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Abstract: The target can deceive the flight vehicle by releasing an infrared decoy to make the line-of-
sight (LOS) angle rate deflect greatly, thus causing the flight vehicle to miss the target. Therefore, in
order to accurately strike the target in complex adversarial scenarios, this paper proposes a finite-time
convergence guidance law (FTCG) combined with a finite-time disturbance observer (FTDO). The
complex adversarial scenario is established by combining the relative motion model between the
flight vehicle and the target and the motion model of the infrared decoy. Based on this, considering
the dynamic characteristic of the flight vehicle’s autopilot, a guidance model is obtained. Utilizing
sliding mode control theory and finite-time control theory, an FTCG of the LOS angle rate is designed.
Then, the finite-time convergence of the guidance law is proved and the total convergence time is
derived. Finally, for the target maneuvering that is difficult to measure in the guidance law, an FTDO
is used to estimate and compensate for the target maneuvering in the guidance law. Simulation
results show that the FTCG can make the LOS angle rate quickly converge and accurately strike the
target in different scenarios, with a good guidance accuracy and robustness. Compared with the
sliding mode guidance law (SMGL) and the adaptive sliding mode guidance law (ASMGL) based
on an extended state observer (ESO), the advantages of the designed guidance law are illustrated.
Finally, FTCG is extended to be three dimensional and compared with the proportional navigation
guidance law (PNG) to further illustrate its effectiveness in a three-dimensional coordinate system.

Keywords: complex adversarial scenarios; finite-time convergence guidance law; finite-time distur-
bance observer; infrared decoy

1. Introduction

With continuous changes in the form of warfare, the operational environment faced by
infrared precision weapon systems is becoming increasingly harsh, which greatly reduces
the probability and the accuracy of flight vehicle hits. Therefore, higher requirements are
put forward for the precise strike capability of terminal guidance [1]. In complex adversarial
scenarios, a target aircraft not only performs maneuvers but also uses the deployment of
an infrared decoy to deceive the infrared imaging seeker, causing the seeker to identify the
equivalent radiation energy center between the target and the infrared decoy. When the
seeker’s head re-identifies the target, it will cause a sudden change in the LOS angle rate,
then a sudden change in flight vehicle guidance commands. The divergence of the LOS
angle rate at the final guidance time will lead to a sharp increase in the required overload,
which may lead to the loss of stability of the guidance loop and affect the accurate guidance
of the flight vehicle. Therefore, it is necessary to study the improvement of robustness of
the accurate guidance law.

Currently, there have been many studies on the influence of infrared decoys on flight
vehicle guidance accuracy. Reference [1] established a complex adversarial scenario com-
posed of a guidance model and an infrared decoy motion model and analyzed the effects
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of the deployment distance of infrared decoys, the recognition time of the seeker, and the
deployment interval of multiple infrared decoys on the guidance accuracy. The adjoint
method is used to analyze the effects of the target barrel roll rate, the number of simultane-
ous deployments of point source decoys, and the deployment interval on the miss distance
in Reference [2]. Reference [3] analyzed the miss distance and anti-jamming probability of
different anti-jamming methods for seekers in complex adversarial scenarios. The guidance
laws mentioned in the above references are all analyzed using the PNG, indicating that
infrared decoys have a significant impact on the PNG. Both the PNG and SMGL are used
by the miss distance in complex adversarial scenarios, and the SMGL has better robustness
than the PNG in Reference [4].

The above references are based on traditional guidance laws for attack and propose
anti-interference algorithms based on the algorithm of the seeker head, without using
more robust and accurate modern guidance laws for simulation verification. Currently,
various modern control methods are applied in the field of flight vehicle guidance, such as
sliding mode control [5–7], finite-time control [8–10], optimal control [11–13], etc. However,
many modern guidance laws are designed based on asymptotic stability. Only when time
tends to infinity will the LOS angle rate converge. Therefore, using finite-time control
theory to derive guidance laws can make the LOS angle rate converge within a finite
time. References [14–16] respectively use finite-time control theory to derive guidance
laws with finite-time convergence of the LOS angle rate and prove their finite-time con-
vergence. However, the above references consider the target maneuver as a bounded
disturbance compensation in the guidance law, without accurate estimation of the target
maneuver. In References [10,17–20], an ESO is used to observe and compensate for the
target maneuver in real time, solve the problem of excessive overload in the terminal guid-
ance process effectively, and provide the flight vehicle with a higher interception accuracy.
References [7,21,22] adopt an FTDO to estimate the target maneuver. The guidance laws
and observers in the above references can accurately hit targets and accurately estimate
target maneuvers under normal adversarial scenarios. However, these methods have not
been applied in complex adversarial scenarios, so their undetermined robustness and
accuracy limits the application in reality.

In response to the limited application of advanced guidance laws in complex ad-
versarial scenarios, this paper proposes an FTCG that takes into account the dynamic
characteristic of the autopilot based on sliding mode control theory and finite-time control
theory. The FTCG combines with an FTDO to be applied in complex adversarial scenarios,
aiming to determine its accuracy and robustness and provide an idea for confronting
infrared decoys.

