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Abstract: The intent of this work was to investigate the feasibility of developing machine learning
models for calculating values of airplane configuration design variables when provided time-series,
mission-informed performance data. Shallow artificial neural networks were developed, trained,
and tested using data pertaining to the blended wing body (BWB) class of aerospace vehicles.
Configuration design parameters were varied using a Latin-hypercube sampling scheme. These data
were used by a parametric-based BWB configuration generator to create unique BWBs. Performance
for each configuration was obtained via a performance estimation tool. Training and testing of neural
networks was conducted using a K-fold cross-validation scheme. A random forest approach was
used to determine the values of predicted configuration design variables when evaluating neural
network accuracy across a blended wing body vehicle survey. The results demonstrated the viability
of leveraging neural networks in mission-dependent, inverse design of blended wing bodies. In
particular, feed-forward, shallow neural network architectures yielded significantly better predictive
accuracy than cascade-forward architectures. Furthermore, for both architectures, increasing the
number of neurons in the hidden layer increased the prediction accuracy of configuration design
variables by at least 80%.

Keywords: inverse design; neural networks; airplane design; blended wing body; design space;
performance analysis; mission profile; random forest

1. Introduction

Preliminary airplane sizing involves the synthesis of market requirements and objec-
tives (MR&Os) [1] while applying constraints and spatial considerations to configure an
integrated vehicle. For the conventional tube and wing (TAW) airplane sizing problem,
design space exploration is typically leveraged in this early portion of the design cycle
to accelerate the assessment of configurations and aid in configuration design decision
making [2], such as deciding on a suitable wingspan (b) and aspect ratio (AR). By doing
so, an airplane designer can converge on an optimum configuration that satisfies MR&O
targets and can proceed to the more detailed design phase. This process has been well
studied and understood regarding TAW aircraft; however, as MR&Os become more strin-
gent around aircraft performance and its environmental impacts [3], exploration of more
novel concepts is warranted. A promising concept that has been researched and is still
being studied by both academia and the industry is the blended wing body (BWB). As
stated by Wakayama et al. [4], the BWB requires a design approach that departs from
the conventional TAW methodology—rather than decomposing the airplane into distinct
pieces, the wing, fuselage, engines, and empennage are all tightly integrated to achieve a
substantial performance improvement. Furthermore, although design space exploration of
novel concepts, such as the BWB, have been studied previously [5,6], the lack of validated
models for these novel concepts and their application to traditional direct design problems
can result in selecting a point-design configuration prematurely, or even incorrectly as
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Kallou et al. [7] pointed out. In this context, contrary to typical direct design approaches of
BWBs, an examination into the application of inverse design of BWBs is warranted.

The motivation for the work described in this paper is to determine whether machine
learning models can be used for the mission-informed inverse design of unconventional
airplane configurations while leveraging unique, physics-derived data types to generate
credible results. In such a scenario, the neural network models are designed to predict the
values of a set of airplane configuration design parameters, such as b, wing loading (W/L),
maximum takeoff weight (MTOW), etc., when supplied with specific time-dependent
performance metrics, such as lift-to-drag ratio as a function time (L/D(t)). Here, each time
step reflects a different point in the vehicle’s mission, which is typically composed of taxi,
take-off, climb, cruise, descent, approach, landing, and reserve segments. An advantage
of inverse design is that the mission-based objectives are fixed while a suitable design is
calculated, while with a typical direct optimization scheme, a design is iterated to arrive
at performance that may be close, but not an exact match, to those objectives. One reason
for exploring the viability of machine learning models is traditional surrogate models,
such as response surface functions, are typically not suitable for mapping multiple multi-
dimensional inputs to more than one singular output, for example, when the inputs are a
set of time-series-based variables that correspond to a unique combination of configuration
design data. Artificial neural networks (ANNs), in particular, offer an advantage over
response surface models because, when architected and trained appropriately, they can
robustly handle multi-dimensional, highly non-linear data relationships well, especially
when enough training data are provided [8]. This implies that if architected correctly, an
ANN could accurately generate a set of outputs when provided multiple multi-dimensional
inputs, even if the inputs (e.g., time-series aircraft performance data) have highly non-linear
relationships with the outputs (e.g., aircraft configuration design data).

The author’s previously published research [9] focused on developing a framework
to support the aforementioned objective, albeit within the context of applying it to con-
ventional, TAW, single-aisle, twin-engine, commercial transport category airplane config-
urations such as those in the same class as the Boeing 737 Next Generation family. The
work outlined in this paper is an expansion and adaptation of the authors’ previous work,
focusing specifically on application to the inverse design of unconventional airplane con-
figurations, namely BWBs. Compared to previously published research, changes have been
introduced to the framework, namely a larger airplane design and performance database;
more robust neural network model generation, training, and testing methods; and an
improved approach for extensibility analysis.

Within the context of airplane configuration design, inverse design is the antithesis of
a direct design approach. In an inverse-design process, configuration design parameters are
instead obtained through a query of a design space from a performance target standpoint.
Such a scenario would typically start with a set of MR&Os, and the result would be an
airplane configuration that closely satisfies, if not meets, the MR&Os [10]. In short, it
differs from other design methods in that the design parameters are a result of the method,
rather than an input into it. Gibbs et al. [11] developed an airplane inverse-design method,
where the input was a desired fixed operating cost per passenger, and the output was
the vehicle’s corresponding geometry—fuselage length, wingspan, horizontal and vertical
stabilizer spans, and thrust. However, the use of neural network models for inverse design
of airplane configurations has been very limited.

The use of models based on ANNs has emerged as a potential contender for response
surface models in the context of inverse-design problems. This is in part due to their im-
proved efficiency in terms of computational wall-clock time needed for calibration and their
prediction accuracy compared to other surrogate models, as highlighted by Sekar et al. [12].
Rai et al. [13] have also shown that through adjustment of neural network architecture
(number of layers and neurons in each layer) and neural network numerical methods
(regularization algorithms, training functions, and optimization routines), overfitting ten-
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dencies induced by highly non-linear, multi-dimensional features in the training database
can be reduced.

Leveraging neural network models for inverse-design problems has been widely
researched, particularly for airfoil design scenarios. Compared to a direct optimization
scheme, Barrett et al. [14] illustrated promise in an inverse-design methodology as it ap-
plied to airfoil geometry definition. Kharal et al. [15] demonstrated promise in the concept
by developing models capable of shape generation based on values of lift coefficient (CL),
drag coefficient (CD), and pitching moment coefficient (CM) at various angles of attack
(α). Extending this research, Yilmaz et al. [16] showed that by leveraging a deep learning
model instead, shape parameterization can be avoided thereby operating at a lower level
of abstraction by detecting patterns and features in the data themselves. Glaws et al. [17]
expanded on previous airfoil inverse-design research by effectively showing that an in-
vertible neural network (INN) could be developed, which is suitable for both direct and
inverse airfoil design.

Outside the realm of airfoil inverse design, Yu et al. [18] demonstrated promise in
the idea of developing neural network models for the inverse design of rocket nozzles
when provided a desired pressure distribution, showcasing its excellent predictive accuracy.
Additionally, Oddiraju et al. [19] demonstrated the viability of developing neural network
models to aid in the design of metamaterials when using desired bandgap specifications.
Li et al. [20] showcased the ability to use deep neural networks for prediction of 3-D wing
shape designs when provided CL, CD, CM, and pressure coefficient (CP) distributions, and
how such a model could be leveraged by a gradient-based optimization framework for
various wing design scenarios.

More broadly in the aerospace field, neural networks have been widely implemented
in Reynolds-averaged Navier–Stokes (RANS) solutions. While Thuerev et al. [21] focused
on neural network applications to RANS solutions, a more extensible neural network devel-
opment framework was leveraged by Singh et al. [22], who showed merit in using neural
networks to augment the Spalart–Allmaras turbulence models ultimately aiding in surface
pressures predictions. Li et al. [23] comprehensively summarized how machine learning
has solved some challenges in aerodynamic space optimization (ASO), specifically as it
pertains to geometric design space [24], aerodynamic evaluations—namely, aerodynamic
coefficient approximation [25–28] and flow field modeling [29]—and optimization archi-
tecture [30,31]. However, there are only a few previous works detailing the use of neural
network models for the analysis of airplane configurations; for example, Secco et al. [32]
developed a neural network model effectively replacing a full-potential code for prediction
of aerodynamic coefficients when provided configuration design data and flight condition.

