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Abstract: The autonomous shape decision-making problem of a morphing aircraft (MA) with a
variable wingspan and sweep angle is studied in this paper. Considering the continuity of state
space and action space, a more practical autonomous decision-making algorithm framework of MA is
designed based on the deep deterministic policy gradient (DDPG) algorithm. Furthermore, the DDPG
with a task classifier (DDPGwTC) algorithm is proposed in combination with the long short-term
memory (LSTM) network to improve the convergence speed of the algorithm. The simulation results
show that the shape decision-making algorithm based on the DDPGwTC enables MA to adopt the
optimal morphing strategy in different task environments with higher autonomy and environmental
adaptability, which verifies the effectiveness of the proposed algorithm.

Keywords: morphing aircraft; reinforcement learning; deep deterministic policy gradient; long
short-term memory network; shape decision making

1. Introduction

In recent years, both military and civil fields have put forward higher requirements for
the stsability, autonomy and reliability of the next generation of aircraft, which should have
the ability to maintain stability under different flight environments and tasks. Traditional
fixed-wing aircraft are only designed for specific flight conditions, which cannot meet
the requirements of various tasks in changing environments, while morphing aircraft
(MA) can achieve optimal flight performance by changing its shape structure to adapt to
different environments and tasks [1]. The adaptability of MA can be effectively improved
by appropriate autonomous morphing strategy, which has been widely studied by scholars
at home and abroad [2–5].

In the control discipline, the research of MA can be divided into three main levels:
morphing control, flight control and shape decision making. Among them, the research into
morphing control mostly focuses on the morphing airfoil structures, flight dynamics and
intelligent materials [6–9]. The research into flight control assumes that the aircraft shape
changes according to the preset change strategy [10–13]. Obviously, the assumption that the
shape changes passively does not meet people’s pursuit of the "intelligent and adaptive"
property of MA. The research into shape decision making is a difficult problem in the field of
MA control because of the complex tasks and environments. Therefore, there are few related
research results. The emergence of artificial intelligence provides a new idea for the research
of autonomous shape decision-making. Recently, the deep reinforcement learning (DRL)
policy proposed by Google Deepmind can perceive environmental change, interact with
the environment via trial and error mechanism, and learn the best policy by maximizing the
cumulative reward. The results were verified on AlphaGo Zero [14–18]. In order to realize
shape decision making of MA in the actual flight environment, John Valasek of Texas A&M
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University first introduced reinforcement learning (RL) algorithms of artificial intelligence
into morphing control [19,20]. In [19], he replaced the MA model with a three-dimensional
cuboid and used the actor–critic (AC) algorithm in RL to solve the optimal shape of the
aircraft. However, due to the limitations of the AC algorithm, the convergence of the
results is difficult. Then, in [20], he used the continuous function approximation method
instead of the K-nearest neighbors algorithm (KNN) method, and adopted the Q-learning
algorithm combined with adaptive dynamic inverse control to obtain a better control effect.
Lampton et al. [21–23] considered a type of National Advisory Committee for Aeronautics
(NACA) deformable wings, and applied unsupervised learning to Q-learning to obtain
the optimal shape of wings with different lift, drag and torque coefficient requirements.
In [24], a new airfoil adaptive control method for MA is proposed by using a Q-learning
algorithm and sliding mode control. The Q-learning algorithm in [20–24] can only be
used in the discrete state and action space, but the process of changing the shape of the
aircraft is a continuous action, so it is difficult to apply to engineering practice. The deep
deterministic policy gradient (DDPG) algorithm can be used in the continuous state and
action space [25], which is a better solution to the shape decision-making problem of MA.
In [26], an abstract MA is used as the object, and its shape change equation and optimal
shape function are given. But this method only considers the ellipsoid as MA and does not
consider the true MA, so it only has theoretical significance. In [27,28], the semi-physical
simulation experiment of the morphing wing is carried out based on the DDPG algorithm,
and the MA model is controlled to complete the required morphing tasks. But the research
adopts a simplified aircraft model and only uses the semi-physical simulation for theoretical
verification without combining the actual flight conditions. At present, most of the existing
autonomous shape decision-making strategies of MA use the simplified MA model or the
RL algorithm of discrete action space. There is no research on applying the RL method
of continuous action space to a real MA model, which leads to some limitations in the
application of the existing results to engineering practice.