The remaining structure of this article is as follows: problem statement and preliminar-
ies, design and analysis of guidance law, simulation results and analysis, and discussion. In
Section 2, a complex adversarial scenario composed of the flight vehicle, the target, and the
infrared decoy is constructed, and the foundation of finite-time control theory is elucidated.
In Section 3, an FTCG considering the dynamic characteristics of the autopilot is derived
through finite-time control theory. Its stability and convergence are proved, and an FTDO
is used to estimate and compensate for the target maneuvering into the guidance law. In
Section 4, the guidance law is validated and analyzed in different complex adversarial
scenarios and compared with other guidance laws to mainly analyze its accuracy and
robustness. Finally, the conclusions of this study are summarized in Section 5.

2. Problem Statement and Preliminaries
2.1. Problem Statement

Figure 1 represents the relative motion relationship between the flight vehicle and the
target in the two-dimensional longitudinal plane. In the figure, M represents the position
of the flight vehicle’s center of mass; T represents the position of the target’s center of mass;
VM and VT respectively represent the velocity values of the flight vehicle and the target.
In order to simplify the mathematical model, the derivatives of the velocity of the flight
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vehicle and the target are assumed to be
.

VM = 0 and
.

VT = 0; AM and AT respectively
represent the normal acceleration of the flight vehicle and the target; θM and θT respectively
represent the trajectory inclination of the flight vehicle and the target; q represents LOS
angle; r represents the relative range from the flight vehicle to the target.
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From Figure 1, the equation of the relative motion relationship can be obtained as follows:{ .
r = VT cos(q − θT)− VM cos(q − θM)
r

.
q = −VT sin(q − θT) + VM sin(q − θM)

(1)

According to the relationship between normal acceleration and trajectory inclination,
the following can be obtained: {

AM =
.
θMVM

AT =
.
θTVT

(2)

where
.
θM and

.
θT respectively represent the derivative of trajectory inclination of the flight

vehicle and the target.
Differentiating both sides of the second equation in Equation (1), the following can

be obtained:
..
q =

−2
.
r

r
.
q − AM cos(q − θM)

r
+

AT cos(q − θT)

r
(3)

In order to facilitate the calculation, the variables in Equation (3) are redefined, so that
AMq = AM cos(q − θM) and ATq = AT cos(q − θT). Equation (3) can be expressed as follows:

..
q =

−2
.
r

r
.
q −

AMq

r
+

ATq

r
(4)

AMq and ATq in Equation (4) are, respectively, the components of the acceleration of the
flight vehicle and the target perpendicular to the LOS.

An infrared decoy is generally divided into a point-source decoy projectile and surface-
source decoy projectile, according to the radiation characteristics. This paper analyzes
the point-source decoy projectile. After being launched, the infrared point-source decoy
projectiles will generate infrared radiation in a specific spectral range, thus deceiving the
detection system. During the target recognition process by the guidance head, both the
interference and target will appear in the field of view of the guidance head, and the
guidance head tracks the equivalent energy center of the two. When the image-processing
algorithm re-identifies the target, the guidance head will jump back from the equivalent
energy center to the target, and the jumping of the tracking instructions has an adverse
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effect on the guidance [1]. Figure 2 shows the specific process, where H represents the
infrared decoy.
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The infrared decoy is mainly affected by gravity and the aerodynamic force after
launch, and its motion equation in the two-dimensional longitudinal plane is as follows:

mH
dVHx

dt = − f VHx
VH

mH
dVHy

dt = − f
VHy
VH

− mH g
f = 1

2 CHSρV2
H

mH = mH0 −
.

mHt

(5)

In the formula, mH is the mass of the infrared decoy, mH0 is the initial mass of the infrared
decoy, and

.
mH is the mass consumption rate of the infrared decoy; f is the resistance of

the infrared decoy, CH is the resistance coefficient of the infrared decoy, S is the area of the
infrared decoy, and ρ is the atmospheric density; VH is the velocity of the infrared decoy,
VHx and VHy are the components of the infrared decoy velocity in the coordinate system.