This paper is organized as follows: Section 2 describes the computational approach,
including initial geometry parameterization, database generation methodology, neural
network algorithm selection and architecture variation, training and testing through a
K-fold cross-validation scheme, extensibility analysis of the neural networks across a BWB
vehicle survey, and a random forest approach to the prediction of design variables. Section 3
details the results as it pertains to neural network performance and extensibility analysis.
Finally, the conclusions of this study, and findings that warrant further investigation, are
elaborated in Section 4.

2. Computational Approach and Methodology

The outline of the computational approach, along with what programming languages
are used, is illustrated in Figure 1 (The second-segment thrust correction process is ex-
plained in Section 2.1.2). First, a baseline BWB vehicle is used to construct a configuration
parametrization model. Then, design parameters are varied via a Latin-hypercube sam-
pling scheme. The geometry parametrization model is then used to define a number of new,
unique BWB configurations. These configurations are assessed using a physics-informed,
Level-0 airplane performance assessment tool. Following this step, a database is created
containing design and performance data for each configuration. Numerical scaling is
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then performed on the database, and different neural network models are generated, each
with its own unique architecture. Next, the scaled database is equally partitioned, where
different portions are used to train and test the neural network models in a K-fold cross-
validation scheme. Here, the neural networks are trained such that their inputs are BWB
performance data and their targets are corresponding BWB configuration design parameter
values, thus lending themselves towards the inverse-design objective.

Figure 1. Computational approach overview.

To enable parametric-based airplane configuration definition and rapid performance
estimation, SUAVE (data available online at https://suave.stanford.edu/ (accessed on 25
November 2022)) [33–36], a conceptual-level aircraft design environment built with the
ability to rapidly configure and analyze both conventional and unconventional designs,
was leveraged. SUAVE allows users to define details of an airplane configuration design
programmatically via the specification of different design parameters, such as b, AR,
fuselage length, MTOW, sea-level static thrust, etc. These values are stored and ultimately
constitute an aircraft configuration design file. This file is then processed through SUAVE’s
mission solver, where a fixed mission profile is utilized to obtain performance data for a
configuration—range, total weight, specific fuel consumption (SFC), CL, CD, L/D, and
so on—all as a function of time steps in the vehicle’s mission. SUAVE’s comparatively
low-fidelity aerodynamics and stability derivative solvers can be augmented with relatively
higher-fidelity methods such as Athena Vortex Lattice (AVL (data available online at
http://web.mit.edu/drela/Public/web/avl (accessed on 25 November 2022))) or SU2 (data
available online at https://su2code.github.io/ (accessed on 25 November 2022)), thereby
enabling multi-fidelity analysis. AVL is a tool for aerodynamic and flight-dynamic analysis
of rigid aircraft, and can be used to analyze both TAW aircraft as well as unconventional
configurations such as BWBs. It employs an extended vortex lattice model for the lifting
surfaces, together with a slender-body model for fuselages and nacelles. The flight-dynamic
analysis portion of AVL combines a full linearization of the aerodynamic model about any
flight state, together with specified mass properties. For the purpose of this study, the
authors have elected to use AVL’s combined capability with SUAVE’s solvers. Meanwhile,
MATLAB’s Deep Learning Toolbox (data available online at https://www.mathworks.
com/help/deeplearning/ (accessed on 25 November 2022)) was used to manage neural
network development, training, and testing.

An additional framework is created for assessing the accuracy of developed neural
networks across unknown design sites, i.e., configurations not within the training and
testing database. This extensibility analysis of the models applied to a more “diverse” set of
BWB vehicles is conducted through a random forest approach. Figure 2 depicts an overview
of this process. The following subsections describe these processes in more detail: geometry
parameterization; database creation; neural network architecture generation; numerical

https://suave.stanford.edu/
http://web.mit.edu/drela/Public/web/avl
https://su2code.github.io/
https://www.mathworks.com/help/deeplearning/
https://www.mathworks.com/help/deeplearning/


Aerospace 2024, 11, 137 5 of 28

method selection and training; K-fold cross-validation training and testing scheme; and the
random forest approach to extensibility analysis.

Figure 2. Overview of extensibility analysis via a random forest approach.

2.1. Design Space Creation
2.1.1. Geometry Parameterization

To develop neural network models capable of inverse design, i.e., predicting BWB
configuration design parameter values when supplied with mission-dependent BWB per-
formance data, a database was created containing two distinct parts—BWB configuration
definition and its respective performance data. Typically, neural networks require a large
amount of training data placing importance on the ability to generate such data in a rapid
and automated manner—this is especially important in the conceptual-level airplane design
cycle [37]. To enable the quick creation of BWB configurations, a parametric-based BWB
geometry model was developed, where through the specification of wingspan and wing
area, a new BWB vehicle design can be generated.

The design of BWBs is challenging, primarily due to the tight coupling between
aerodynamic performance, trim, stability, and propulsion, not to mention the sheer number
of design variables involved and the complexities with transonic flow conditions [38]. For
this reason, careful consideration was placed on choosing a suitable baseline vehicle for
which the parametric geometry model was calibrated on—Liebeck’s BWB450 [39] was
used. The baseline tail volume coefficient, Vvbl , was calculated for the baseline vehicle using

Equation (1). The distribution of semi-spans,
−→
bbl , wing areas,

−→
Sbl , and quarter chord sweeps,

−→cλbl , was calculated segmenting the BWB450’s wing into 7 sections, including the vertical
wing tip, as shown in Figure 3. Based on the properties of the BWB450, a few rule-of-thumb
relationships were established that constrained the following parameters: center of gravity
located at 60% root chord fraction, CG = 0.6ψ, two engines positioned at 90% root chord
fraction and 9% wingspan fraction, ωψ = 0.9ψ and ωη = 0.09η, respectively. Additionally,
the aerodynamic center (AC) was constrained at the same location as the center of gravity.
This ensures that the vehicle is trimmed longitudinally.

Vvbl =
Stip(ACtip − CG)

(∑6
n=1 Sn)(∑6

i=1 bi)
(1)
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Figure 3. BWB semi-span segments.

These values ultimately inform the definition of new BWB configurations when the
model is supplied with values of b and wing area, S. The overall computational process
flow for this model is as follows: First, the model accepts new values of span and area
as inputs—bin and Sin. The wing and span are then distributed—

−→
S and

−→
b —based on

fixed proportions from the baseline design, namely
−→
bbl and

−→
Sbl . Chord length distributions

are determined using the quarter chord sweep for each segment, −→cλbl .
−→
S is then used to

calculate the tail volume coefficient for the new vehicle, Vv. This will inherently be different
than Vvbl since the new configuration has a different b and S than the baseline, calibrated
vehicle, namely the BWB450. Essentially, this indicates that the vertical tail area for the new
configuration, S7, is either undersized or oversized relative to bin and Sin, and relative to
the baseline vehicle. This could mean the new configuration has vertical tails that either
provide insufficient longitudinal stability or more than needed. Constraining the vehicle
to Vvbl , the difference between the two tail volume coefficient quantities is calculated, and
is used to calculate the adjusted vertical tip area and span, S7a , and span, b7a , respectively.
These procedures are highlighted in Equations (2) and (3), where S′

7 is the unadjusted
vertical tail area, and cr7 and ct7 are the root chord and tip chord, respectively, of the vertical
tip. Furthermore, here, (ACtip − CG) corresponds to the planar measurement between the
aerodynamic center of the tip and the aircraft’s center of gravity. Note that, depending on
the difference between the two tail volume coefficients, the area and span of the tip are
either reduced or increased while keeping cr7 and ct7 constant.

