xt denotes the input data at time t in a sequence
of length l, W denotes the weight matrix, and b denotes the bias vector. i, f, and o de-
note the elements associated with the input, forget, and output gates, respectively. ht−1
denotes the hidden state in which the values are the same as the output result from the
previous calculation.

Subsequently, a candidate cell state C at time t is calculated based on the input vector
and hidden state. The cell state C at time t is updated by the cell state from the previous
time and candidate cell. These values are also controlled by the input and forget gates.
These calculations are expressed as:

Ct = tanh(Wc[ht−1, xt] + bc) (7)

tanh =
(
ex − e−x)/

(
ex + e−x) (8)

Ct = ft ⊗ Ct−1 + it ⊗ Ct (9)

Finally, the output of cell h at time t is computed, which is expressed as:

ht = Ot ⊗ tanh(Ct) (10)

5. Results
5.1. Real-Time Prediction of the Exhaust Gas Temperature

The real-time prediction of the exhaust gas temperature (EGT) was considered as
the first case study. The EGT is typically defined as the gas temperature at the exit of an
aircraft engine and is considered a key parameter for optimizing fuel economy, diagno-
sis, and prognosis. The turbine blade temperature is a key indicator of the normal life
consumption of a blade. However, direct sensor measurements for turbine modules are
limited because of the extremely hot environment. Consequently, frequent malfunctions
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occur, leading to low reliability in temperature measurements. The EGT sensors located
downstream from the highest-temperature sections provide a means to approximately
infer the temperatures of the turbine blades/disks. These sensors are also considered the
most vulnerable elements of the entire turbine engine instrumentation. Real-time and
accurate EGT values are particularly vital for high-performance military turbofan engines,
where the margin between hot-section operating conditions and material limitations is
shrinking. Therefore, the real-time and accurate prediction of EGT holds significant value.
Traditional fluid simulation methods encounter a huge challenge in the field of real-time
flow parameter prediction in that the complex flow through an aircraft engine cannot be
completely simulated in real time.

Based on the preceding comments regarding physics-embedded deep learning, sup-
plementary work is required to finalize a method for the real-time prediction of EGT.
The previous discussion focused solely on the architecture of a single-type digital engine
model. For a specific problem, it is necessary to establish a corresponding digital model
based on a specific type of engine and its available data parameters. The aircraft engine
considered in this case study was a two-shaft mixed turbofan engine that is widely used in
the aviation industry.

The specific engine digital model consisted of 11 independent learning networks,
including the inlet, fan, compressor, combustor, high-pressure turbine (HPT), low-pressure
turbine (LPT), mixing chamber, nozzle, bypass, lubricating, and control system networks.
The order in which air flows through the components in the physical space mirrors the
data transmission relationship among independent learning networks in the digital space,
as shown in Figure 7. Furthermore, as discussed above, the data link relationships for the
control system, lubricating, and bypass networks corresponded one-to-one to the physical
aircraft engine. The selected features were then sent to the corresponding networks. All the
independent component networks used the LSTM network, with all LSTM networks
configured to have 12 output nodes, to consider the influence of the time series in this
case study.
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Next, a regression model was added to correlate the aircraft engine performance in
the digital space with the target parameters. The inputs to the regression model were the
outputs of the component networks corresponding to the exhaust components of the aircraft
engine in physical space. For example, a turbofan engine with split flow will exhaust the
core and bypass flows into the atmosphere through main and bypass nozzles, respectively.
Consequently, two output features were produced by the corresponding networks and
sent to the regression model. In contrast, the regression model only received the features
produced by the nozzle network for a mixed exhaust turbofan engine. The regression
model was a fully connected network; that is, any node in the n − 1th layer was connected
to all nodes in the nth layer.
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The inputs for each component network within the model must be set to transfer
the engine components from physical to digital space matching after the deep learning
architecture of a specific digital model is established. External and internal inputs exist for
each component network. The external inputs consist of relevant parameters that express
the characteristics of the components. Internal inputs are formed by the data transmission
relationship between the component networks. For example, measured features include
the fuel flow and low- and high-pressure rotor speeds. However, only the low-pressure
rotor speed expresses the characteristics of a fan. In addition, a component network in the
digital space reads the input that expresses the characteristics of the component. Moreover,
many types of features can be measured for a component but not all are related to the target
parameter. From the perspective of association, the exhaust gas temperature (as the target
parameter) is directly related to the environmental, engine state, and control parameters.
These parameters were utilized as external inputs for the component networks within
the model.

