
Citation: Saemi, F.; Benedict, M.

Flight-Validated Electric Powertrain

Efficiency Models for Small UASs.

Aerospace 2024, 11, 16. https://

doi.org/10.3390/aerospace11010016

Academic Editor: Dieter Scholz

Received: 25 October 2023

Revised: 1 December 2023

Accepted: 19 December 2023

Published: 24 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

aerospace

Article

Flight-Validated Electric Powertrain Efficiency Models for
Small UASs
Farid Saemi *,† and Moble Benedict †

Department of Aerospace Engineering, Texas A&M University, College Station, TX 77840, USA
* Correspondence: farid.saemi@gmail.com
† These authors contributed equally to this work.

Abstract: Minimizing electric losses is critical to the success of battery-powered small unmanned
aerial systems (SUASs) that weigh less than 25 kgf (55 lb). Losses increase energy and battery weight
requirements which hinder the vehicle’s range and endurance. However, engineers do not have
appropriate models to estimate the losses of a motor, motor controller, or battery. The aerospace
literature often assumes an ideal electrical efficiency or describes modeling approaches that are
more suitable for controls engineers. The electrical literature describes detailed design tools that
target the motor designer. We developed SUAS powertrain models targeted for vehicle designers
and systems engineers. The analytical models predict each component’s losses using high-level
specifications readily published in SUAS component datasheets. We validated the models against
parametric experimental studies involving novel powertrain flight data from a specially instrumented
quadcopter. Given propeller torque and speed, our integrated models predicted a quadcopter’s
battery voltage within 5% of experimental data for a 5+ min mission despite motor and controller
efficiency errors up to 10%. The models can reduce development costs and timelines for different
stakeholders. Users can evaluate notional or existing powertrain configurations over entire missions
without testing any physical hardware.

Keywords: electric propulsion; efficiency; small UAS; brushless DC motor; electronic speed controller;
inverter; lithium polymer battery; weight; range; electric

1. Introduction

Commercial off-the-shelf (COTS) motors, controllers, and batteries empower engineers
to develop small unmanned aerial systems (SUASs) up to 25 kg (55 lb) for a variety of
applications. However, engineers generally do not have appropriate tools to analyze the
electric powertrain early in the design process when changing a virtual design, rather than
a physical prototype, is cheap [1]. Existing approaches tend to require input parameters
that SUAS component manufacturers do not readily publish in their datasheets. Therefore,
users are impractically forced to purchase and empirically characterize each component
they wish to model. We developed analytical efficiency models for each powertrain
component: the brushless DC (BLDC) motor, motor controller (also known as the electronic
speed controller, ESC, or inverter), and lithium-ion battery (Figure 1). The model inputs
are component specifications commonly published in SUAS component datasheets. We
conducted parametric experimental studies to validate the individual models against
steady-state data from a specially instrumented wind-tunnel test stand. We also built a
specially instrumented quadcopter to generate novel powertrain flight data to validate the
combined component models (integrated powertrain model). Finally, we showcase the
validated models’ capabilities in a series of case studies.
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Figure 1. An electric powertrain and its constituent components.

Practitioners will appreciate the validated powertrain models for SUAS powertrain
analysis. The models rely on physics-based governing equations and physically meaningful
parameters that a user can populate from an SUAS component datasheet. A user does not
need to characterize any component empirically in order to model the component. This al-
lows a user to quickly evaluate different commercial-off-the-shelf (COTS) motor, controller,
and battery configurations under arbitrary loads without conducting time-consuming and
costly experiments. Aerospace researchers will appreciate the novel propeller torque and
rotational speed flight data. The data can validate other models for electric powertrains,
rotor aerodynamics, and vehicle flight dynamics.

We contribute to the state of the art via novel analytical models, novel experimental meth-
ods, and novel experimental data. The rest of the paper further details each novel contribution.

Novel analytical models account for harmonic losses inside the motor and motor
controller that similar studies have ignored [2]. Harmonic losses are induced when the
motor-controller throttle setting is less than 100%. Small UASs tend to reach 100% throttle
only during short maneuvring bursts, so harmonic losses are present during a majority of a
vehicle’s flight and can significantly reduce powertrain efficiency [3] and thereby vehicle
flight performance. Our harmonic-aware efficiency models enable practitioners to predict
powertrain efficiency more accurately.

A novel wind-tunnel stand measured motor and controller efficiencies separately us-
ing a three-phase power analyzer. Other studies measured the combined motor–controller
efficiency to reduce experimental complexity [4]. We present novel experimental mea-
surements of the distinct motor and controller efficiencies for different motor–controller
combinations under parametric loads. The separate efficiency data permit researchers to
evaluate other powertrain models for the motor and/or controller.