S7a = S′
7 ±

(Vvb l(∑
6
n=1 Sn)(∑6

i=1 bi))

(ACtip − CG)
(2)

b7a =
2S7a

cr7 + ct7

(3)

Finally, by incorporating S7a and b7a , the span and area distributions for the new BWB
configuration are adjusted—

−→
Sa and

−→
ba . These distributions are used to calculate the ad-

justed values of span and area, ba and Sa, which are different than bin and Sin. At this point,
the new BWB configuration has been sized; however, it lacks other principal characteristics
data such as appropriate values of MTOW and sea-level static thrust available, TA, which
are tightly dependent on geometry for BWBs [40]. For this reason, polynomial response
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surface functions of MTOW and TA were developed using a vehicle survey, consisting of
a variety of configurations beyond the BWB450. The vehicle survey contained three cate-
gories of configurations, namely BWBs, hybrid wing bodies (HWBs), and integrated wing
bodies (IWBs). The authors elected to leverage a variety of vehicle types, closely related to
BWBs, in order to diversify the dataset and improve neural network generalization across
a broader set of BWB vehicles. These vehicles are illustrated in Figure 4.

Figure 4. Illustration of BWB configurations in vehicle survey [41–49].

Using these vehicles and their configuration characteristics data—highlighted in
Table 1—polynomial functions, of different orders, were developed for MTOW and TA,
both expressed in pounds. For each function, the coefficient of determination, R2 value,
and root mean squared error (RMSE) were calculated. Ultimately, for both MTOW and TA,
the functions with the highest R2 value and lowest RMSE were selected. The equations for
MTOW, as a function of Sa, ft2, and ba, ft., and the equation for TA, as a function of MTOW
and Sa, ft2, are expressed in Equation (4) and Equation (5), respectively. They both exhibit
R2 values of 0.999 and RMSE values of 0.33 and 0.21, respectively. From a first-principles
BWB vehicle design standpoint, and based on the design variables selected for the design
space, wing area and wingspan can fundamentally aid in determining MTOW. Similarly,
thrust can be approximated using area and MTOW of the vehicle.

MTOW(ba, S) = (−4.663 × 106) + (7.337 × 104)b − 555.3S − 233.2b2 − 2.494bS

+ (8.696 × 102)S2 + 0.027b2S − (5.83 × 10−4)bS2 + (2.249 × 10−6)S3 (4)

TA(Sa, MTOW) = (−4.632 × 105) + 157.6S − 0.6734MTOW − (9.835 × 10−4)SMTOW

− (1.065 × 10−5)MTOW2 − (1.418 × 10−9)SMTOW2 + (1.933 × 10−11)MTOW3

+ (6.324 × 10−16)SMTOW3 − (9.181 × 10−18)MTOW4 (5)
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Table 1. BWB vehicle survey and surrogate model data [41–49].

Vehicle MTOW [lbs] Sre f [ft2] Span [ft] Total Thrust [lbs]

N + 3 SUGAR-Ray 181,500 4136 168.5 56,000

HWB216-GTF 312,500 8221 220 92,000

SAX40 330,300 8998 221.6 92,500

ERA-0009A 411,250 8048 229.3 95,000

HWB301-GTF 533,000 10,169 250 134,500

HWB400-GTF 701,000 11,471 260 168,500

ACFA-2020 884,000 14,291 261.9 239,000

BW-98 1,060,000 14,968 254.27 296,500

IWB-750 1,262,000 17,093 328.08 353,000

NACRE-750 1,390,000 21,453 328.08 468,500

VELA-3 1,542,000 22,088 326.76 432,500

Using these functions, MTOW and TA of the BWB airplane are calculated, and the
parametric-based BWB configuration generation process is complete. The output of this
model is a SUAVE configuration file, capable of being assessed through SUAVE’s configu-
ration assessment functionality. A process flow of this routine is shown in Figure 5.

Figure 5. BWB parametric configuration creation model overview.

2.1.2. Database Creation

BWB configurations are initially varied and created using two design variables, namely
bin and Sin, via the parametric-based configuration generation model. This model utilizes
these two parameters as inputs to ultimately create a unique BWB configuration defined by
four design parameters—ba, Sa, MTOW, and TA. These four design variables, along with
the vehicle’s corresponding performance data, are used to train neural network models.
In this sense, the objective of this work is to develop neural network models such that the
aforementioned design parameters for a BWB configuration are calculated when supplied
with the configuration’s mission-informed, time-dependent performance data.

Four design parameters, namely ba, Sa, MTOW, and TA, were selected as they are
generally regarded as high-level design parameters and are typically investigated in the
preliminary and conceptual sizing portion of a BWB’s design cycle. During this phase, de-
sign space exploration is conventionally utilized to explore the trade space and understand
design sensitives as it relates to both the MR&Os and the aircraft manufacturer’s product
and technology capability [50]. The bounds for bin and Sin design space were selected as
169 ft. ≤ bin ≤ 327 ft. and 4200 ft.2 ≤ Sin ≤ 22,000 ft.2, respectively. In general, referencing
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the BWB vehicle survey table (Table 1), the N + 3 SUGAR-Ray configuration was used to in-
form the lower bounds of both bin and Sin, while the VELA-3’s configuration characteristics
informed the upper limit for these values. Since the MTOW and TA polynomial response
surface functions are also based on vehicles in Table 1, the bounds applied for the design
space mitigated errors exhibited by these functions.

The method of numerical variation employed was the Latin-hypercube sampling (LHS)
scheme. Compared to other statistical sampling methods, the LHS scheme provides broader
coverage of the design space via the distribution of samples in equally spaced probability
bins [51]. In the context of neural network training, this is particularly beneficial as it
exposes the model to well-distributed data, which in turn can increase overall predictive
accuracy and reduce the likelihood of overfitting [52]. Additionally, Loh [53] has shown
that for problems characterized by multidimensionality, surrogate model development
is typically faster when using data obtained from an LHS scheme as opposed to Monte
Carlo sampling methods. Figure 6 depicts a visualization of 100 LHS-derived points of bin
and Sin.

Figure 6. Visualization of 100 LHS-derived span and wing area combinations.

The LHS sample size, NLHS, utilized was 30,000 as this was deemed to provide both
adequate design space coverage and a suitable number of training points for each fold in
the K-fold cross-validation scheme (method explained in Section 2.3). However, from a
numerical sensitivity standpoint determining the optimal value of NLHS was not a focus
of this study. Each unique combination of bin and Sin is used by the BWB parametric
configuration generation model, which generates adjusted values of span and area, namely
ba and Sa, along with MTOW, and TA. In conjunction with spatial integration constraints
and assumptions, this model uses the aforementioned design parameters and program-
matically generates 30,000 unique SUAVE airplane configuration files. An example of one
such configuration is depicted in Figure 7, where ba is 221.6 ft., Sa is 8998 ft2, MTOW is
408,300 lbs., and TA is 116,000 lbs.

Figure 7. Visualization of a BWB generated using parametric configuration model.
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These configuration files are then run through SUAVE’s performance analysis routines,
which assess every BWB configuration through the same mission constraints, and for that
matter, the same mission flight profile. This flight profile represents a typical long-range,
transport category, Part 25 mission with constraints on climb and descent gradients, rate
of climbs and descents, speeds for different segments, and altitude restrictions [54]. The
6500 nautical mile mission is composed of first, second, and third climb segments; a cruise
segment; and first, second, third, fourth, and fifth descent segments. The flight profile
is visualized in Figure 8. The 6500 nautical mile range was chosen as this represents a
notional, long-range mission that a vehicle similar to what the BWB450 may routinely fly
in-service.

Figure 8. SUAVE flight profile for BWB performance assessment.

Coupled with AVL’s aerodynamics and stability and control (S&C) analysis capabilities,
SUAVE’s mission solver assesses each configuration and generates its respective output
files in an automated manner. For BWBs, the mission solver uses ba and SA for cruise CL,
maximum CL, and L/D calculations and for S&C calculations since both design variables
fundamentally inform the shape of the configuration. MTOW is used by SUAVE’s in-built
weight estimation routines to inform the weight of the vehicle at the start of the mission.
TA represents the total static thrust available for the airplane and primarily determines the
engine mass flow and fuel flow at full throttle and adjustments to this quantity are made
based on standard atmosphere fluctuations.