This study used a dataset that included six flight and four engine test records provided
by the Civil Aviation Flight University of China. The records included the atmospheric
humidity, rotational speeds of the high- and low-pressure shafts, angle of the guide vane,
total temperature, and total pressure at the component section. The data listed in Table 1
were selected as external inputs for the component networks in the case study. In the
table, the numbers in the index columns correspond to those in Figure 7 and represent the
position of the input features. The abbreviations HP, LP, and PL indicate high-pressure,
low-pressure, and pressurizing lines, respectively.

Table 1. Selected features for the component input.

Component
Network Input Features Index

Inlet
Engine inlet temperature 1

Inlet total pressure 2
Atmospheric humidity 3

Fan
Rotational speed of the LP shaft 4

Angle of the LP guide vane 5
Total pressure at the fan outlet 6

Compressor Rotational speed of the HP shaft 7
Angle of the HP guide vane 8

Combustor
Pressure at the combustor inlet 9

Temperature at the combustor inlet 10

HPT Rotational speed of the HP shaft 7

LPT
Rotational speed of the LP shaft 4

Temperature at the turbine outlet 11

Nozzle Throat diameter 12

Lubricating Oil pressure of the PL 13

Control system Engine throttle control level 14
Fuel flow 15

Different indicators have different dimensions and value ranges. The gradient of
the model along different directions changes significantly if the data are directly input
into the model for training, making convergence difficult. Therefore, it is necessary to
normalize and scale the data of all dimensions to the range of [0, 1], which can accelerate
the convergence speed and improve the prediction accuracy. The min–max method was
used to standardize the data, which is expressed as:

x∗ =
x − xmin

xmax − xmin
(11)
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where x and x* denote the original and standardized data, respectively. xmin and xmax
represent the minimum and maximum values for each dataset, respectively. The output
of the model was inversely normalized to obtain the predicted exhaust gas temperature
after completing the model training with the standardized data. The mean square error
(MSE) was selected as the loss function of the model during the training process, which is
expressed as:

MSE =
1
N

N

∑
i=1

(yi − f (xi))
2 (12)

where yi denotes the standardized target data, f (xi) denotes the regression model output,
and N denotes the training sample size. The training process was iterative with two stages:
forward and back propagation. During forward propagation the input data were passed
in specific directions in digital space, representing one-way links between different nodes
in the neural network model. After the computation occurred at the nodes, the output of
the regression model was obtained and used to calculate the iteration errors using the loss
function. Back propagation occurred when the errors (as input) passed along the opposite
direction of the forward propagation. The coefficients and weights were adjusted based
on the contributions of the nodes to the error. The training ended when the error met the
accuracy criterion or the number of specified iterations in the round was reached.

The model training parameters initialization is detailed in Table 2. In Table 2, batch
size is the number of data points utilized in each iteration of training in a neural network.
Epoch is the occurrence of a complete pass through the entire training dataset during the
training of a machine learning model. The training process was conducted five times at
a fixed model capacity defined by a specific number of nodes, resulting in five distinct
digital engine models. Each model was utilized to predict EGT based on the provided input
values. Subsequently, the performance metrics of these five digital models were aggregated
and measured to comprehensively assess their predictive capabilities. The evaluation was
based on the average relative error (ARE), which is expressed as:

REi =

∣∣∣∣Ym − Yr

Yr

∣∣∣∣, i = 1, 2, . . . , N (13)

ARE =
1
N

N

∑
i=1

(REi) (14)

where Ym denotes the digital model output, Yr denotes the test target experimental data,
and N denotes the testing sample size.