A novel data acquisition system aboard a quadcopter directly measured the torque of
one propeller during flight. Other studies estimated propeller torque using the controller’s
DC current [5], but motor torque is proportional to motor current—not controller current.
Therefore, we present novel experimental data of a quadcopter propeller’s torque collected
during flight. Again, researchers can use the novel data to validate other electric powertrain
or aerodynamic models.

Finally, we present a novel end-to-end validation of the models using the flight data.
Given the upstream propeller torque and rotational speed, our integrated powertrain model
predicts the battery’s voltage within 5% of measured values throughout a 5+ min mission.
Other approaches rely on throttle and current lookup tables collected on the ground for
specific propeller, motor, controller, and battery combinations. Our approach calculates
the throttle and current on-demand from the upstream torque and rotational speed for
an arbitrary motor, controller, and battery. The abstract torque and rotational speed can
come from any type of propulsor, such as a propeller or a flapping wing, which can help
researchers develop novel SUAS platforms, like robotic birds.
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1.1. Motivation

An experimental optimization study demonstrated that current small UAS electric
powertrains are sub-optimal [6]. Systematic testing of over 500 propeller, motor, and
battery combinations yielded a 45-gram quadcopter with almost double the electrical
power loading of a comparable commercial system. The optimized vehicle could hover for
31 min, which is an unprecedented flight time for a hover-capable aircraft at this scale.

Achieving such powertrain enhancements with analytical models rather than para-
metric experiments can help engineers at all stages of SUAS design. Rather than integrate
components physically into an expensive test stand or flight vehicle, an engineer can simply
plug its salient specifications from online datasheets into a virtual powertrain model and
evaluate the component under expected loads or a simulated mission.

The models can help early-stage vehicle designers searching for the optimal powertrain
configuration from a local library of parts. The designers can use the models to simulate
each configuration’s entire mission performance and select the option that best achieves
customer requirements. This step can be useful after the designer has identified a number
of commercial parts that roughly meet size or mass constraints.

Alternatively, the models can also help late-stage systems engineers trying to improve
an existing vehicle’s performance. For example, shrinking a quadcopter’s motors reduces
overall vehicle weight and, thereby, the hover loads on the motor. However, smaller motors
operate less efficiently and can draw more current from the battery [7]. Systems engineers
can use the models to evaluate whether changing parts can improve flight performance.

1.2. Challenges

A user should be able to parameterize the models from hobbyist datasheets. Small
UAS parts are often sourced from the hobbyist community, which provides minimal
documentation for components. For example, documentation for a 5 kW SUAS motor only
specifies the motor’s torque constant (kt), winding equivalent resistance (Rm), and a static
measure of no-load current (I0) at an unspecified rotational speed [8]. On the other hand,
documentation for a 50 kW motor suitable for manned aircraft specifies the aforementioned
constants as well as the motor’s DQ-axes inductances (Ld, Lq), rotational moment of inertia
(J), and dynamic measure of no-load power across a range of rotational speeds (Pnl(ω)) [9].
An SUAS motor model should expect that a user only knows a motor’s kt, Rm, and I0.

Lackluster hobbyist documentation necessitates in-house experiments to validate
models for different components. Some manufacturers tabulate data for thrust, rotational
speed, and DC current for different propeller, motor, and controller combinations [8].
However, the manufacturers do not measure torque and efficiency, which are more salient
to validating powertrain models. The manufacturers also do not list the specifications of
the controller or power source used to conduct the tests.

Last but not least, the models should exclude the propulsor. That is, the most upstream
input to the powertrain model should be mechanical torque and rotational speed—not the
thrust of a traditional propuslor, like a propeller. Researchers are using battery electric
powertrains to explore novel propulsion systems like cycloidal rotors [10]. Developing a
propulsor-agnostic powertrain can also help those researchers. Traditional SUAS designers
can integrate a propeller model from established aerospace literature, such as momentum
theory or blade-element momentum theory [11].

1.3. Literature Review

Table 1 summarizes existing modeling solutions and highlights where our proposed
models fit. The table is contextualized with respect to the motor since it is the most visibly
active part of an electric powertrain.
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Table 1. A comparison of motor modeling and software tools.

Approach Target Scope Intended Users Modeling
Approximation

Mathematical
Expressions

Input Motor
Specifications

Constant efficiency
model N/A Conceptual

designers N/A N/A None

Proposed model
Steady-state,

quasi-steady-state
response

Conceptual
designers, systems

engineers

Steady-state
equivalent circuit Algebraic equation

kt, Rm, I0
(published for
SUAS motors)

Simulink, AMESim Transient response Controls engineers Transient
equivalent circuits

Differential
equations

kt, Rm and Ld, Lq,
J, Pnl(ω)

(not published for
SUAS motors)

Motor-CAD Multi-physics
response Motor designers

High-fidelity,
multi-physics

transient circuits

Coupled
differential
equations

Geometry details,
material properties,

operating
environment, etc.