The SUAVE-generated output files contain different time-series airplane performance
data, corresponding to the configuration assessed. These output files are processed to
obtain the following performance parameters, all as a function of time: coefficient of drag
attributed to compressibility effects (CDc ), induced drag coefficient (CDi ), miscellaneous
drag coefficient (CDm ), parasitic drag coefficient (CDp ), L/D, weight (W), specific fuel
consumption (SFC), and thrust required (TR). Each parameter is composed of 144 discrete
time steps, essentially meaning that each performance parameter is a row vector consisting
of 144 elements. Here, the time steps are not linearly spaced from each other, i.e., the
time difference between each time step is unique. This is because SUAVE’s mission solver
discretizes time based on the Chebyshev polynomial, which has been shown to improve
convergence and data accuracy near transition portions of the mission and mitigate Runge’s
phenomenon. This is exhibited by each performance parameter having smaller time steps
at the beginning and towards the end of each mission segment.

At this stage, design data—ba, Sa, MTOW, and TA—have been collected for each BWB
configuration along with its associated airplane performance data—

−→
CDc ,

−→
CDi ,

−−→
CDm ,

−→
CDp ,
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−−→
L/D,

−→
W ,

−−→
SFC, and

−→
TR. However, a numerical discrepancy may exist between TA and values

in
−→
TR. Although polynomial response surface models have been developed using a BWB

vehicle survey, to calculate MTOW and TA as a function of ba, and Sa, it is still theoretically
possible to calculate a value for TA that does not represent the optimal value for the vehicle.
Here, the optimal value of TA is defined as that value that provides minimal, i.e., as close to
zero, second-segment climb excess thrust. Second-segment climb takes place after takeoff
ground roll, rotation, liftoff, and first-segment climb (first-segment climb occurs after liftoff
where the aircraft is still in a takeoff configuration). Under single-engine operation, the
aircraft must be able to produce enough thrust to sustain a positive and steady climb
gradient at the liftoff speed. Upon achieving this speed, the landing gear is retracted,
which signals the completion of the first-segment climb and the start of the second-segment
climb. During this phase, a two-engine aircraft is expected to produce enough thrust under
single-engine operations (SEO) to achieve a steady gross climb gradient of no less than
2.4% at the takeoff safety speed, V2, until reaching 400 ft. above ground level (AGL) [55].
The second-segment climb constraints often become a critical engine sizing condition for
the entire airplane, where insufficient thrust renders the airplane unable to satisfy the 2.4%
climb gradient required under single-engine operating conditions. While an excessively
positive thrust margin allows the airplane to achieve the necessary climb gradient, SFC is
likely penalized for the rest of the airplane’s flight profile since the airplane is utilizing an
engine with more thrust than the airplane needs. For this reason, SUAVE’s mission solver
is adjusted to modify TA as needed to achieve a minimal second-segment excess thrust
condition. Therefore, rather than using TA for neural network training and testing, the
SUAVE-adjusted value of TA is used—TAopt . This ensures that the neural network models
developed are more likely to predict values of TA that are optimal for a BWB configuration.

Next, two discrete databases are created—a BWB design and a BWB performance
database. The BWB design database, matrix D, contains values of ba, Sa, MTOW, and TAopt

for all 30,000 BWB configurations. Therefore, D has dimensionality 30,000 × 4, where each
row represents a unique BWB configuration. Similarly, the BWB performance database,
matrix P, contains the values of

−→
CDc ,

−→
CDi ,

−−→
CDm ,

−→
CDp ,

−−→
L/D,

−→
W ,

−−→
SFC, and

−→
TR for the same

30,000 BWB configurations. Here, each performance parameter is a row vector containing
144 elements, representing time step values for the entire mission. Since each perfor-
mance parameter’s dimensions is 1 × 144 and there are 8 performance parameters, P has
dimensionality 30,000 × 1152. For matrices D and P each row corresponds to the same
configuration where for example, the values of ba, Sa, MTOW, and TAopt in row 2600 of
matrix D yielded the performance in row 2600 of matrix P. Matrices D and P are expressed
in Equations (6) and (7).

D =


ba1 Sa1 MTOW1 TAopt1

ba2 Sa2 MTOW2 TAopt2

ba3 Sa3 MTOW3 TAopt3
...

...
...

...
baNLHS SaNLHS MTOWNLHS TAopt NLHS

 (6)

P =



−−→
CDc 1

−−→
CDi 1

−−→
CDm 1

−−→
CDp 1

−−−→
L/D1

−→
W1

−−→
SFC1

−→
TR1−−→

CDc 2
−−→
CDi 2

−−→
CDm 2

−−→
CDp 2

−−−→
L/D2

−→
W1

−−→
SFC2

−→
TR2−−→

CDc 3
−−→
CDi 3

−−→
CDm 3

−−→
CDp 3

−−−→
L/D3

−→
W1

−−→
SFC3

−→
TR3

...
...

...
...

...
...

...
...

...
−−−−→
CDc NLHS

−−−−→
CDi NLHS

−−−−−→
CDm NLHS

−−−−−→
CDp NLHS

−−−−−→
L/DNLHS

−−−→
WNLHS

−−−−−→
SFCNLHS

−−−−→
TR NLHS


(7)

Once D and P were created, a scaling operation was performed to create DS and PS.
The motivation for scaling stemmed from demonstrated improvement in how it reduces
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neural network training time, via enhanced optimization algorithm convergence, and how
it yields a reduction in prediction errors [56]. Nayak et al. suggested that to achieve the
aforementioned performance improvements, the entire input and output databases for
training and testing neural networks should be scaled by some reference quantities to
normalize values between 0 and 1 [57]. Another benefit of scaling, as it applies to this study,
is that it can adjust quantities that numerically differ by several orders of magnitude, such as
TR and SFC, as well as MTOW and b. This ensures that the model’s learning method is not
skewed by substantially higher or lower values. In general, from a numerical standpoint,
scaling was conducted by dividing variables by 1.05 multiplied by the maximum value of
variables that exist within each matrix—D and P. Specifically, for D, this entailed dividing
the MTOW value in each row by 1.05 multiplied by the maximum value of MTOW that
appears within D, i.e., 1.05 · MTOWmax. A new matrix, DS, was formed by repeating
this operation for the other design variables in D and this is expressed in Equation (8).
The value of 1.05 was informed by applying a 5% growth factor to each data point. This
ensures all data points are between 0 and 1 and reduces the risk of overfitting. Once BWB
configuration data was generated by the neural network model as an output, a re-scaling
operation was not performed to obtain absolute values. This was to ensure that predicted
values were all in the same range (0 to 1) prior to error calculation, thereby mitigating
numerical sensitivity issues.

DS =



ba1
1.05·ba,max

Sa1
1.05·Sa,max

MTOW1
1.05·MTOWmax

TAopt1
1.05·TAopt,max

ba2
1.05·ba,max

Sa2
1.05·Sa,max

MTOW2
1.05·MTOWmax

TAopt2
1.05·TAopt,max

ba3
1.05·ba,max

Sa3
1.05·Sa,max

MTOW3
1.05·MTOWmax

TAopt3
1.05·TAopt,max

...
...

...
...

baNLHS
1.05·ba,max

SaNLHS
1.05·Sa,max

MTOWNLHS
1.05·MTOWmax

TAoptNLHS
1.05·TAopt,max


(8)

A similar scaling operation was performed to obtain PS. Here, each time step value of
every performance parameter was divided by 1.05 multiplied by the maximum value of
that performance parameter within P. For example, in order to scale L/D, each time step
value of L/D in every row was divided by 1.05 multiplied by the maximum value of L/D
that appears in P. This operation was repeated for all 8 performance parameters in each
row of P to construct PS and is expressed in Equation (9). At this point, the databases for
neural network training and testing have now been generated.