Table 2. Configuration of Model Training Parameters.

Parameter Value

Batch size 20
Optimizer Adam/Rmsprop

Epoch 300
Weight initialization Glorot uniform

Bias initialization Zeros
Sequence length 10

The test results of the digital engine model performance on two separate testing
datasets are listed in Table 3. Additionally, experiments were conducted on testing
dataset 2 with different model capacities to explore their impact on predictive accuracy.
Figures 8 and 9, respectively, showcase the model performance for real-time prediction of
EGT on two testing datasets. The digital engine model effectively and accurately predicted
the EGT during steady- and unsteady-state conditions, making it a reliable method for
real-time EGT predictions. This is demonstrated by the ARE of models DM_1 and DM_2
in Table 3, as well as in Figures 8 and 9. In the zoom-ins of Figures 8 and 9a, it is evi-
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dent that the model incurs significant EGT prediction errors during engine slow-speed
and unsteady-state conditions, especially at positions where the engine initiates acceler-
ation or deceleration. These errors arise from two main factors, namely fluctuations in
EGT sensor measurement during such states and the presence of latency in the model’s
real-time predictions.

Table 3. Results of the digital model on testing datasets.

Test Name
ARE (%) MRE (%)

min max ave std. ave

DM_1 0.2604 0.5093 0.3657 0.1097 7.6360

DM_2-1 0.2795 0.8384 0.4947 0.2150 8.1922
DM_2-2 1.3666 2.1833 1.7338 0.3521 13.4463
DM_2-3 1.2545 2.2037 1.3818 0.3785 11.9756
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(b) Unsteady- to steady-state conditions [7640, 8800]. (c) Unsteady-state conditions [5350, 5500].

In the DM_2-2 and DM_2-3, the number of output nodes for their independent com-
ponent networks is 10 and 9, respectively. In the context of DM_2-1, DM_2-2, and DM_2-3
models, DM_2-1 exhibits the largest model capacity, followed by DM_2-2, and DM_2-3
possesses the smallest capacity. A comparison of the model performance with different
capacities on testing dataset 2 indicates that reducing model capacity results in an increased
standard deviation, signifying a decrease in stability. But the models still demonstrate effec-
tive predicting of the EGT under both steady- and unsteady-state conditions, as evidenced
by the ARE of the models.

5.2. Real-Time Prediction of the Total Pressure

The real-time prediction of the total pressure at the compressor exit was considered in
the second case study. This case highlights the versatility of the presented architecture for
parameter prediction, demonstrating that the architecture enabled accurate prediction of the
performance parameters of the entire engine and facilitated the acquisition of performance
parameters for individual components within the engine system. This distinction is essential
because the behavior of an engine component may differ when operating as part of a
complete engine assembly compared with its isolated performance in numerical simulations.

The constant demand for performance improvements in aircraft engines has led to
attempts to advance compressor technology to achieve superior performance. Increasing
the compressor pressure ratio is one method to improve engine performance. However,
this renders the compressor unstable. The instability indicator usually considers dynamic
parameters, such as pressure, vibration, temperature, and rotational speed. The total
pressure fluctuates sharply when the compressor becomes unstable. Therefore, the total
pressure at the compressor exit is typically used for monitoring engine operation.