To overcome the shortcomings of the existing research results, this paper studies
the autonomous shape decision-making problem of MA with an improved RL algorithm.
The main works and contributions are as follows. Firstly, it is different from the Q-learning
algorithm used in [20–24], which can only work on discrete state and action space. In this
paper, considering the continuity of state space and action space of the aircraft, the DDPG
algorithm is used to establish a more practical shape decision-making algorithm framework
for MA. Furthermore, in order to improve the convergence of the algorithm, a task classifier
is designed combined with a long short-term memory (LSTM) network. The DDPG with
a task classifier (DDPGwTC) algorithm is proposed as the shape optimization strategy
of MA, which improves the convergence speed of the algorithm. Finally, the simula-
tion results show that the proposed algorithm can make the shape decision making of
MA autonomously.

The following is the arrangement of this article. Section 2 focuses on shape decision
making of MA based on the DDPGwTC algorithm. In Section 3, and the network training
of task classifier and DDPGwTC algorithm is discussed. Section 4 and Section 5 give the
simulation analysis and the conclusion of this paper, respectively.

2. Shape Decision Making of MA Based on the DDPGwTC Algorithm
2.1. Principles of the DDPG Algorithm

MA is in a complex and changeable flight environment. The state of MA will change
in real time, which requires its shape to change rapidly and continuously. Q-learning [29] is
a typical RL algorithm based on the value function, which is only suitable for discrete state
and action space. The traditional deep Q network (DQN) algorithm based on Q-learning
can only solve the problem of discrete action space, and the DPG (deterministic policy
gradient) [18] algorithm is also faced with the problem of difficult exploration. Therefore,
they are not suitable for the shape decision making of MA. DDPG [25] algorithm is based
on the DPG algorithm, which adopts the framework of the AC algorithm and inherits the
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advantages of the DQN algorithm. It can effectively solve the RL problem in continuous
action space. The DDPG algorithm uses a deep neural network (DNN) to approximate
the policy function and value function, and obtains the optimal policy by maximizing
the reward function. Then, the policy network generates the actual action. The update
approach is as follows [25].

∇θµ J ≈ 1
M

M

∑
i=1

∇aQ
(
s, a

∣∣θϱ
)∣∣∣∣

s=si ,a=µ
(

si

)∇θµ µ
(
s
∣∣θµ

)∣∣∣∣
st

(1)

The value network evaluates the action of the policy network by fitting the action value
function and its updating approach is the same as the value-based function. The network
parameter is updated by minimizing the loss function and the equation is as follows.

L =
1
N

N

∑
i=1

(
ri + γQ′

(
si+1, µ′

(
si+1

∣∣∣θµ′ )∣∣∣θQ′ )− Q
(

si, ai

∣∣∣θQ
))2

(2)

Using the DDPG agent as the shape decision-making controller of MA and giving the
corresponding morphing strategy based on the output data of the aircraft is the general idea
of the research. However, there are still many difficulties in applying the DDPG algorithm
to MA. How to establish the DDPG algorithm model so it is applicable to MA is a very
critical step, which includes the definition of the environment model, the state space and
the action space, and the design of the reward function.

2.2. Design of the DDPG Algorithm with Task Classifier
2.2.1. Framework of Shape Decision-Making Algorithm for MA

This article studies a variable sweep angle and wingspan aircraft, which is based on
the Navion-L17 aircraft. As shown in Figure 1, the wing span deformation rate is defined
as λ = (l − lmin)/(lmax − lmin) , where l is the actual span, lmin and lmax are the shortest
and longest spans, respectively. The longest span can reach twice the shortest span, which
is easily known as λ ∈ [0, 1]. The defined range of wing sweep angle variation is between
0 and 40 °, with a sweep angle deformation rate of ρ = η/40 , where ρ is the actual sweep
angle, which is easily known as ρ ∈ [0, 1]. The wingspan and sweep angle can be set to
continuously change simultaneously.

Figure 1. The shape decision-making algorithm framework of MA.