PS =



−−→
CDc 1

1.05·CDc,max

−−→
CDi 1

1.05·CDi,max

−−−→
CDm 1

1.05·CDm,max
· · ·

−→
TR1

1.05·TR,max
−−→
CDc 2

1.05·CDc,max

−−→
CDi 2

1.05·CDi,max

−−−→
CDm 2

1.05·CDm,max
· · ·

−→
TR2

1.05·TR,max
−−→
CDc 3

1.05·CDc,max

−−→
CDi 3

1.05·CDi,max

−−−→
CDm 3

1.05·CDm,max
· · ·

−→
TR3

1.05·TR,max

...
...

...
. . .

...
−−−−−→
CDc NLHS

1.05·CDc,max

−−−−−→
CDi NLHS

1.05·CDi,max

−−−−−−→
CDm NLHS

1.05·CDm,max
· · ·

−−−−−→
TR NLHS

1.05·TR,max


(9)

Outside of neural network training, these matrices can be used to illustrate the numer-
ical sensitivity of a performance parameter to a change in a configuration design parameter,
and vice versa. Figure 9 highlights the L/D values across an entire mission for two BWB
configurations. The blue line represents the L/D values for a BWB with ba = 221.6 ft.
Sa = 8998 ft2, MTOW = 408,300 lbs., and TAopt = 116,000 lbs., while the orange line repre-

sents another BWB configuration with ba = 229.3 ft., Sa = 8048 ft2, MTOW = 405,000 lbs.,
and TAopt = 111,400 lbs.
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Figure 9. L/D variation across two generated BWB configurations.

2.2. Neural Network Architecture Generation, Numerical Method Selection, and Training

Neural network models, in their most basic form, are governed by a set of algorithms
and control variables that map, or correlate, an input to a target. They are composed
of multiple layers—input, hidden, and output—each with nodes. Nodes from one layer
are linked to nodes from other layers, for example, a node in the first hidden layer is
connected to all nodes in the input layer. Each linkage has its own weight value while
layers themselves have their own bias values. These values help inform how data are
translated, i.e., changed, as they pass from one layer to the next. For example, the input,
neth11

, into the first node of the first hidden layer, h11 , is a summation of all of the outputs
from each input node multiplied by the weight value of each nodal link to that node in h1,
plus the bias value associated with the hidden layer. Throughout training, these weight
values are adjusted such that the difference between the predicted values and the actual
target values are within a specified tolerance.

For this study, the authors investigated shallow ANNs of two different types and of
varied architectures. Shallow ANNs are characterized by being composed of only one hid-
den layer. Typically, shallow neural networks are used to better understand the feasibility
of deploying machine learning models for a problem of interest. They are relatively simple,
inexpensive models to develop, in terms of computational resources required, and often
serve as better surrogate models than other comparatively more complex neural network
architectures for problems not involving image or video processing. Theoretically, a shallow
ANN with enough neurons in the hidden layer can adequately capture complex features
of a database, such as non-linearity and multi-dimensionality [58]. Within the subset of
shallow ANNs, two were selected for this study—feed-forward and cascade-forward neural
networks. A feed-forward neural network is considered one of the simplest neural network
architectures in that each neuron in the input layer is mapped, or linked, to every neuron
in the hidden, which is then mapped to every neuron in the output layer. Compared to
this architecture, a cascade-forwards neural network has an additional mapping from each
neuron in the input layer directly to every neuron in the output layer. This type of ANN has
provided favorable predictive accuracy in scenarios involving time-series data [9]. Figure 10
illustrates the architectures for both shallow feed-forward and shallow cascade-forward
ANNs. Within each model type, the number of neurons in the hidden layer, µ, was varied
from 1 to 10 to better understand predictive accuracy sensitivity as it relates to the number
of neurons. Increasing the number of neurons can impact training time and computational
cost—central processing unit (CPU) speed and random access memory (RAM) usage. The
trade-off, however, is the potential for higher predictive accuracy.
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Figure 10. Feed-forward and cascade-forward neural network architectures.

With regard to the input and output layers, the number of neurons in each is de-
pendent on the dimensionality of the training database. In this case, since the goal is to
develop a neural network suitable for inverse aircraft design, the input for training is BWB
performance data, namely PS, while the output is corresponding BWB configuration data,
i.e., DS. The dimensionality of PS is 30,000 × 1152, which implies that each BWB configura-
tion is characterized by 1152 vehicle performance data points—composed of 8 individual
performance parameters. For this reason, the input layer is composed of 1152 neurons,
where each neuron represents an individual performance data point. For example, the
second neuron in the input layer represents the second time step for CDc . Meanwhile, since
the dimensionality of DS is 30,000 × 4, this dictates that the output layer contains 4 neurons,
where each one represents a different performance parameter. For example, the first neuron
in the output layer represents ba for a BWB configuration.

After neural network models have been architected, training can commence. The
training scheme employed was supervised learning as it involved training data, PS and DS,
that is labeled, and each input corresponds to one specific set of outputs [59]. The intent
of training is to allow the neural network to “learn” features of the data such that it can
predict output values when provided inputs. In the process of doing so, weight values are
numerically adjusted to reduce the error between predicted and target values. Figure 11
provides an overview of this process. This involves passing input and output data in
its entirety, iteratively through the neural network. This is referred to as an epoch—one
complete pass of data to be learned by a neural network.

Figure 11. Neural network training process overview.

The size of the epoch is dictated by how many training points from PS and DS are
used for training, which will be explained in the following section. Neural network
training typically involves multiple epochs before a favorable predictive performance is
converged on. For example, Equation (10) represents the calculation of neth11

for the first

BWB configuration used as training in an epoch, namely PS
1 and DS

1. Here PS
1
n represents

the value of BWB airplane performance parameter in the first row and nth column of the
PS matrix. These values are associated with neurons in the input layer where PS

1
1, which
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is the first time step value of CDc , represents the value of the first neuron while PS
1
1152,

the last time step value of TR, represents the value of the last neuron. I1
wn are the weight

values associated with each neuron linkage to h1 and bh is the bias value for the entire
hidden layer.

neth1 =

[
n=1152

∑
n=1

(I1
wn{PScaled}1

n)

]
+ bh (10)

How data are passed through each neuron in the hidden layer, whether it is 1 neuron or
10, is governed by a numerical algorithm known as an activation function. Fundamentally,
an activation function uses the input value of a neuron to calculate the output value of the
neuron. There are many activation functions to choose from, each with its own trade-offs
in accuracy, generalization across a wider training set, and computational wall-clock time
needed for training, to name a few. For this study, the authors elected to use the tan-sigmoid
function, also known as the hyperbolic tangent function, expressed in Equation (11), where
outhi

is the output from the ith neuron in the hidden layer. A benefit of the tan-sigmoid
activation function is that its derivative is steeper at most points compared to the derivatives
of other activation functions. This enables larger numerical changes in weight values during
training, which can significantly reduce training time [60]. The training process will be
described in more detail in the following paragraphs.

outhi =
2

1 + e−2nethi
− 1 = tanh(nethi) (11)

Ultimately this value, in conjunction with the weights associated with neuron link-
ages from the hidden layer neurons to the output layer neurons, Own and the bias value
corresponding to the output layer, bo, is used to calculate the inputs into the output layer
nodes, expressed in Equation (12), where neto1 is the input into the first neuron of the
output layer and µ is the number of neurons in the hidden layer. Figure 12 provides a
schematic representation of a feed-forward shallow neural networking, highlighting some
of the aforementioned variables.

neto1 =

[
n=µ

∑
n=1

(O1
wn outhi

1
n)

]
+ bo (12)

Figure 12. Feed-forward neural network calculations schematic.

Using P1
S , neto is calculated for each neuron in the output layer. These values can be

compared to target values that are D1
S. There will inherently be a difference between the

two quantities, which is defined as the total error. Improving neural network predictive
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accuracy is based on determining the sensitivity of the total error with respect to each
weight value through calculation of the partial derivative of the total error with respect to
each weight. This procedure is called backpropagation and involves tracing back outputs
of the model through different neurons that were involved in generating that output and
ultimately back to the weights that were applied. For this reason, the derivative of the
activation function plays a crucial role in training. Once partial derivatives have been
calculated, optimization algorithms are leveraged to determine numerical changes to
weight values with the objective of minimizing total error [61]. Based on previous work,
the authors elected to use the Levenburg–Marquardt (LM) optimization algorithm with
Bayesian regularization. One benefit of the application of Bayesian regularization to the
LM scheme is that it improves overall predictive performance through adjustments of a
linear combination of squared errors and weight values [62,63].