According to the principle of centroid interference [2], when the seeker cannot dis-
tinguish the real target from the infrared decoy for a period of time, the LOS is usually
directed to the energy center of the two. The motion equation of the energy center in the Y
direction is as follows: 

yN = yHKH + yT(1 − KH)
VNy = VHyKH + VTy(1 − KH)
ANy = AHyKH + ATy(1 − KH)
KH = nK/(nK + 1)
K = WH/WT

(6)

In the formula, yN , VNy, and ANy are, respectively, the position, velocity and acceleration
in the Y direction of the energy center; yH , VHy, and AHy are, respectively, the position,
velocity, and acceleration in the Y direction of the infrared decoy; yT , VTy, and ATy are,
respectively, the position, velocity, and acceleration in the Y direction of the target; K is the
suppression coefficient, generally between 2 and 3; WH and WT respectively represent the
radiation intensity of a single infrared decoy and the radiation intensity of the target, n is
the number of infrared decoy launched at one time. The motion equation of the energy
center in the X direction is similar to that in the Y direction.
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2.2. Preliminaries

Definition 1 ([23]). Consider the following nonlinear system:

.
x = f (x, t), f (0, t) = 0, x ∈ Rn (7)

where f : U0 × R → Rn is continuous over U0 × R, and U0 is an open field of the origin x = 0.
The equilibrium point of the system x = 0 converges in finite time, which means that for the initial
state x(t0) = x0 ∈ U given at any initial time t0, there is a resting time T ≥ 0 that depends on x0,
so that the solution x(t) = φ(t; t, x0) of Equation (7) with x0 as the initial state is defined, and:{

lim
t→T(x0)

φ(t; t0, x0) = 0

φ(t; t0, x0) = 0, t > T(x0)
(8)

when t ∈ [t0, T(x0)], φ(t; t0, x0) ∈ U/{0}.

Based on finite-time control theory, there is Lemma 1 as follows:

Lemma 1 ([23]). Consider the nonlinear system (7), assuming the existence of a smooth function de-

fined in the domain
⌢
U ⊂ Rn at the origin, and the existence of real values α > 0 and 0 < λ < 1 such

that V(x) is a positive definite on
⌢
U and

.
V(x) + αVλ(x) a semi-negative definite on

⌢
U, then the

origin of the system is finite-time stable. Its stability time te is related to the initial value x(0) = x0,
there is V(x)|t=0 = V(x0), and the upper bound of its stability time is as follows:

te ≤
V1−λ(x0)

α(1 − λ)
(9)

3. Design and Analysis of Guidance Law
3.1. Design of FTCG

Equation (4) is the relative motion equation but this equation does not take into
account the dynamic characteristics of autopilot. Considering the dynamic characteristic is
first-order, it can be obtained as follows:

.
AMq = − 1

τ
AMq +

1
τ

AMc (10)

where τ is the time constant of autopilot, AMc is the guidance command and guidance law
provided to the autopilot, and AMq is the actual overload of the flight vehicle.

Defining x1 =
.
q and x2 =

..
q, Equation (4) can be rewritten as follows:

x2 =
−2

.
r

r
x1 −

AMq

r
+

ATq

r
(11)

According to Equation (11), the following can be obtained:

ATq = AMq + rx2 + 2
.
rx1 (12)

By differentiating x2, the following can be obtained:

.
x2 = −2

..
rr − 2

.
r2

r2 x1 −
2

.
r

r
x2 +

1
r2 AMq −

1
r

.
AMq −

1
r2 ATq +

1
r

.
ATq (13)

By substituting Equations (10) and (12) into Equation (13), the following can be obtained:

.
x2 =

2
.
r2 − 2

..
rr − 2

.
r

r2 x1 −
2

.
r + 1

r
x2 +

1
rτ

AMq −
1
rτ

AMc +
1
r

.
ATq (14)
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In the terminal guidance process, the change in
.
r is small and usually

..
r = 0 can be assumed,

then Equation (14) can be simplified as follows:

.
x2 =

2
.
r2 − 2

.
r

r2 x1 −
2

.
r + 1

r
x2 +

1
rτ

AMq −
1
rτ

AMc +
1
r

.
ATq (15)

The guidance equation composed of Equations (11) and (15) considering the first-order
dynamic characteristics of the autopilot is as follows:[ .

x1.
x2

]
=

[
0 1

A1 A2

][
x1
x2

]
+

[
0
B

]
AMq −

[
0
B

]
AMc +

[
0
C

]
.
ATq (16)

In the formula, A1 = 2
.
r2−2

.
r

r2 , A2 = − 2
.
r+1
r , B = 1

rτ and C = 1
r .

In order to ensure that the LOS angle rate can quickly converge to zero when consider-
ing the first-order dynamic characteristics of the autopilot and infrared interference, the
non-singular terminal sliding mode is selected for the time-varying linear uncertain system
(16) as follows:

S = x1 + βxγ
2 (17)

where β > 0, 1 < γ < 2, γ = a
b , a and b are positive odd numbers.

By differentiating the sliding mode Equation (17), the following can be obtained
as follows: .

S =
.
x1 + βγxγ−1

2
.
x2 (18)

By substituting the Guidance Equation (16) into Equation (18), the following can be
obtained as follows:

.
S = x2 + βγxγ−1

2 (A1x1 + A2x2 + BAMq − BAMc + C
.
ATq) (19)

According to Lemma 1, it can be concluded that the sufficient condition for the finite-
time convergence of the Sliding Mode Equation (17) is to design AMc such that:

S[
.
S + βγxγ−1

2 β1|S|ηsgnS] ≤ 0 (20)

where β1 = const > 0, −1 < η = const < 1.