During the deformation process, changes in wingspan and sweep angle can cause
changes in parameters such as the aircraft’s center of gravity and moment of inertia,
resulting in changes in the aerodynamic forces and moments acting on it. Therefore, this
article uses a multi rigid body modeling method to treat the variant aircraft as a multi rigid
body system composed of deformable wings and fuselage, and to model the dynamics of
the aircraft. The modeling rules follow the following assumptions:
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(1) The aircraft fuselage is symmetrical about the longitudinal plane of the aircraft coor-
dinate system, and the process of wing modification on both sides is synchronized.
During the modification process, the center of mass of the aircraft moves along the
x-axis of the aircraft, only considering the influence on longitudinal motion and not
producing a component that affects lateral motion.

(2) The aircraft adopts a single engine, ignoring the influence of the component generated
by the engine installation angle on thrust and the influence of thrust on pitch torque.

(3) Set the gravitational acceleration as a constant, ignoring changes in the mass of
the aircraft.

(4) Neglect the impact of unsteady aerodynamic forces generated during the variant
process on the aircraft.

By combining the kinematic equations of traditional aircraft, a nonlinear model of
longitudinal motion of the variant aircraft can be obtained:

V̇ = T
m cos α − 1

m D(λ, ρ)− g sin(θ − α)

α̇ = − T
mV sin α − 1

mV L(λ, ρ) + q + g
V cos(θ − α)

θ̇ = q
q̇ = 1

Iy
M(λ, ρ)

ḣ = V sin(θ − α)

(3)

where h is the flight altitude. Thrust T, lift L, drag D, and pitch moment M can be further
expressed as: 

L = 1
2 ρ

′
V2SWCL(λ, ρ)

D = 1
2 ρ

′
V2SWCD(λ, ρ)

M = 1
2 ρ

′
V2SWcACm(λ, ρ)

T = Tδt δt

(4)

where ρ
′

represents the atmospheric density at a certain altitude. Since the altitude does not
change much during the simulation process, this article considers it as a constant, where
Sw represents the wing area, which varies with random wing deformation CL, CD, Cm
represents lift coefficient, drag coefficient, and pitch moment coefficient, respectively, CA is
the average aerodynamic chord length, Tδt = 50N/% is the thrust coefficient, and δt is the
throttle opening.

It should be noted that the control of MA includes the outer loop shape decision and
the inner loop attitude control. This paper considers a class of MA with variable wingspan
and variable sweep angle, and focuses on the shape decision making of MA. However,
the attitude control of MA is the basic condition of shape decision-making. Therefore,
the conclusion of flight control of MA based on the T-S fuzzy model is given. Readers can
refer to [30,31] for more details. The T-S fuzzy model is as follows. ẋ(t) =

6
∑

i=1
µi(λ)Aix(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(5)

where x(t) is the state variables of MA, including speed V, altitude h, angle of attack α,
angle of pitch θ and pitch angular velocity q, u(t) is the control variables of MA, including
angle of elevator deflection δeand throttle opening δt, y(t) is the output, A, B, C, D are
system matrixes and µi(λ) is the activation degree of fuzzy rules.

To enable MA to track the preset command and keep stable during the morphing
process, it is necessary to design a suitable tracking controller, which mainly achieves two
goals. One is to require the closed-loop system of the aircraft to keep stable without steady-
state error at any λ. The other is to keep the closed-loop system stable in the morphing
process. For the T-S fuzzy model in Equation (5), the parallel distributed compensation
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(PDC) fuzzy controller design approach is adopted. The basic principle is to design a
linear controller for each local linear model then connect the linear controller with the same
fuzzy rules as the local linear model to obtain the global T-S fuzzy controller, as shown in
Equation (6).

u =
6

∑
i=1

µi(λ)Kix(t) (6)

where Ki is the designed local linear controller.
Substituting Equation (6) into Equation (5), the augmented closed-loop system with

T-S fuzzy controller can be obtained as follows. ẋ(t) =
6
∑

i=1

6
∑

j=1
µi(λ)µj(λ)

(
Ai + BKj

)
x(t)

y(t) = Cx(t) + Du(t)
(7)

Combining the above model with the DDPG algorithm, the shape decision-making
algorithm framework of MA based on the DDPG can be obtained as shown in Figure 2.