While there are several ways to express neural network performance and training
stoppage criteria, root mean squared error (RMSE) is often used as it can express accuracy
across a wider set of design points. Compared to net error (NE), which is simply the
absolute difference between the target and predicted value, RMSE expresses the standard
deviation of the predicted errors across NS sample points, shown in Equation (13), where y
and y′ are the prediction and truth values respectively. In this sense, a low RMSE value
is indicative of low numerical noise as it pertains to predictive accuracy [64]. For training
purposes, once a convergence in averaged RMSE was exhibited over 3 epochs, i.e., no
improvement in predictive performance [65], training was stopped.

RMSE =

√
∑Ns

i=1(y − y′)2

Ns
(13)

2.3. K-Fold Cross-Validation Training and Testing Scheme

Neural network training and testing were conducted using a K-fold cross-validation
scheme. Cross-validation is a statistical method that partitions data into subsets to then
subsequently train a model using data from a subset and using the other subset for eval-
uation of the model’s performance [66]. Typically, to reduce variability, multiple rounds
of cross-validation are performed using different subsets from the same database. From
these rounds, validation results are combined to yield an estimate of the model’s overall
predictive performance. Essentially, as it applies to neural network training and testing,
cross-validation is a means to minimize prediction error through training and testing of all
data points in a large dataset [67].

K-fold cross-validation involves randomly dividing a database into k subsets, or folds,
each of the same size, i.e., the same number of data points. For the first batch, the first
k − 1 folds are used for training while the kth fold is used for testing. This process is
repeated k times each time using a different fold for testing—for example, the kth batch
would use the first fold for testing while the rest of the folds, folds two through k, are used
for training [68]. Effectively, the process is repeated k times, with the model getting trained
and testing across all folds, so the RMSE for cross-validation is computed by taking the
average of RMSE values across all k folds.

For this study, a 10-fold cross-validation scheme is used. This scheme offers a key ad-
vantage in that every data point is used for training nine times and testing once. This in turn
reduces bias and reduces the variance in the prediction errors [69]. Its obvious disadvantage
is the need to train and test a model ten times, which can be computationally intensive.

PS and DS were divided into 10 folds, where each fold contained 3000 data points.
Since each BWB configuration and performance metrics were generated using an LHS
scheme, the folds were simply created by dividing PS and DS uniformly into 10 folds, as
opposed to having to randomly select points to form a fold. Effectively, neural network
models were trained with 9 folds (27,000 data points) and tested with 1 fold (3000 data
points) for a given batch, which resulted from the ordering of the training and testing folds,
as shown in Figure 13.
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Figure 13. Ten-fold cross-validation training and testing matrix split by batches and fold numbers.

This scheme was applied to both neural network types, namely feed-forward and
cascade-forward, and for all architectures, i.e., 1 to 10 neurons in the hidden layer. Therefore,
for each neural network type, 100 neural network models were trained and tested. As
mentioned in the previous subsection, the averaged RMSE was then calculated for each of
these neural network models.

2.4. Random Forest Approach for Extensibility Analysis

Once 10-fold cross-validation neural network training and testing is complete, a neural
network with the best predictive performance, across all architectures, can be identified.
While the neural network models are trained and tested across parametrically-generated
configurations bounded by the limits informed by Table 1, they have not been exposed to the
exact configurations listed in this table. Additionally, since the geometry parametrization
model was calibrated around the BWB450 vehicle, the configurations generated for training
and testing purposes have similar configuration characteristics as the BWB450.

For this reason, the authors wanted to better understand the model’s extensibility
characteristics, i.e., predicting the value of configuration design parameters, when the
model is supplied with BWB performance data for a vehicle not resembling the BWB450.
This testing was accomplished through a random forest classification (RFC) scheme. At its
core, RFC involves using a collection of surrogate models, working together, to classify or
solve a problem [70]. Rather than relying on one model, the RFC scheme leverages several
models, where each model is trained on their subspace but, when combined, can show a
monotonic improvement in classification [71].

A result of the 10-fold cross-validation method is that even after a suitable neural
network architecture is identified, for both neural network types, there are still 10 versions
of each model, making it suitable for RFC. Leveraging this method, the extensibility
analysis was conducted as follows: First, a BWB vehicle was selected from Table 1. This
vehicle’s configuration was modeled using SUAVE, and its performance was obtained using
SUAVE’s mission solver coupled with AVL. Both the configuration design variables—b, S,
MTOW, and TA—and performance parameters—CDc , CDi , CDm , CDp , L/D, W, SFC, and
TR—were then scaled using the same reference scaling quantities applied to generate the
PS and DS matrices. Next, the scaled performance parameters were fed as inputs to all
10 neural networks of the same type and architecture, where each model subsequently
generated values for configuration design variables. Lastly, the average was calculated for
each of the four configuration design variables. Once un-scaled using the reference scaling
quantities, these averages were compared against the target values, i.e., the actual values of
b, S, MTOW, and TA for the selected BWB.

3. Inverse-Design Prediction Results
3.1. Performance of Neural Networks

In general, the averaged RMSE value associated with neural network prediction
is an indication of the model’s ability to accurately predict BWB configuration design
characteristics when provided with performance data. Note that the RMSE is averaged
since the output of the neural network is four BWB design variables, and this average
calculation is performed after rescaling to absolute values. A lower averaged RMSE value
exhibits precise correlation and accurate predictive performance while a higher averaged
RMSE value indicates poor classification. Figures 14 and 15 present the averaged RMSE for



Aerospace 2024, 11, 137 18 of 28

all 10 folds, different numbers of neurons in the hidden layer (1 ≤ µ ≤ 10), and for both
neural network types—feed-forward and cascade-forward.

Figure 14. Feed-forward averaged RMSE for all 10 folds.

Figure 15. Cascade-forward averaged RMSE for all 10 folds.

To better aid in determining a suitable neural network architecture for extensibility
analysis, elaborated on in Section 2.4 it was first important to determine prediction accuracy
sensitivity to µ. For this reason, the fold-averaged RMSE was calculated across all 10 folds,
for each µ value and for both neural network types, as shown in Figure 16.

The feed-forward neural network architectures exhibit a range in fold-averaged RMSE
values from approximately 0.042 to 0.0025 while the cascade-forward neural network
architectures range from approximately 0.032 to 0.006. For both neural network types,
an increase in µ yielded a decrease in prediction errors, as is indicated by the decrease in
averaged RMSE values. This is evidence of the benefit that additional neurons in the hidden
layer can provide, which is additional hidden layer processing in a scenario with highly
complex, non-linear data mapping. Note that these results are obtained for NLHS = 30,000,
and it is likely that different results can be obtained for a different number of training points.



Aerospace 2024, 11, 137 19 of 28

Figure 16. Feed-forward and cascade-forward fold-averaged RMSE.

When a neural network has too few neurons it lacks the ability to learn enough about
the underlying patterns of the training data. Increasing the number of neurons allows the
model to adequately learn more features and trends that may exist in the data. However,
increasing µ beyond a certain value no longer has a large effect on predictive performance,
as is indicated by the asymptotic convergence after µ = 4 for feed-forward architectures,
and after µ = 8 for cascade-forward neural networks.

In general, feed-forward architectures yielded better predictive performance compared
to cascade-forward architectures across almost all values of µ. Futhermore, feed-forward
architectures also exhibited a significantly lower variance across all µ values, as shown by
the green shaded region in Figure 17. On the other hand, cascade-forward neural networks
are sensitive to overfitting when trained with too many training samples [72]—recall that
each model is being trained with 27,000 training samples (9 folds for training, each with
3000 data points). Low error rates and high variance in predicted outputs are two indicators
of overfitting, which is exhibited by cascade-forward architectures and is illustrated by the
larger green shaded region in Figure 18 [73].