Proof. Choose a smooth positive definite function

V = S2 (21)

By differentiating the V, the following can be obtained:

.
V = 2S

.
S ≤ −2βγxγ−1

2 β1|S|η+1 = −2βγβ1xγ−1
2 V

η+1
2 (22)

Let ϕ(x2) = −2βγβ1xγ−1
2 , both a and b are positive odd numbers and 1 < γ < 2. Therefore,

γ − 1 = a−b
b can be obtained, since 1 < γ < 2 can explain a > b. Both a and b are positive

odd numbers, so a − b is a positive even number. Thus, when x2 ̸= 0, xγ−1
2 > 0, in

which case there is ϕ(x2) < 0, the system satisfies the Lyapunov stability principle. In the
guidance process, there exists a sufficiently small positive number ω satisfying ω ≤ xγ−1

2 ,
which can be obtained from Equation (22) as follows:

.
V ≤ −2βγβ1xγ−1

2 V
η+1

2 ≤ −2βγβ1ωV
η+1

2 (23)
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According to Lemma 1, the sliding mode S converges to zero in finite time, and the finite-
time te1 satisfies:

te1 <
|S(0)|

1−η
2

βγβ1ω(1 − η)
(24)

In the formula, S(0) = x1(0) + βx2(0)
γ. It can be seen from the Equation (24) that when β1

is larger, the convergence rate is faster. □

Thus, it is proved that the Sliding Mode Equation (17) can be convergent in a finite-time
by designing AMc. By substituting Equation (19) into Equation (20), we can obtain:

S[
.
S + βγxγ−1

2 β1|S|ηsgnS]
= S[x2 + βγxγ−1

2 (A1x1 + A2x2 + BAMq − BAMc + C
.
ATq) + βγxγ−1

2 β1|S|ηsgnS] ≤ 0
(25)

The guidance law is designed as follows:

AMc =
A1x1 + A2x2 + BAMq +

1
βγ x2−γ

2 + 1
βγ kSx1−γ

2 + β1|S|ηsgnS + C
.
ATq

B
(26)

3.2. Proof of Finite-Time Convergence

The design of AMc can make the sliding mode S converge in finite time, and the
convergence time satisfies Equation (24). When the sliding mode S converges to zero, it can
be obtained from Equation (17) and on the sliding mode:

x1 + βxγ
2 = 0 (27)

We define the Lyapunov function as follows:

V1 = x2
1 (28)

Taking the derivative of V1, the following can be obtained:

.
V1 = 2x1

.
x1 = 2x1x2 = −2(

1
β
)

1
γ

V
γ+1
2γ

1 (29)

According to Lemma 1, the guidance system state x1 converges to zero in finite time
on the sliding mode and the LOS angle rate

.
q converges to zero in finite time. According to

Lemma 1, the convergence time is as follows:

te2 =
2γβ

1
γ |x1(te1)|

γ−1
2γ

γ − 1
(30)

Therefore, the total convergence time of the guidance system satisfies:

te = te1 + te2 ≤ |S(0)|
1−η

2

βγβ1ω(1 − η)
+

2γβ
1
γ |x1(te1)|

γ−1
2γ

γ − 1
(31)

3.3. Design of FTCG Based on FTDO

The LOS angle acceleration x2 is required in both the Sliding Mode Equation (17) and
the Guidance Law Equation (26), and x2 can be replaced by Equation (11). In the actual
process of terminal guidance, target acceleration is not available. But target maneuvering
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acceleration is usually bounded and satisfies
∣∣∣ .
ATq

∣∣∣ ≤ L, where constant L > 0. Therefore,
the FTDO [7] is used to estimate the maneuvering acceleration of the target:

x3 = r
.
q

.
x3 = −

.
r
r x3 + ATq − AMq

.
z0 = v0 −

.
r
r x3 − AMq

v0 = −λ0|z0 − x3|
1
2 sgn(z0 − x3) + z1.

z1 = v1
v1 = −λ1sgn(z1 − v0)

(32)

where λ0 and λ1 are sufficiently large positive constants, z0 and z1 respectively can exactly
estimate x3 and ATq in finite time. Therefore, x2 can be estimated by the following equation:

x̂2 = −2
.
r

r
.
q − 1

r
AMq +

1
r

z1 (33)

where x̂2 is the estimate of x2. The sliding mode S can be estimated by the following formula:

Ŝ = x1 + βx̂γ
2 (34)

where Ŝ is the estimate of S.
Thus, Equation (26) can be expressed as follows:

AMc =
A1x1 + A2 x̂2 + BAMq +

1
βγ x̂2−γ

2 + 1
βγ kŜx̂1−γ

2 + β1
∣∣Ŝ∣∣ηsgnŜ + C

.
ATq

B
(35)

In the formula,
.
ATq is difficult to obtain but

.
ATq is a small quantity compared to ATq in a

guidance cycle and it can be compensated for by variable structure terms. Therefore, AM
can be expressed as:

AM =
A1x1 + A2 x̂2 + BAMq +

1
βγ x̂2−γ

2 + 1
βγ kŜx̂1−γ

2 + β1
∣∣Ŝ∣∣ηsgnŜ

B cos(q − θM)
(36)

4. Simulation Results and Analysis

According to Equation (36) of the guidance law, the guidance law has a variable
structure term which contains the switching function term sgn(Ŝ) and the control quantity
needs to be switched constantly. But due to the limited calculation delay and switching
speed of the control system, the jitter of the actuator will be caused. This jitter is the jitter of
the flight vehicle body. If the jitter is too large, the flight vehicle will lose stability and affect
the accuracy of hitting the target. In order to reduce the jitter and smooth the switching
function in the above guidance law, a saturation function satδ(x) can be used to replace the
switching function sgn(Ŝ). The expression of the saturation function is shown as follows:

satδ(Ŝ) =


1, Ŝ > δ

Ŝ/δ,
∣∣Ŝ∣∣ ≤ δ

−1, Ŝ < −δ

(37)

There is also a switching function in Equation (32) of the finite-time disturbance observer,
and the saturation functions z0−x3

|z0−x3|+d and z1−v0
|z1−v0|+d are used to replace the switching

function in Equation (32) in order to reduce the observer jitter.
In order to verify the applicability of the guidance law in the complex adversarial

scenarios, the interception simulation is carried out on the targets in multiple environ-
ments. The set parameters of flight vehicle, target, infrared decoy, finite-time convergent
disturbance observer, and guidance law are shown in Tables 1–3:
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Table 1. Related parameters values of the flight vehicle and target.

(XM0, YM0)/m (XT0, YT0)/m VM/(m · s−1) VT/(m · s−1)

(0,1000) (7000,3000) 1000 600

θM0/(◦) θT0/(◦) AM|max/g

0 0 ±40

Table 2. Related parameters values of the infrared decoy.

mH0/kg
.

mH/(kg · s−1) S/m2 CH

0.25 0.03 0.0032 0.3

K n

2 1

Table 3. Related parameters values of the finite-time disturbance observer and guidance law.

λ0 λ1 d k β

15 35 0.001 1 1

β1 η γ δ

10 0.1 5/3 0.001

The constant time of the flight vehicle’s autopilot is τ = 0.3 and the recognition time
of the flight vehicle seeker is 0.1 s. The burning time of the infrared decoy is 1 s. The initial
velocity VH0 of the infrared decoy is the same as the velocity of the target at the moment it
is released. Therefore, VHx0 and VHy0 have the same components in the X and Y directions
as the target’s velocity at the time of release. The gravitational acceleration is taken as
g = 9.8 m/s2 and the air density as ρ = 1.29 kg/m3.

In order to fully verify the robustness of the guidance law, it is assumed that the target
can take two different maneuvers and release infrared decoys with a different remaining
time tgo to evade the flight vehicle:

(1) Scenario 1: The target undertakes a constant maneuver AT = 5g and releases an
infrared decoy when the remaining time is tgo = 1 s or tgo = 2 s.

(2) Scenario 2: The target undertakes a sinusoidal maneuver AT = 5g sin(0.2πt) and
releases an infrared decoy when the remaining time is tgo = 1 s or tgo = 2 s.

(3) Scenario 3: The target undertakes a constant maneuver AT = 5g and respectively
releases an infrared decoy once when the remaining time is tgo = 1.4 s and tgo = 2 s. The
interval between the two releases of the infrared decoy is 0.6 s.

(4) Scenario 4: The target undertakes a sinusoidal maneuver AT = 5g sin(0.2πt) and
respectively releases an infrared decoy once when the remaining time is tgo = 1.4 s and
tgo = 2 s. The interval between the two releases of the infrared decoy is 0.6 s.

For these four different complex adversarial scenarios, the simulation results obtained
using the guidance law (36) are shown in Figures 3–5. Figure 3 represents the simulation
results for Scenario 1, Figure 4 represents the simulation results for Scenario 2, Figure 5
represents the simulation results for Scenario 3 and Scenario 4. Table 4 shows the miss
distance, strike time, and convergence time in the above scenario.