The digital model architecture and process for predicting the total pressure at a
compressor outlet were consistent with those described in the first case study, except the
total pressure at the combustor inlet from the input parameters was excluded. The digital
model obtained from the training data was validated under different flight missions,
and the results are listed in Table 4. The model performance for these flight missions is
illustrated in Figure 10. The results demonstrated that the digital model consistently and
accurately predicted the cross-sectional parameter of the compressor in real-time during the
engine slow-speed, intermediate, maximum, acceleration, and deceleration state conditions.
Comparing the model performance across the three engine flight missions, as shown in
Figure 10, it is evident that the model incurs large prediction errors when the engine initiates
acceleration/deceleration. This situation is particularly pronounced in flight mission 1.
It is observed from Figure 10a that errors of model prediction in engine unsteady-state



Aerospace 2024, 11, 140 13 of 21

conditions impact the model prediction in engine steady-state conditions, leading to an
increase in model prediction error in engine steady-state conditions. This discrepancy
stems from the normalization of training data to a specific range. The represented engine
performance of flight mission 1 experiences a relative degradation compared with the
engine performance depicted in the training dataset. Consequently, the model prediction
in flight mission 1 manifests an overestimation relative to the recorded parameter value.

Table 4. Results of the digital model on three flight conditions.

Test Name
ARE (%) MRE (%)

min max ave std. ave

Flight_1 0.9133 1.3212 1.0795 0.1727 12.6294
Flight_2 0.2255 0.3367 0.2702 0.0456 10.2239
Flight_3 0.2013 0.2930 0.2408 0.0367 4.7236
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Figure 10. Performance of the digital model on three flight missions. (a) Flight mission 1. (b) Flight
mission 2. (c) Flight mission 3.

Insights into the number of testing data points where the digital model exhibited large
prediction errors are provided in Figure 11. The height of the bar in Figure 11 represents
the number of testing data points, and the horizontal coordinates are the ARE of the model
predicting parameter. Analyzing both Figures 10 and 11 alongside the MRE of the model
in three flight missions, it is evident that data points with significant errors in real-time
model predictions are rare, accounting for less than 0.3% of the total prediction testing
data points. When comparing Figure 10b,c, the model exhibits a higher MRE in real-time
parameter prediction for flight mission 2. This can be attributed to the small numerical
values in the recorded testing data, leading to a notable increase in the MRE due to the
small denominator when calculating the relative error.
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5.3. Real-Time Performance Degradation Comparison

The application of parameter prediction to analyze the performance degradation of
aircraft engines was considered in the third case study. This case study was designed to
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highlight the features of a digital engine model, which was utilized to address aircraft
engine engineering problems that were difficult to address using conventional methods.
Aircraft engine performance is crucial to ensure successful flight missions. However,
variations in manufacturing and assembly tolerances can lead to differences in aircraft
engine performance. Additionally, engine performance changes over its lifetime owing to
the degradation and recovery processes, further affecting its overall performance. Therefore,
it is imperative to measure the extent of performance change caused by the engine lifespan
to assess whether it meets flight requirements.

The EGT is commonly used as an aircraft engine performance metric to evaluate the
degradation of an aircraft engine in real time. The gas temperature decreases after the gas
works on the turbine. The lower the EGT, the more the gas has worked on the turbine.
A higher than standard range EGT is a warning sign for aircraft engine health. Thus, a change
in EGT represents a change in the aircraft engine performance. In general, the EGT at
the maximum operating condition (often referred to as the peak state) is meticulously
recorded and compared with the EGT at the peak state of the previous flight. This practice
serves as a critical indicator for evaluating engine performance degradation. Nonetheless,
this assessment presents a multifaceted challenge because of the significant influence of
diverse factors, including flight missions, intricate control laws governing engine behavior,
and ever-changing external environmental conditions. Consequently, the comparison of
EGT inherently involves different flight states, introducing complexities into the analysis.
In addition, the presence of an unidentified engine model in a degraded state poses
challenges for traditional numerical simulation methods to assess the EGT.