Figure 2. The shape decision-making algorithm framework of MA.

As shown in Figure 2, the environment model of the algorithm is the MA control
system shown in Equation (7). The aircraft changes its wingspan and sweep angle according
to the morphing strategy obtained by the agent, and the state of MA is fed back to the agent.
The wingspan variation rate λ and sweep angle variation rate ρ of MA are defined as the
action space. The altitude, speed and throttle opening of MA are defined as the state space,
which can be obtained by sensors. Obviously, the action and state space are continuously
changing values. The design of the reward function is the key to whether the RL algorithm
can converge to the optimal policy, because the agent adjusts the action according to the
reward feedback from the environment model. The optimal shape of MA should be to
minimize the tracking error and fuel consumption of altitude and speed, so the reward
function can be designed by using the time error integral index.

There are two problems in applying the DDPG algorithm to the autonomous shape
decision making of MA. First, MA is in a complex flight environment, and the change
of wingspan or sweep angle will have a certain impact on the flight state. The external
gust interference will also affect the tilt angle of the aircraft, resulting in the instability
of speed and altitude. Even though this instability is greatly reduced with the controller,
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but the task state of the aircraft cannot be accurately determined and the reward function
of the algorithm cannot be accurately set. Therefore, it may take a long time for the
DDPG algorithm to learn a stable policy; however, the final policy is not necessarily
optimal. Moreover, the random selection of action in the training process will lead to a large
oscillation of the aircraft system, resulting in the low learning efficiency of the algorithm in
the initial stage. Finally, it is difficult to converge or converge to the suboptimal policy.

To solve the above problems, this paper proposes a DDPGwTC algorithm based on
the DDPG algorithm which combines the advantages of LSTM in dealing with sequence
classification problems. Its pseudocode can be found in Algorithm 1. This algorithm adds
a task classifier before the agent obtains the feedback state of the aircraft, classifies the state
of the aircraft into different task types through LSTM, and inputs the task type as the state
of the algorithm into the agent to guide the agent to make the optimal action. The reward
function is also set into different forms according to different task types. This improvement
approach is equivalent to adding some "prior knowledge" to the agent, which enables the
agent to classify the regular data in the unstable state, reduces the trial and error cost of the
algorithm and improves the convergence speed of the algorithm.

2.2.2. Task Classifier Design

The typical tasks of MA include cruise, ascent, descent, acceleration and decelera-
tion. According to the command signal, the task phase of the aircraft can be accurately
distinguished. However, in the actual flight control, the speed and altitude of the aircraft
will not always equal the command signal. For example, the altitude of the aircraft will
have a process of adjustment in the ascent phase. There will be oscillation before reaching
the stable state and the speed will change accordingly. At this time, it is difficult to judge
whether the aircraft is in the ascent phase according to the increase in altitude. Therefore,
a task classifier is needed to distinguish different task types according to the flight state of
the aircraft in different task phases. However, the state of the aircraft at a moment cannot
well represent its task phase, so the state of a time series is needed as the input of the task
classifier. Considering that LSTM has a good effect in dealing with the problem of time
series classification, LSTM is used to design the task classifier.

The LSTM network is an improved version of a recurrent neural network that can
effectively deal with the prediction or classification problem of sequence data. The data
of each moment will be stored in the memory unit. It has three gating devices to deter-
mine which data should be kept and which irrelevant data should be discarded in time.
The memory unit structure of LSTM is shown in Figure 3.

Figure 3. The memory unit structure of LSTM.

The input of the memory unit includes the input value X of the current network,
the output value Ht−1 at the previous time and the unit state Ct−1 at the previous time.
There are three gates in the memory unit, which are the input gate, forget gate and output
gate. X first judges whether the input is valid through the input gate, then judges whether
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to choose to forget the data stored in the memory unit through the forget gate, and finally
judges whether to output the data at this moment through the output gate. The equations
of the three gates are as follows.

it = σ(Wt · [Ht−1, X] + bt)

c̃t = tanh(We · [Ht−1, X] + be)

ft = σ
(

W f · [Ht−1, X] + b f

)
ct = ft · ct−1 + it · c̃t

ot = σ(Wo · [Ht−1, X] + bo)

Ht = ot · tanh(ct)

(8)

where W is the parameter matrix of the memory unit, b is the bias of the memory unit,
σ and tanh are activation functions.

