# Experimental Study on Hypersonic Double-Wedge Induced Flow Based on Plasma Active Actuation Array

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Experimental System

#### 2.1. Hypersonic Wind Tunnel and Test System

^{5}~6.0 × 10

^{7}/m. The wind tunnel test section is shown in Figure 1. There are relatively few studies on the double-wedge flow control under hypersonic conditions. The maximum Mach number of wind tunnel operation is Mach 8, and studies on the double-wedge problem under higher Mach number are more valuable; there are fewer studies on the double-wedge problem under Mach 8 conditions. Therefore, Mach 8 is chosen as the experimental condition, and the experimental model is designed under this condition. In addition, for other flow conditions, considering the high-altitude aircraft environment and plasma discharge environment, a total pressure of 3 MPa and a total temperature of 410 K are selected. After determining the total pressure, total temperature, and Mach number, other test conditions can be determined. The experimental flow parameters are shown in Table 1.

#### 2.2. Double-Wedge Model and Actuator

#### 2.3. The Power Supply System and Schlieren System

#### 2.4. Research Methods

_{mean}) and RMS schlieren intensity field (I

_{rms}), which are specifically defined as follows:

_{k}is the gray value matrix of pixels in the kth schlieren snapshot; N is the total sample number of the schlieren snapshot sequence.

## 3. Study on Base Interaction Flow Field

## 4. The Control Effect of Array Plasma Actuation

#### 4.1. Results of Gray Average and RMS

#### 4.2. Results of SPOD Analysis

## 5. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Boyd, I.D.; Chen, G.; Candler, G.V. Predicting failure of the continuum fluid equations in transitional hypersonic flows. Phys. Fluids
**1995**, 7, 210–219. [Google Scholar] [CrossRef] - Lee, C.; Chen, S. Recent progress in the study of transition in the hypersonic boundary layer. Natl. Sci. Rev.
**2019**, 6, 155–170. [Google Scholar] [CrossRef] [PubMed] - Castrogiovanni, A. Review of “The Scramjet Engine, Processes and Characteristics”. AIAA J.
**2010**, 48, 2173–2174. [Google Scholar] [CrossRef] - Devaraj, M.K.K.; Jutur, P.; Rao, S.M.V.; Jagadeesh, G.; Anavardham, G.T.K. Experimental investigation of unstart dynamics driven by subsonic spillage in a hypersonic scramjet intake at Mach 6. Phys. Fluids
**2020**, 32, 026103. [Google Scholar] [CrossRef] - Kimmel, R.L. Aspects of hypersonic boundary layer transition control. In Proceedings of the 41st Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 6–9 January 2003. [Google Scholar]
- Raj, N.O.P.; Venkatasubbaiah, K. A new approach for the design of hypersonic scramjet inlets. Phys. Fluids
**2012**, 24, 086103. [Google Scholar] [CrossRef] - Borg, M.P.; Schneider, S.P. Effect of Freestream Noise on Roughness-Induced Transition for the X-51A Forebody. J. Spacecr. Rockets
**2008**, 45, 1106–1116. [Google Scholar] [CrossRef] - Everhart, J.L.; Alter, S.J.; Merski, N.R. Pressure gradient effects on hypersonic cavity flow heating. In Proceedings of the 44th AlAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 6–9 January 2006. [Google Scholar]
- Brès, G.A.; Inkman, M.; Colonius, T.; Fedorov, A.V. Second-mode attenuation and cancellation by porous coatings in a high-speed boundary layer. J. Fluid. Mech.
**2013**, 726, 312–337. [Google Scholar] [CrossRef] - Fujii, K. Experiment of the Two-Dimensional Roughness Effect on Hypersonic Boundary-Layer Transition. J. Spacecr. Rocket.
**2006**, 43, 731–738. [Google Scholar] [CrossRef] - Zhang, S.; Li, X.; Zuo, J.; Qin, J.; Cheng, K.; Feng, Y.; Bao, W. Research progress on active thermal protection for hypersonic vehicles. Prog. Aerosp. Sci.
**2020**, 119, 100646. [Google Scholar] [CrossRef] - Zhu, Y.; Peng, W.; Xu, R.; Jiang, P. Review on active thermal protection and its heat transfer for airbreathing hypersonic vehicles. Chin. J. Aeronaut.
**2018**, 31, 1929–1953. [Google Scholar] [CrossRef] - Le, V.T.; Ha, N.S.; Goo, N.S. Advanced sandwich structures for thermal protection systems in hypersonic vehicles: A review. Compos. B Eng.
**2021**, 226, 109301. [Google Scholar] [CrossRef] - Terentieva, V.S.; Astapov, A.N. Conceptual Protection Model for Especially Heat-Proof Materials in Hypersonic Oxidizing Gas Flows. Russ. J. Non-Ferr. Met.
**2019**, 59, 709–718. [Google Scholar] [CrossRef] - Wang, H.; Hu, W.; Xie, F.; Li, J.; Jia, Y.; Yang, Y. Control effects of a high-frequency pulsed discharge on a hypersonic separated flow. Phys. Fluids
**2022**, 34, 066102. [Google Scholar] [CrossRef] - Xie, W.; Luo, Z.; Zhou, Y.; Gao, T.; Wu, Y.; Wang, Q. Experimental study on shock wave control in high-enthalpy hypersonic flow by using SparkJet actuator. Acta Astronaut.
**2021**, 188, 416–425. [Google Scholar] [CrossRef] - Yang, H.; Liang, H.; Zhang, C. Plate boundary layer transition regulation based on plasma actuation array at Mach 6. Phys. Fluids
**2023**, 35, 064104. [Google Scholar] - Yang, H.; Liang, H.; Zhang, C.; Wu, Y.; Li, Z.; Zong, H.; Su, Z.; Yang, B.; Kong, Y.; Zhang, D.; et al. An experimental study on the stability of hypersonic plate boundary layer regulated by a plasma actuation array. Phys. Fluids
**2023**, 35, 026112. [Google Scholar] [CrossRef] - Yang, H.; Liang, H.; Zhang, C.; Wu, Y.; Zong, H.; Su, Z.; Kong, Y.; Zhang, D.; Li, Y. Investigation of hypersonic cone boundary layer stability regulation with plasma actuation. Phys. Fluids
**2023**, 35, 024112. [Google Scholar] [CrossRef] - Yang, H.; Zong, H.; Liang, H.; Wu, Y.; Zhang, C.; Kong, Y.; Li, Y. Swept shock wave/boundary layer interaction control based on surface arc plasma. Phys. Fluids
**2022**, 34, 087119. [Google Scholar] [CrossRef] - Kong, Y.; Li, J.; Wu, Y.; Liang, H.; Guo, S.; Yang, H. Experimental study on shock-shock interaction over double wedge controlled by surface arc plasma array. Contrib. Plasma Phys.
**2022**, 62, e202200062. [Google Scholar] - Ding, B.; Chen, Z.; Jiao, Z.; Wang, J.; Li, Z.; Bai, G. Unsteady control mechanisms of hypersonic compression corner using pulsed surface arc discharg. Acta Aeronaut. Astronaut. Sin.
**2023**, 44, 127744. (In Chinese) [Google Scholar] - Zhang, C.; Yang, H.; Liang, H.; Guo, S. Plasma-based experimental investigation of double compression ramp shock wave/boundary layer interaction control. J. Phys. D Appl. Phys.
**2022**, 55, 325202. [Google Scholar] [CrossRef] - Von Terzi, D.; Sandberg, R.; Sandberg, R.; Fasel, H. Identification of large coherent structures in supersonic axisymmetric wakes. Comput. Fluids
**2009**, 38, 1638–1650. [Google Scholar] [CrossRef] - Berry, M.; Magstadt, A.; Glauser, M. Application of POD on time-resolved schlieren in supersonic multi-stream rectangular jets. Phys. Fluids
**2017**, 29, 020706. [Google Scholar] [CrossRef] - Chaganti, N.; Kurup, A.; Olcmen, S. Study of unsteadiness of shock wave boundary layer interaction using Rainbow Schlieren Deflectometry and Proper Orthogonal Decomposition. In Proceedings of the AIAA Aerospace Sciences Meeting Including the New Horizons Forum & Aerospace Exposition, Grapevine, TX, USA, 7–10 January 2013. [Google Scholar]
- Wang, H.; Min, F.; Xie, Z.; Li, J.; Dai, J.; Yang, Y. Quantitative study of the control of hypersonic aerodynamics using millisecond pulsed discharges. Phys. Fluids
**2022**, 34, 021701. [Google Scholar] [CrossRef]