Obtaining the performance parameters in a consistent operating state before and after
a change in engine performance forms the basis for evaluating performance degradation.
To address this, an approach involving the construction of two distinct digital engine
models was presented representing the engine before and after performance degrada-
tion. Preservation of the engine characteristics within the corresponding timeframe of the
data was ensured by carefully crafting the engine digital model with appropriate data.
Subsequently, both digital models were fed identical datasets to predict the performance
parameters and the digital engine models executed simulations based on the given flight
states and control law.

The process of comparing engine performance degradation based on real-time EGT
predictions is depicted in Figure 12. Two sets of operational data were available for an
aircraft engine corresponding to the ith and i + nth days. For this analysis, it was assumed
that the aircraft engine did not undergo any maintenance or performance recovery dur-
ing its period of use. Two distinct digital models were meticulously mapped using the
aforementioned datasets by leveraging the given architecture. These digital models were
designed to encapsulate the engine behavior under specific mission conditions, encompass-
ing the operating environment and aircraft engine state. As such, the model functionality
was driven by a combination of essential data, including environmental, engine state, and
control parameters. Subsequently, a digital experiment was conducted for performance
comparison where both digital models were executed under identical mission conditions,
and real-time EGT predictions were made. The essence of the performance degradation
was assessed by carefully scrutinizing and contrasting the EGT values predicted by the two
digital models.

Unlike the first case study, the third case study utilized flight data from the engine,
resulting in a more limited availability of the parameters. This limitation arose because of
the constraints of the airborne environment, where the total aircraft engine load was re-
stricted and the arrangement of sensors on the engine during flight was significantly lower
than that of the extensive sensor setup utilized in aircraft engine testing. Consequently, the
features selected for the digital model in this case study were limited to those that were
measurable during airborne operations. One of the most noticeable effects was a reduction
in the cross-sectional aerodynamic parameters of certain components. The selected param-
eters mainly include the air temperature, flight altitude, inlet guide vane angle, rotor speed,
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area of nozzle throat, oil pressure, throttle position, and afterburner switch. Similarly, all
the independent component networks used the LSTM network, with all LSTM networks
configured to have 12 output nodes.
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The smaller the EGT predicted by the model, the better the corresponding aircraft
engine performance. Theoretically, the EGT predicted by the digital model on day i was
expected to be lower than that predicted on day i + n under the same mission conditions.
This result was consistent with the discussion above. The architectures of the two digital
models in the demonstration were consistent with those in the first case study. The two
digital models represented the states of the aircraft engine after three (baseline model)
and six flights. The baseline model mostly predicted lower exhaust gas temperatures in
real time when compared with the other model. Figure 13 illustrates the real-time EGT
prediction of two digital models representing engine performance at different runtimes.
The black curve represents the predicted EGT values by the digital model for an engine
with short runtimes, while the red one represents the predicted EGT values by the digital
model for an engine with long runtimes. As depicted in Figure 13, the values of the former
are lower than those of the latter. Performance degradation was quantified by averaging
the predictions of the two models under steady-state conditions and then computing their
differences. The errors arising from the digital model training affect the assessment of
engine performance degradation. To mitigate the impact of these errors on the calculation
of performance degradation, the evaluation method is expressed as:

∆ = |Me1 − Me2| − |∆o| (15)

where ∆ denotes the performance metric to evaluate the engine performance degradation,
∆o denotes the difference between the two models under steady-state conditions, and Me
denotes the model correction. The model correction is equal to the absolute average of the
difference between the model-predicted values and the recorded testing values.

The above process was repeated to obtain the engine performance degradation curve,
which illustrated the changes in engine performance over its operating time. To simplify
the process, a digital model was generated by training the engine with data from its initial
state. Subsequent flight data were then sequentially fed into the digital model to predict
the engine performance parameters under specific operating conditions corresponding to
the initial state. The extent of performance degradation was determined by comparing the
experimental and predicted EGT during the same flight sorties. The specific flow is shown
in Figure 14.
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Figure 14. Process for obtaining engine performance degradation curves.