Figure 17. Feed-forward fold-averaged RMSE with a standard deviation overlay.
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Figure 18. Cascade-forward fold-averaged RMSE with a standard deviation overlay.

3.2. Extensibility Analysis via Random Forest

Examining Figure 16 more closely, a shallow feed-forward neural network with µ = 10
and a shallow cascade-forward neural network with µ = 10 was chosen for the extensibility
analysis via the random forest approach—described in Section 2.4 Although convergence
in predictive accuracy was observed after µ = 4 for feed-forward models and µ = 8 for
cascade-forward models, the most accurate models were chosen, which was at µ = 10 for
both neural network types. Across all 10 folds, these models exhibit the best predictive
performance, i.e., yielding the lowest RMSE values.

Table 2 details all of the BWB vehicles that were part of the extensibility analysis.
This table details the actual values of b, S, MTOW, and TA for each BWB configuration,
random forest averaged predicted values of b, S, MTOW, and TA for both feed-forward and
cascade-forward neural network architectures, and their respective errors as a percentage of
the actual values. For feed-forward neural networks with µ = 10, the error in b ranged from
1.6 × 10−5% to 0.06%, with the average across all vehicles being 0.011%. Similarly, for S,
the errors ranged from 2 × 10−4% to 0.084%, with an average of 0.04%; MTOW—0.005% to
0.51%, with an average of 0.15%; and TA—0.005% to 0.42%, with an average error of 0.11%.
The errors exhibited by cascade-forward neural networks with µ = 10 are comparatively
much higher: b—0.45% to 3.61%, with an average of 0.96%; S—0.06% to 3.49%, with
an average of 0.73%; MTOW—5.95 × 10−4% to 3.35%, with an average of 1.89%; and
TA—0.013% to 5.92%, with an average error of 2.13%.

Table 2. Extensibility performance with µ = 10 FF (feed-forward) and CF (cascade-forward) neural
networks across BWB vehicle survey.

Design Variable Actual Value FF Predicted Value FF % Error CF Predicted Value CF % Error

N + 3 SUGAR-Ray [41]

b, ft. 168.5 168.5 0.004 167.9 3.61
S, ft2 4136 4139.5 0.084 3991.7 3.49
MTOW, lbs. 181,500 181,446 0.03 187,580 3.35
TA, lbs. 56,000 55,980 0.03 57,719 3.07

HWB216-GTF [42]

b, ft. 220 220.01 0.007 218.7 0.61
S, ft2 8221 8221.2 0.002 8193.9 0.33
MTOW, lbs. 312,500 314,094 0.51 320,000 2.40
TA, lbs. 92,000 92,005 0.005 95,404 0.37
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Table 2. Cont.

Design Variable Actual Value FF Predicted Value FF % Error CF Predicted Value CF % Error

SAX40 [43]

b, ft. 221.6 221.6 0.004 220.4 0.54
S, ft2 8997.6 8997.03 0.006 8987.7 0.11
MTOW, lbs. 330,300 330,283 0.005 338,788 2.57
TA, lbs. 92,500 92,505 0.005 95,414 3.15

ERA-009A [44]

b, ft. 229.3 229.25 0.02 228.2 0.47
S, ft2 8048.0 8047.9 2 × 10−4 8018.2 0.37
MTOW, lbs. 411,250 411,003 0.06 424,862 3.31
TA, lbs. 95,000 94,905 0.10 100,624 5.92

HWB301-GTF [42]

b, ft. 250 250.0 0.01 248.5 0.59
S, ft2 10,169 10,168.8 0.002 10,182.1 0.13
MTOW, lbs. 533,000 533,213 0.04 545,419 2.33
TA, lbs. 134,500 134,729 0.17 137,432 2.18

HWB400-GTF [42]

b, ft. 260 260.0 0.007 258.3 0.66
S, ft2 11,471 11,467.0 0.03 11,494.0 0.2
MTOW, lbs. 701,000 701,561 0.08 713,197 1.74
TA, lbs. 168,500 168,534 0.02 171,247 1.63

ACFA-2020 [45]

b, ft. 261.9 261.9 1.6 × 10−5 260.7 0.45
S, ft2 14,290.6 14,296.4 0.04 14,299.2 0.06
MTOW, lbs. 884,000 883,885 0.013 902,918 2.14
TA, lbs. 239,000 238,785 0.09 248,775 4.09

BW-98 [46]

b, ft. 254.3 254.4 0.06 258.6 1.7
S, ft2 14,968.2 14,991.7 0.16 15,200.8 1.55
MTOW, lbs. 1,060,000 1,064,770 0.45 1,088,832 2.72
TA, lbs. 296,500 297,449 0.32 301,274 1.61

IWB-750 [47]

b, ft. 328.1 328.1 0.002 325.8 0.70
S, ft2 17,093.1 17,089.2 0.023 17,063.4 0.17
MTOW, lbs. 1,262,000 1,264,145 0.17 1,262,038 0.003
TA, lbs. 353,000 354,483 0.42 355,259 0.64

NACRE-750 [47]

b, ft. 328.1 328.1 0.005 325.7 0.71
S, ft2 21,452.5 21,448.9 0.02 21,269.3 0.85
MTOW, lbs. 1,390,000 1,393,892 0.28 1,393,336 0.24
TA, lbs. 468,500 468,641 0.03 472,014 0.75

VELA-3 [49]

b, ft. 326.8 326.8 4 × 10−4 325.0 0.55
S, ft2 22,087.5 22,099.3 0.05 21,907.8 0.81
MTOW, lbs. 1,542,000 1,542,463 0.03 1,542,009 5.95 × 10−4

TA, lbs. 432,500 432,760 0.06 432,556 0.013

Practically, for every BWB configuration, the feed-forward neural network was sig-
nificantly more accurate than the cascade-forward architecture in all 4 design variables.
Applying the feed-forward architecture to a broader set of vehicles—BWBs, HWBs, and
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IWBs—confirms that the feed-forward neural networks were not only able to adequately
learn features and trends that exist between b, S, MTOW, and TA and the vehicle’s per-
formance data, but also be able to generalize effectively across a broader design space.
Additionally, vehicles that exhibit low prediction error are closer in resemblance to the
training data the neural networks were exposed to. In this sense, those vehicles with lower
errors likely exhibit similar configuration design characteristics as the BWB450. Further-
more, the variability of the results for the cascade-forward neural networks, as exhibited
by the standard deviation across each µ value, also confirms that such an architecture did
indeed struggle with overfitting during the training process. As such, given the amount of
training data points this neural network type was exposed to, it is not suitable for usage
in a broader, more diverse design space. Furthermore, the extensibility analysis shows
an increase in error as input points begin to fall outside of the range of data exposed to
the model during training. This results in values greater than 1 after scaling, which does
influence how such a model can be used. Careful consideration must be taken when using
it to extrapolate outside of the design space it was trained with.

3.3. Envisioned Usage in Design Space Exploration

The results of this study have showcased the viability of developing machine learn-
ing models, namely neural networks, capable of generating BWB configuration design
parameters when provided with time-series, mission-informed BWB performance data.
The data used to train and test these neural networks were generated via Level-0 airplane
configuration definition and performance estimation tools, which are typically leveraged
in the preliminary design cycle phase. Traditionally, this phase also involves design space
exploration where conventional techniques dictate iteratively exploring the design space
while converging to an optimum configuration with desired performance. Here, the afore-
mentioned neural networks can be advantageous over traditional surrogate models in that
the neural network is trained to handle performance specified over the entire mission of the
airplane. In this sense, a designer can individually modify performance parameters, such as
L/D, in specific portions of the flight envelope, such as climb, while leaving L/D values in
the cruise segment constant, and instantly observe its effect on the configuration design via
the prediction of design parameters from the neural network. Additionally, in the context
of optimization within design space exploration, such a model could be advantageous in
identifying a suitable starting point—baseline airplane to begin optimizing. This, in turn,
can reduce the number of iterations, thereby decreasing computational costs.