Let the state space of the algorithm be s = [hr, Vr, dhr, dVr, hc, Vc, dhc, dVc], where
hr and Vr are the actual altitude and actual speed of the aircraft, hc and Vc are the command
altitude and command speed, dhc and dVc are the variation of the command altitude
and command speed, dhr and dVr are the variation of the actual altitude and actual speed.
Before the aircraft state is input to the task classifier, the data sampling process is performed.
The sampling interval is 1s and the flight state data within 5s is saved. Then, the data
input to the task classifier at a certain time t is [st−4, st−3, st−2, st−1, st]

T. LSTM classifies
the task phase of the aircraft at time t according to the actual value, command value and
variation of the aircraft speed and altitude in this period. After repeated experiments,
the task classifier is designed as shown in Figure 4.

Figure 4. LSTM network.

Among them, the data process module saves the output state data of MA, inputs
the data to the input layer of the LSTM network when receiving the data for five time
periods, and maintains the data length for five time periods during the simulation. The data
passes through the LSTM layer from the input layer. After debugging, the LSTM layer
is set to 100 neurons. To prevent over fitting, the dropout layer is added before the full
connection layer. Finally, one of the categories 1–5 is output through the classification layer.
The corresponding relationship between the output result and the task type is [1: ascent,
2: descent, 3: acceleration, 4: deceleration, 5: cruise].

2.2.3. Reward Function Design

The reward function can be designed according to the task type after the task classifier
has derived the task phase of the aircraft. Referring to [32], the aircraft needs to obtain the
maximum ratio of lift to drag and the minimum fuel consumption during the cruise phase,
which can extend the endurance time. In the ascent phase, the aircraft needs to obtain
the maximum lift to improve the ascent speed. Similarly, the aircraft needs the least lift
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in the descent phase. In the acceleration phase, the drag needs to be reduced to improve
the maneuverability. In the deceleration phase, the drag needs to be increased. Therefore,
the lift and drag needed in each task phase can be used as the design index of reward
function. When the wing configuration of MA is changed, its lift and drag will also change.
The lift and drag can also be taken as the state output of the aircraft consequently, then
integrated with fuel consumption and tracking error and other indicators. The reward
function can be designed as follows.

R= − t(|(hr − hc)|+ |(Vr − Vc)|) + RT (9)

where t is the current time and RT is the reward corresponding to different task types,
defined as follows.

RT =



L i f T = 1
1/L i f T = 2
1/D i f T = 3
D i f T = 4
L/D + δT i f T = 5

(10)

where δT is the throttle opening, T is the task type output by the task classifier, L is the lift
of the aircraft, and D is the flight resistance.

When calculating the reward function, it is necessary to normalize the indicators to
make the data scale to [−10,10], so that each indicator has the same degree of influence on
the reward function. At the same time, it also prevents certain data from being too large to
cause the agent unable to explore the action space comprehensively.

2.2.4. The Process of the DDPGwTC Algorithm

The basic structure of the DDPGwTC algorithm is shown in Figure 5.

Figure 5. The structure of the DDPGwTC algorithm.

Among them, the flight state of MA is transformed into a task signal by the task
classifier and input into the policy network and value network, adding "prior knowledge"
to the network. In the algorithm, the idea of experience replay and target network of the
DDPG algorithm are still used. First, the flight data of MA are generated in the same
environment, so these data do not meet the condition of being independently identically
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distributed. To break the correlation between the data, it is necessary to sample the
data randomly. At the same time, to increase the efficiency of training, it is necessary to
perform the minibatch learning. Therefore, an experienced replay buffer R is created to
store the data generated by the interaction between the agent and the environment, that
is, state, action and reward. The experience replay buffer is a container of limited size.
The interactive data (st, at, rt, st+1) are sampled from the environment according to the
action policy and stored in the experience replay buffer. When the experience replay buffer
is full, the earliest data are discarded, and a small batch of interactive data is randomly
sampled from the experience replay buffer at each simulation step to update the policy
network and value network. The features of the four networks in the algorithm are as
follows. The actor network is responsible for updating network parameter θµ, and selecting
action a to interact with the environment according to current state s. The generated
interactive data are stored in the experience replay buffer. The actor–target network is
responsible for sampling the next state s′ from the experience replay buffer and selecting
action a′. The critic network is responsible for updating the network parameter θQ and
calculating the current Q value. The critic–target Network is responsible for calculating
the value of Q′. The parameters of the target network are updated slowly with the current
network in a soft update approach to ensure that the calculated target value is relatively
stable. The update approach is as follows.{