The proposed FTCG can accurately strike the target in the scenarios of infrared inter-
ference, as shown in Figures 3a and 4a. The validation results in Table 4 indicate that the
miss distance is only 0.1560 m when the remaining time is tgo = 1 s and it is only 0.1423 m
when the remaining time is tgo = 2 s in Scenario 1. In Scenario 2, the miss distance is only
0.3018 m when the remaining time is tgo = 1 s, and it is only 0.3029 m when the remaining
time is tgo = 2 s. This illustrates the good accuracy of the FTCG in complex adversarial sce-
narios. Figures 3b and 4b show that the infrared decoy has a significant impact on the LOS
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angle rate, and the impact becomes greater as the remaining time decreases. However, the
FTCG can quickly converge the LOS angle rate to 0 rad/s after the disturbance and Table 4
shows that the LOS angle rate can converge to 0 rad/s for about 0.4 s after disturbance,
enhancing the guidance stability and demonstrating the good robustness of the FTCG in
complex adversarial scenarios. Figures 3c and 4c show that FTCG experiences overload
saturation at the initial stage of terminal guidance, indicating the maximum utilization
of the flight vehicle’s overload capacity during this period. Figures 3d and 4d show that
the infrared decoy also has a considerable impact on the observer. However, the FTDO
accurately estimates and compensates for the target maneuver in the guidance law in a
limited time after the disturbance, showcasing the good robustness of the FTDO in complex
adversarial scenarios.
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Figure 3. Simulation results of Scenario 1. (a) Trajectory of motion when tgo = 1 s; (b) Change curve
of the LOS angle rate; (c) Change curve of the flight vehicle normal overload; (d) Estimation result of
target acceleration.

The FTCG can rapidly converge the LOS angle rate to 0 rad/s in both Scenario 3
and Scenario 4, as shown in Figure 5a. According to Table 4, the miss distance is only
0.0457 m in Scenario 3 and 0.2884 m in Scenario 4, indicating that the FTCG exhibits a
good accuracy in the aforementioned scenarios. Figure 5b illustrates that the FTDO also
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accurately estimates and compensates for target maneuvers within a finite time even under
disturbances, demonstrating its good robustness in the aforementioned scenarios.

Table 4. Miss distance, strike time, and convergence time of four scenarios.

Miss Distance/m Strike Time/s Convergence Time/s

Scenario 1 (tgo = 1 s) 0.1560 16.5280 about 0.432
Scenario 1 (tgo = 2 s) 0.1423 16.5280 about 0.387
Scenario 2 (tgo = 1 s) 0.3018 18.0590 about 0.306
Scenario 2 (tgo = 2 s) 0.3029 18.0590 about 0.450

Scenario 3 0.0457 16.5280 about 0.387/0.468
Scenario 4 0.2884 18.0590 about 0.378/0.306
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Figure 4. Simulation results of Scenario 2. (a) Trajectory of motion when tgo = 1 s; (b) Change curve
of the LOS angle rate; (c) Change curve of the flight vehicle normal overload; (d) Estimation result of
target acceleration.
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Figure 5. Simulation results of Scenario 3 and Scenario 4. (a) Change curve of the LOS angle rate;
(b) Estimation result of target acceleration.

The above target maneuver is merely a simple maneuver using a certain constant
value. In order to further illustrate the performance of the FTCG, it will be validated
through simulation in Scenario 5. The target maneuver is characterized by the following
random movements:

AT =


5g T ≤ 2 s
−3g 2 s<T ≤ 5 s
5g 5 s<T ≤ 11 s
−5g 11 s<T

(38)

Six sets of infrared decoys will be released with a 0.6 s release interval. Each release
comprises 10 infrared decoys and denoted as n = 10. The simulation results are illustrated
in Figure 6:

When the target is undergoing irregular acceleration motion, it can be seen from
Figure 6a that the FTCG can accurately strike the target in Scenario 5. The miss distance is
only 0.1152 m, indicating that the FTCG still maintains a good accuracy in more complex
adversarial scenarios. From Figure 6b, it can be observed that the infrared decoy has a
significant impact on the LOS angle rate, the effect is greater as the remaining time decreases.
The LOS angle rate can converge to zero after being disturbed for approximately 0.37 s.
The FTDO can quickly catch up with the target’s overload after the target’s acceleration
has changed. It also accurately estimates the target’s overload after being disturbed and
compensates for the target’s overload to the guidance law.

In order to further illustrate the advantages of the guidance law (36), a comparative
simulation verification is conducted with the SMGL and the ASMGL based on ESO.

The SMGL is defined as follows:

AM =
k1
∣∣ .
r
∣∣x1 + ε1sgn(x1)

cos(q − θM)
(39)

x1
|x1|+δ1

is used to replace the switching function of Equation (39) and let the guidance law
parameters k1 = 3, ε1 = 100, δ1 = 0.001.
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Figure 6. Simulation results of Scenario 5. (a) Trajectory of motion; (b) Change curve of the LOS angle
rate; (c) Change curve of the flight vehicle normal overload; (d) Estimation result of target acceleration.