Additionally, the developed neural networks could be employed in uncertainty quan-
tification (UQ) scenarios where changes to performance parameters can be viewed through
the lens of configuration design changes. UQ problems typically leverage analytical tools of
varied fidelity—dependent on the nature of the problem. Conducting airplane performance
analysis across an entire flight profile using traditional assessment tools can be computation-
ally intensive. In this sense, leveraging the mission-informed neural network models could
allow designers to more rapidly explore the sensitivity of the design space. Furthermore,
exposing the model to a larger set of design parameters can aid in understanding more
about tightly coupled trends and relationships that may exist between configuration design
and performance parameters.

Since the neural networks were trained with data from a BWB configuration parame-
terization model, seemingly, to adopt these neural networks for a different vehicle class
would simply require replacing the configuration parameterization model. For example,
a TAW configuration parameterization model could be leveraged for the configuration
generation process. This broadly implies that the computational framework can easily be
adopted to any vehicle by simply replacing the parameterization model.

4. Conclusions and Future Work

This paper has presented the development of neural networks, the data generated to
train them, the prediction accuracy of these models, and extensibility analysis for BWB
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inverse-design space exploration to investigate the feasibility of the design approach for un-
conventional aircraft configurations. The models were developed to handle time-dependent,
mission-informed BWB airplane performance data—CDc , CDi , CDm , CDp , L/D, W, SFC,
and TR—as inputs and generate BWB configuration data—b, S, MTOW, and TA—as out-
puts. The neural networks were trained with BWB configuration data generated through a
BWB configuration parameterization model, which is calibrated using the BWB450 vehicle.
These configurations were then run through SUAVE, a low-fidelity airplane performance
assessment tool, to obtain BWB performance data, which was also used for neural network
training. Two shallow neural network architectures were tested, namely feed-forward and
cascade-forward. Within each type, the number of neurons in the hidden layer, µ, was
varied from 1 to 10. Each model leveraged the tan-sigmoid activation function, and the
Levenburg–Marquardt optimization algorithm with Bayesian regularization was selected
to adjust weight quantities during the training process. A total of 30,000 data points were
generated, i.e., 30,000 BWB configurations were generated, each with their own unique
performance values. Training and testing of each neural network was conducted using
a 10-fold cross-validation scheme, where each fold contained 3000 BWB configuration-
performance pairs. By doing so, an optimal neural network type and architecture was
identified. The number of data points chosen, i.e., 30,000, was informed by providing
adequate design space coverage and a suitable number of training points for each fold;
however, it was not the focus of this study.

The results obtained proved the feasibility of developing inverse-design, mission-
informed neural networks specifically for an unconventional airplane configuration, namely
the BWB. While individual models could have been developed for each one of the four
design variables, the intent was to investigate the viability of developing only one neural
network for the prediction of all four configuration parameters, which was successfully
demonstrated. Neural network type and architecture both had a significant influence on
prediction accuracy. Ultimately, the 10-fold cross-validation training and testing scheme
helped reveal that a feed-forward neural network with µ = 10 exhibited the highest
predictive accuracy for all neural networks developed. While not nearly as accurate as
its feed-forward counterpart, the cascade-forward neural networks, also with µ = 10,
had the highest predictive accuracy among the cascade-forward architectures. It is worth
noting, however, that prediction accuracy convergence did not significantly decrease
after µ = 4 for feed-forward architectures and µ = 8 for cascade-forward architectures.
Considering the minimization of computational costs, it may be more suitable to leverage
these models instead.

After training, These models were chosen for extensibility analysis via a random forest
scheme—rather than using only one neural network for the prediction of configuration
values, a collection of neural networks, of the same architecture and type, can cohesively
express predicted configuration values. Specifically, all 10 feed-forward neural networks
with µ = 10, from each of the 10 folds were used to construct an averaged prediction of
configuration values when provided with a set of test BWB vehicles. A similar scheme was
employed for all 10 cascade-forward neural networks with µ = 10.

The feed-forward neural network architecture demonstrated significantly better predic-
tion accuracies than the cascade-forward architecture and with substantially lower variance.
This indicates the cascade-forward architectures suffered from a degree of overfitting while
the feed-forward architecture exhibited better performance in terms of prediction accuracy
in a broader design space. Across the BWB test vehicles, relatively larger errors were seen
for vehicles that have drastically different configuration characteristics and trends, such
as distribution of wing area along the span, than the vehicle used to calibrate the models,
namely the BWB450.

The developed framework presented in this paper was geared towards unconventional
configurations, and the neural networks were exposed to data derived from low-fidelity,
Level-0 configuration and performance assessment tools. A possible avenue to explore,
which may lead to a reduction in some of the errors ultimately seen in the extensibility
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analysis, is the exposure to mixed data types and specifically mixed-fidelity. Leveraging
a higher-fidelity tool for performance estimation in conjunction with a lower-order tool
warrants further investigation of its effect on overall prediction accuracies. This could also
prove to be a key step in expanding the number of performance and design parameters
the neural network models can be trained and tested with, which could, in turn, permit
the exploration of larger and more multi-dimensional design spaces. It is also worth
investigating the effect of incorporating static airplane performance data into the training
dataset, for example, performance parameters such as approach speed, Vapp, or takeoff
field length, TOFL.

A complication of inverse-design methods is that they are often ill-posed, i.e., one
output can be mapped to more than one input. In this study, the authors have mitigated
these risks by carefully constraining the training data, leveraging a configuration parame-
terization model, which is calibrated using the BWB450 vehicle, and not changing flight
profiles across the dataset. The exploration of making the vehicle’s flight profile dynamic
rather than fixing it warrants further investigation and could ultimately lead to the usage
of such models in airplane design optimization settings. More examination in determining
which design parameters to vary would certainly be beneficial and could be achieved via
an analysis of variance tests from a larger set of design parameters. These are all significant
areas worthy of investigation and could help pave the road towards the development of
robust mission-informed predictive surrogate models capable of being deployed in airplane
inverse-design scenarios.
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Nomenclature

b = wingspan
S = wing area
AR = aspect ratio
W/L = wing loading
T/W = thrust-to-weight ratio
CL = lift coefficient
CD = drag coefficient
CM = pitching moment coefficient
CP = pressure coefficient
α = angle of attack
L/D = lift-to-drag ratio
Vv = tail volume coefficient
−→
b = wingspan distribution
−→
S = wing area distribution
−→c = root chord length distribution
−→
bbl = wingspan distribution for BWB450
−→
Sbl = wing area distribution for BWB450
−→cλbl

= quarter chord sweep distribution for BWB450
cr = root chord length
AC = aerodynamic center
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ϕ = root chord fraction
η = wingspan fraction
wϕ = position of engine in terms of root chord fraction
wη = position of engine in terms of wingspan fraction
−→
ba = adjusted wingspan distribution
−→
Sa = adjusted wing area distribution
TA = total static thrust available
TAopt = 2nd-segment optimized total static thrust available
R2 = coefficient of determination
CDc = compressibility effects drag coefficient
CDi = induced drag coefficient
CDm = miscellaneous drag coefficient
CDp = parasitic drag coefficient
W = weight
TR = thrust required
SFC = specific fuel consumption
−→
CDc ,

−→
CDi ,

−−→
CDm ,

−→
CDp ,

−−→
L/D

−→
W ,

−−→
SFC,

−→
TR

 = time-domain airplane performance vectors

D = configuration design data matrix
P = airplane performance matrix
MTOWmax, ba,max, Sa,max, TAopt,max

CD c,max, CD i,max, CD m,max, CD p,max

L/Dmax, Wmax, SFCmax, TR,max

 = max reference quantitites used for scaling

DS = scaled configuration design data matrix
PS = scaled airplane performance matrix
NLHS = Latin-ypercube sample size
neth1

= net input into the first node of the first hidden layer
h1 = first hidden layer

µ =
number of neurons in the hidden layer of a shallow
neural network

Iw =
weight values for input-to-hidden layer
nodal connections

bh = bias value of the hidden layer
outhi

= output from the ith neuron in the hidden layer

Ow =
weight values for hidden-to-output layer
nodal connections

bo = bias value of the output layer
Vapp = approach speed
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