θµ′
= τθµ + (1 − τ)θµ′

θQ′
= τθQ + (1 − τ)θQ′ (11)

where τ is the update coefficient, generally taken as 0.01.
In summary, the algorithm flow of the DDPGwTC is as follows.

Algorithm 1 Deep deterministic policy gradient with task classifier (DDPGwTC)

1: Randomly initialize critic Q
(
s, a

∣∣θQ )
and actor µ(s|θµ ) neural networks with weights

θQand θµ.
2: Initialize target network Q′ and µ′with weights θQ′

=θQ, θµ′
=θµ.

3: Initialize replay buffer R .
4: for episode= 1, · · · , N do
5: Initialize a random process N for action exploration.
6: Receive initial observation state s1.
7: for episode= 1, · · · , M do
8: Select action at = µ(st|θu ) +N according to the current policy and exploration

noise.
9: Execute action at and observe new state st+1.

10: Classify st+1 to get the task signal T.
11: Get reward rt according to T.
12: Store transition (st, at, rt, st+1, T) in experience replay buffer R.
13: Sample a random minibatch of K transitions (st, at, rt, st+1, T) from R.
14: Set yi=ri + γQ′

(
si+1, µ′

(
si+1

∣∣∣θµ′
)∣∣∣θQ′

)
.

15: Update critic by minimizing the loss L:

L =
1
N

N

∑
i=1

(
yi − Q

(
si, ai

∣∣∣θQ
))2

.

16: Update the actor policy using the sampled policy gradient:

∇θµ J ≈ 1
M

M

∑
i=1

∇aQ
(

s, a
∣∣∣θQ

)∣∣∣s=si ,a=µ(si)
∇θµ µ(s|θµ )|st ;
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17: Update target networks: {
θµ′

= τθµ + (1 − τ)θµ′

θQ′
= τθQ + (1 − τ)θQ′ ;

18: end for
19: end for

Remark 1. Compared with DDPG algorithm, the DDPGwTC algorithm classifies state st+1 to ob-
tain task signal T, then obtains reward rt according to T. By using the task classifier, the convergence
speed of the algorithm can be improved and the reward value is more stable in subsequent iterations.

3. Network Training
3.1. Task Classifier Network Training

Before training the DDPGwTC algorithm, the task classifier needs to be pre-trained so
that it can classify the task phase of the aircraft when training the DDPGwTC algorithm.
Through the simulation of the MA system, 1000 pieces of flight state data of the aircraft are
obtained as training samples, including the data of each task phase, the data at different
altitudes and speeds, and the data under changes of different wingspan and sweep angle.
First, the data are divided into the training set, validation set and test set according to the
ratio of 6:2:2. After repeated debugging, the batch size is set to 60, the learning rate is set
to 0.1, and the training period is set to 100. Finally, the result is shown in Figure 6, and an
accuracy of 94.32% can be achieved on the test set.

Figure 6. Task classifier network training result.

3.2. DDPGwTC Algorithm Training

The T-S fuzzy control system of MA is used as the environment model and the
algorithm training is carried out based on the MATLAB RL Toolbox software platform.
The hardware adopts NVIDIA GeForce RTX 2070 GPU. The training process is as follows.
At the beginning of each round of training, a flight trajectory with a duration of 400 s is
set randomly. Then, MA flies according to the preset flight trajectory. During this period,
the agent adjusts the morphing strategy according to the flight phase of the aircraft. Finally,
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the flight task until the aircraft completes this part of the trajectory is regarded as the end
of a round of training and the cumulative return is obtained. Referring to the experience of
parameter adjustment in [25], the hyperparameters of the DDPGwTC algorithm are set as
shown in Table 1 after repeated debugging, and the structures of the actor network and
critical network are shown in Figures 7 and 8.