The ASMGL is defined as follows:

AM =
(A1 + k2k3

| .
r|
r )x1 + (A2 + k2 + k3

| .
r|
r )x̂2 + BAMq +

ε2
r sgn(Ŝ1)

B cos(q − θM)
(40)

where: {
Ŝ1 = k2x1 + x̂2

x̂2 = − 2
.
r
r

.
q − 1

r AMq +
1
r z3

(41)

where z3 is the output of the ESO Equation (42):
e1 = z2 − x1
.
z2 = z3

r − β01e1 − 2
.
r
r

.
q − 1

r AMq.
z3 = −β02 f al(e1, m, n)

(42)

The function f al(e1, m, n) is defined as follows:

f al(e1, m, n) =
{

|e1|msgn(e1), |e1| > n
e1

n1−m , |e1| ≤ n (43)
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where e1 is the error between the estimate of the observer and the true value, z2 and z3

respectively are the estimates of
.
q and ATq, Ŝ1

|Ŝ1|+δ2
is used to replace the switching function

of Equation (40) in order to reduce vibration. Let the guidance law parameters k2 = 2,
k3 = 3, ε2 = 50, δ2 = 0.01 and the observer parameters β01 = 1000, β02 = 30,000, m = 0.1,
n = 0.001. The three guidance laws are compared and simulated in Scenario 6, where the
target undertakes a constant maneuver for AT = 5 g. When the remaining time is tgo = 2 s,
the decoy is released once, the impact time is 0.3 s, and the second decoy is released when
the impact is 0.5 s past. The simulation results are shown in Figure 7. Table 5 shows the
miss distance, strike time, and convergence time of the three guidance laws.
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Figure 7. Simulation results of the three guidance laws. (a) Trajectory of motion; (b) Change curve of
the LOS angle rate; (c) Change curve of the flight vehicle normal overload.

Table 5. Miss distance, strike time, and convergence time under the guidance of the three guidance laws.

Guidance Law Miss Distance/m Strike Time/s Convergence Time/s

FTCG 0.1775 16.5350 about 0.927
SMGL 2.1567 16.6750 failure to converge

ASMGL 12.0415 16.8190 failure to converge
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From Figure 7a, it can be seen that the FTCG, ASMGL, and SMGL are all pursuing
the target. However, it can be seen from Table 5 that the miss distance of the FTCG is only
0.1775 m, while the miss distance of the SMGL and ASMGL is as high as 2.1567 m and
12.0415 m, indicating that the FTCG has a better accuracy than the SMGL and ASMGL.
From Figure 7b, it can be seen that after being disturbed, the LOS angle rate of the FTCG
rapidly converges to 0 rad/s, and the convergence time is about 0.837 s. However, the
LOS angle rate of the SMGL and ASMGL diverges and does not converge to 0 rad/s.
From Figure 7c, it can be observed that the FTCG experiences overload saturation in the
early terminal guidance phase, indicating that the flight vehicle’s overload capability is
maximally utilized during this period, with a smaller overload in the later phase to improve
the flight vehicle stability. On the other hand, the ASMGL and SMGL have a lower overload
in the early terminal guidance phase and require higher overload or even saturation at
the end, which is not conducive to a stable flight vehicle performance and is not practical
in practice.

The above simulation cases illustrate the effectiveness of the FTCG in a two-dimensional
longitudinal plane. Following this, the FTCG will be extended to a three-dimensional
coordinate system which is typically divided into the pitch plane and horizontal plane for
analysis. Without considering the dynamic characteristics, the guidance equations for the
pitch plane and the horizontal plane are as follows:

..
qε = − 2

.
r

r
.
qε −

.
q2

β sin qε cos qε − AMε
r + ATε

r
..
qβ = − 2

.
r

r
.
qβ − 2

.
qε

.
qβ tan qε −

AMβ

r cos qε
+

ATβ

r cos qε

(44)

where qε and qβ are the LOS angles of the pitch plane and the horizontal plane, AMε and
AMβ are the normal acceleration of the flight vehicle in the pitch plane and the horizontal
plane, and ATε and ATβ are the normal acceleration of the target in the pitch plane and the
horizontal plane. Ignoring the higher-order terms in the above equation, Equation (44) is
simplified as follows: { ..

qε = − 2
.
r

r
.
qε −

AMε
r + ATε

r
..
qβ = − 2

.
r

r
.
qβ −

AMβ

r cos qε
+

ATβ

r cos qε

(45)

In order to illustrate the advantages of this guidance law in the three-dimensional
coordinate system, the PNG, which is most commonly used by the flight vehicle is used to
compare with the FTCG. The PNG is in the following form:{

AMε = N
.
r

.
qε

AMβ = N
.
r

.
qβ cos qε

(46)

where the guidance coefficient is N = 3. The FTCG is in the following form:
AMε =

A1x1ε+A2 x̂2ε+BAMε+
1

βγ x̂2−γ
2ε + 1

βγ kŜε x̂1−γ
2ε +β1|Ŝε|ηsgnŜε

B cos(qε−θMε)

AMβ =
(A1x1β+A2 x̂2β+BAMβ+

1
βγ x̂2−γ

2β + 1
βγ kŜβ x̂1−γ

2β +β1|Ŝβ|ηsgnŜβ) cos qε

B cos(qβ−θMβ)

(47)

where x1ε and x1β respectively represent the LOS angle rate
.
qε in the pitch plane and

.
qβ

in the horizontal plane, x̂2ε and x̂2β respectively represent the estimated value of the LOS
angle acceleration

..
qε in the pitch plane and

..
qβ in the horizontal plane, Ŝε and Ŝβ respectively

represent the estimated value of sliding mode in the pitch plane and in the horizontal plane,
θMε and θMβ respectively represent the pitch angle and roll angle of the flight vehicle;
the parameter values of the FTCG have been given in Table 3. At this time, the initial
parameters of the flight vehicle and the target are shown in Table 6:
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Table 6. Related parameters values of the flight vehicle and target.