**Figure 2.**Double wedge model. (

**a**) Installation of the model in the wind tunnel; (

**b**) model parameter. (

**c**) The details of the actuator.

**Figure 4.**Thirty-channel discharge control of shock wave/boundary layer interaction induced by double wedge.

**Figure 7.**The energy proportion of each mode analyzed by SPOD. (

**a**) Unsteady modal energy distribution; (

**b**) unsteady mode energy accumulation value.

**Figure 8.**The results of each mode analyzed by SPOD. (

**a**) MOD1, 2; (

**b**) MOD3, 4; (

**c**) MOD5, 6; (

**d**) MOD7, 8; (

**e**) MOD9, 10.

Ma_{∞}(U _{∞}/c) | Re/m (ρU _{∞}/μ) | U_{∞}(m/s) | ρ (kg/m ^{3}) | P_{0}(MPa) | T_{0}(K) | P_{S}(Pa) | T_{S}(K) |
---|---|---|---|---|---|---|---|

8.0 | 6.16 × 10^{6} | 874.292 | 0.036 | 3 | 410 | 307.287 | 29.710 |

_{∞}, Re/m, U

_{∞}, ρ, P

_{0}, T

_{0}, P

_{S}, T

_{S}, c represent incoming Mach number, unit Reynolds number, free flow velocity, incoming density, total pressure, total temperature, static pressure, static temperature, and sound velocity.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Yang, B.; Yang, H.; Zhao, N.; Liang, H.; Su, Z.; Zhang, D.
Experimental Study on Hypersonic Double-Wedge Induced Flow Based on Plasma Active Actuation Array. *Aerospace* **2024**, *11*, 60.
https://doi.org/10.3390/aerospace11010060

**AMA Style**

Yang B, Yang H, Zhao N, Liang H, Su Z, Zhang D.
Experimental Study on Hypersonic Double-Wedge Induced Flow Based on Plasma Active Actuation Array. *Aerospace*. 2024; 11(1):60.
https://doi.org/10.3390/aerospace11010060

**Chicago/Turabian Style**

Yang, Bo, Hesen Yang, Ning Zhao, Hua Liang, Zhi Su, and Dongsheng Zhang.
2024. "Experimental Study on Hypersonic Double-Wedge Induced Flow Based on Plasma Active Actuation Array" *Aerospace* 11, no. 1: 60.
https://doi.org/10.3390/aerospace11010060