Table 1. Hyperparameter values used for DDPGwTC algorithm.

Hyperparameter Value

Target Update Factor /τ 0.001
Actor Learning Rate 0.0005
Critic Learning Rate 0.001

Experience Replay Buffer Capacity 106

Minibatch Size 128
Discount Factor /γ 0.99

Maximum Number of Scenes 200

Figure 7. The structure of actor network.

Figure 8. The structure of critic network.
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After 200 rounds of training, the cumulative return of each round of the DDPG
algorithm and the DDPGwTC algorithm is shown in Figure 9. It can be seen from the figure
that the DDPG algorithm without a task classifier converges slowly and tends to fall into
local optimal value. The DDPGwTC algorithm converges quickly and converges to a higher
reward value policy after 80 iterations, and the reward is more stable in the later iterations.

Figure 9. The training result of the DDPGwTC algorithm.

4. Simulation Analysis

To verify the effect of the DDPGwTC algorithm in the shape decision making of MA,
the trained agent is used as the shape controller of the aircraft. The flight trajectory is set as
follows. Initially, the aircraft cruises at 2000 m altitude with a speed of 34 m/s and sets the
speed to 50 m/s at 50 s, sets the speed to 30 m/s at 120 s, sets the altitude to 2050 m at 170 s,
sets the altitude to 2000 m at 280 s, and finally maintains the cruise state until the end of
400 s. The altitude and speed command curves are shown in Figure 10. The agent which is
obtained by using the trained DDPGwTC algorithm is applied to the shape decision-making
algorithm framework of MA as shown in Figure 2 for simulation flight, and the speed
and altitude tracking curves obtained are shown in Figures 11 and 12. The output curve
of the task classifier and reward value during the flight are shown in Figures 13 and 14.
The morphing rate curve of MA is shown in Figure 15, and the corresponding shape
diagram is marked in the flight time period shown in Figure 10 as the form of a small
aircraft icon.

It can be seen from Figure 13 that the task type output by the classifier is basically
consistent with the preset trajectory, which indicates that the task classifier can accurately
classify the task phase of MA according to its flight state. Figure 14 shows that when the
task type changes, the agent will take corresponding action to maximize the reward value
obtained by the aircraft. Figure 15 shows the morphing strategy adopted by the agent in the
flight process. During the cruise, ascent and deceleration phases of MA, the agent controls
the aircraft to extend wings and increase the sweep angle. During the acceleration and
descent phases of MA, the agent controls the aircraft to shrink wings and reduce the sweep
angle. According to the expert experience, it is known that the morphing strategy adopted
by the agent in each task phase of the flight is optimal. Therefore, it can be seen from the
above simulation results that the agent based on the DDPGwTC algorithm enables MA
change to the optimal shape in different task environments.
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Figure 10. Flight trajectory curve.

Figure 11. Velocity tracking curve.

Figure 12. Height tracking curve.
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Figure 13. Task classifier output curve.

Figure 14. Reward curve.

Figure 15. Morphing rate curve.
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5. Conclusions

In this article, we propose an algorithm framework for MA shape autonomous deci-
sion making. Firstly, the DDPG algorithm is used to provide important information for
shape decision-making. Secondly, the DDPGwTC algorithm based on the LSTM network
is proposed to improve the convergence speed of the DDPG. Finally, flight simulation is
performed on the trained network using a T-S fuzzy controller. After simulation experi-
ments, it was found that the proposed algorithm converges faster than the DDPG algorithm,
and the trained intelligent agent can guide the aircraft to make optimal shape decisions in
different task environments, improving the intelligence and environmental adaptability of
the aircraft.

This article uses a T-S fuzzy controller, but the selected controller is relatively simple.
Therefore, in subsequent research, more advanced controllers need to be combined, such as
switching LPV control, adaptive control, etc., to improve the tracking effect and stability of
the variant aircraft during the shape change process.
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