A performance degradation prediction result based on six flight testing data is pre-
sented in Table 5, and the performance degradation prediction curve is shown in Figure 15.
In Table 5, ‘Testing’ represents flight testing data, and ‘Base’ serves as the baseline for engine
performance degradation evaluation. ∆T denotes the degradation evaluation calculated
using the traditional method. ∆D denotes the degradation evaluation calculated using the
digital model-based method presented in this study. The traditional method evaluates
engine performance degradation by measuring the difference in performance metrics at
the engine’s maximum state condition. The graph illustrates a gradual decline in engine
performance over time. From Figure 15, it is evident that traditional methods exhibit
significant deviations when predicting the performance degradation of ‘Test 6’. Figure 16
provides the EGT values of flight testing, along with the maximum recorded data. Figure 16
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reveals a significant disparity in the testing data of ‘Test 6’, leading to the ineffectiveness of
the traditional method. In contrast, the performance degradation evaluation based on the
digital model is not constrained by the engine flight mission and provides a more effective
prediction of the evaluation of engine performance degradation. Moreover, it is essential to
note that achieving more accurate results requires additional engine operational data and a
more detailed experimental design. Addressing these aspects will be a key focus of future
efforts to improve and refine performance predictions.

Table 5. The results of the engine performance degradation based on EGT.

Testing Time (h) Me (K) ∆o (K) ∆T (K) ∆D (K)

Base 0.00 4.700 4.700 0 0.000
Test 1 3.89 8.298 2.112 0 1.485
Test 2 4.44 9.213 2.745 1 1.768
Test 3 5.36 8.381 1.886 1 1.795
Test 4 6.00 9.763 3.904 1 1.158
Test 5 6.66 11.908 3.029 −1 4.179
Test 6 6.73 11.462 0.651 79 6.111
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6. Conclusions

Predicting the fluid properties in complex flow through thermodynamic machinery is
a common problem in engineering. Some complex flows have been investigated by classic
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hydrodynamic studies using either the Navier–Stokes–Fourier framework or the molecular-
level method. Most researchers caution that investigating complex flow is challenging.

This study introduced physics-embedded deep learning as a novel approach for
predicting real-time fluid properties in complex flow. This method leveraged a domain
decomposition approach to represent complex mechanical systems, specifically aircraft
engines, in digital space using physics-embedded deep learning. Each engine component,
including the inlet, fan, and compressor, was modeled as an independent learning net-
work, and data transmission relationships were established to simulate their interactions.
The architecture was validated through two case studies for EGT and the predicted total
pressure at the compressor outlet in aircraft engines. The two parameters respectively
represent the overall performance and component performance of the engine. Accurate
and efficient performance was demonstrated using engine testing data. Moreover, an
advantage of the presented method is its capability to address complex aero-engineering
problems that are traditionally challenging to solve, thus offering valuable insights. In the
case of engine performance degradation, the engine deteriorates, leading to changes in the
physical equations describing engine operation. As the method does not directly rely on
the physical equations that describe the complex thermodynamic machinery, it can more
efficiently predict the aerodynamic parameters of the engine under degraded conditions.
Finally, the presented approach promotes safety and efficiency in the aerospace industry.

In this study, real-time prediction refers to the timely prediction of complex flow
parameters during the operation of thermodynamic machinery. This is achieved by con-
tinuously inputting sensor data into the model. For this study, the parameter prediction
was executed within the engine onboard computer, utilizing the i7-6820EQ CPU to emulate
the operational setting. Real-time data transmission operates at a frequency of 50 Hz,
requiring parameter prediction to be completed within 20 ms. Within the computational
environment, the time of the model loading and real-time predictions for one data record is
6 s and 0.013 s, respectively. The time for real-time prediction meets the demands of the
onboard computational environment. It is crucial to note that the time spent on real-time
parameter prediction is predominantly influenced by the component network, and more
intricate networks may necessitate additional time.
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