(XM0, YM0, ZM0)/m (XT0, YT0, ZM0)/m VM/(m · s−1) VT/(m · s−1)

(1000,0,1000) (7000,3000,3000) 1000 600

θMε/(◦) θMβ/(◦) θTε/(◦) θTβ/(◦)

0 0 0 0

The target adopts the random maneuver shown in Equation (38) in both the pitch
plane and the horizontal plane. The infrared decoy is released when tgo = 1 s and its
parameters are given in Table 2. In order to be closer to the real scenario, the flight vehicle
has a guidance blind area of 200 m. The flight vehicle will fly according to the acceleration
before entering the blind area until the end of the simulation. The simulation results are
shown in Figure 8 and Table 7:

Table 7. Simulation result of three-dimensional coordinate system.

Guidance Law Miss Distance/m Strike Time/s

FTCG 0.2481 15.80
PNG 3.5170 16.5470

As shown in Figure 8a, it can be seen in the three-dimensional coordinate system that
both the FTCG and PNG are pursuing the target. However, it can be seen from Table 7
that the miss distance of the FTCG is only 0.2481 m, while the miss distance of the PNG
is as high as 3.5170 m, indicating that the FTCG is also effective in a three-dimensional
coordinate system. From Figure 8b,c, it can be seen that before entering the blind area,

.
qε

and
.
qβ rapidly converge to 0 rad/s after the FTCG experiences interference and finally

converge to 1.46 × 10−4 rad/s and 1.25 × 10−4 rad/s. In the blind area, the target is attacked
with the attitude of an almost constant LOS angle and the local quasi-parallel approach
is realized. However,

.
qε and

.
qβ cannot converge to 0 rad/s after the PNG experiences

interference and finally converges to 6.13 × 10−2 rad/s and 2.27 × 10−1 rad/s. Therefore,
the quasi-parallel approach cannot be achieved in the blind area, resulting in a large miss
distance. From Figure 8d,e, it can be seen that in the initial stage of final guidance, the
FTCG experiences overload saturation in both the pitch plane and the horizontal plane,
indicating that the flight vehicle’s overload capability has been utilized to the maximum
extent during this period. In the final stage, the overload is small and the flight vehicle
has a good stability. However, the PNG has a small overload in the initial stage of final
guidance and a large required overload at the end. This is not conducive to the stability of
the flight vehicle. Therefore, it can be shown that the FTCG also has a good effectiveness in
three-dimensional space.
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Figure 8. Simulation results of three-dimensional coordinate system. (a) Trajectory of motion;
(b) Change curve of the LOS angle rate in the pitch plane; (c) Change curve of the LOS angle rate
in the horizontal plane. (d) Change curve of the flight vehicle normal overload in the pitch plane.
(e) Change curve of the flight vehicle normal overload in the horizontal plane.



Aerospace 2024, 11, 56 18 of 19

5. Conclusions

This article proposes an FTCG based on the FTDO which improves the flight vehicle
accurate strike capability in complex adversarial scenarios. Based on the influence mech-
anism of an infrared decoy on the flight vehicle, the relative motion model between the
flight vehicle and the target is established, as well as the motion model of the infrared
decoy. According to the principle of centroid interference, a motion model for the energy
center is established. A complex adversarial scenario consisting of the flight vehicle, target,
infrared decoy, and energy center is constructed. In the design process of the guidance law,
the first-order dynamic characteristics of the autopilot are taken into consideration. The
finite-time control theory is used to design the terminal guidance law and the convergence
time of the guidance law is derived to provide guidance for parameter selection. In the
case where the target acceleration is unmeasurable, an FTDO is used to estimate the target
acceleration and compensate for it in the guidance law, improving the accuracy of the termi-
nal guidance law. The simulation results indicate that under various complex adversarial
scenarios, the LOS angle rate can quickly converge to 0 rad/s and accurately strike the
target after being influenced by infrared interference. The estimated value of the target
acceleration also converges rapidly to the actual target acceleration and is compensated for
in the guidance law after being influenced by infrared interference. A comparison with the
SMGL and ASMGL shows that the proposed guidance law can ensure faster convergence
and a smaller miss distance in a complex adversarial scenario. Therefore, this guidance law
demonstrates a satisfactory guidance accuracy and robustness in a complex adversarial
scenario and has advantages over other guidance laws. Finally, the FTCG is extended to
a three-dimensional coordinate system and compared with the PNG to further verify its
effectiveness and practicability.
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