ANSYS Electronics
High-fidelity
multi-physics

response
Motor designers

Multi-physics
continuum
mechanics

Field equations

Geometry details,
material properties,

operating
environment, etc.

On one extreme, there exist constant or ideal efficiency assumptions that are suitable
only for the very initial sizing stages of aircraft design. Assuming some constant efficiency
for the entire powertrain, such as ηtotal = 90%, an aircraft designer can roughly estimate
the battery energy required for a notional mission. The designer can then combine this
assumption with first-order models like momentum theory to estimate the required battery
mass for a notional mission. Powertrain sizing codes, like HYDRA, SUAVE, and NDARC,
use this approach to populate the very first conceptual design [12–14]. This approach can
only tell a designer that losses increase as demanded power increases.

On another extreme, there are detailed design tools like Motor-CAD or ANSYS Elec-
tronics suitable for the motor designers. These tools use detailed data to obtain rich
information about motor losses at a single operating point. The inputs include the motor’s
detailed geometry, such as lamination thickness, as well as constituent material properties
and the fluid properties of the surrounding environment. These tools are useful to design
novel high specific-torque motor topologies for electric aviation [15], but the tools are
grossly inappropriate for aerospace users.

One tier below the motor design tools are software suites like Simulink, which are
suitable for controls engineers developing a control system for a well-characterized motor.
These dynamic modeling tools rely on a number of specifications—such as motor DQ axis
inductances, moments of inertia, viscous damping, and a mapping of motor losses—to
predict a motor’s transient dynamics [16]. At first glance, these tools may also seem appro-
priate for estimating powertrain losses; however, these tools provide too much detail at too
high a cost. A vehicle designer or systems engineer is more interested in the steady-state
or quasi-steady-state response of a motor. Moreover, SUAS motor manufacturers do not
provide all the necessary data to parameterize these types of models. For example, viscous
damping, inertia, and loss maps require careful testing on a dynamometer. Most hobbyists
do not care for this info, so manufacturers do not test and publish these specifications.
These tools are useful for modeling the coupled dynamics of a propeller and motor once
the user has selected, acquired, and characterized a motor.

We propose an “in-between” approach that provides more nuance than constant
efficiency assumptions without encumbering the user with the need to characterize the
motor empirically vis-à-vis dynamic modeling tools. Our models use parameters readily
published in SUAS specsheets—such as kt, Rm, and I0 for the motor—to predict steady-state
losses. Our models capture how losses vary as torque, rotational speed, DC voltage, and
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the motor design vary. The lower-fidelity constant efficiency assumption simply assumes
losses increase in proportion to output power. The open-source nature of our models also
liberates users from having to use proprietary software like Simulink. Finally, our models’
most up-stream model inputs are torque and rotational speed, not propeller thrust, so a
user can apply the model to a propeller or a flapping wing.

Other SUAS design tools in the literature require the user to pre-characterize each
powertrain configuration. For example, a mission-based parts optimizer tool picks the best
propeller, motor, and battery combination for a user-specified mission [4]. However, the
user must provide test data for each propeller, motor, and battery in a local parts library.
Users cannot evaluate a component’s efficiency using datasheet constants like the motor
torque constant or battery capacity. Another mission-based optimizer tool numerically
solves for a SUAS’ minimal-weight geometry. However, the tool assumes the user has
already chosen the powertrain configuration and characterized the powertrain’s throttle-
current response.

Powertrain-focused design tools still fall into the same pre-characterization trap. An
engineer cannot parameterize models developed by Thurlbeck and Dehesa with only
common motor specifications kt, Rm, and I0. Thurlbeck had to measure the inductances
required to populate their model [17], and Dehesa had to conduct parameter identification
to populate the inductance and inertia terms in their model [18]. Effectively, the powertrain
analysis models developed in these studies are closer to the dynamic models found in
Simulink. As such, these models in the literature are impractical for vehicle designers and
systems engineers who seek nuanced efficiency analysis without having to characterize
each component.

Powertrain models developed by Gong almost achieve the desired fidelity and work-
load balance [2]. These models are parameterized from readily available datasheet speci-
fications. However, the models are tuned and validated to a single motor and controller.
Moreover, the models do not account for harmonic losses, which can drastically reduce the
efficiency of the motor and controller. Additionally, the controller model is purely derived
from empirical regression. This is understandable since SUAS motor controllers come
with practically zero documentation. However, the authors did not attempt to derive a
physics-based model that could be parameterized from a well-documented controller in
the future.

Separately, the literature does not describe how to measure a small UAS’s powertrain
dynamics in flight. Gong et al. described an in-flight thrust measurement system for
a fixed-wing UAS, but they did not describe the electronics used to digitize and record
this data [5]. Other researchers calibrated a vehicle’s thrust vs. motor throttle curve on
the ground and estimated thrust from the applied throttle in flight ([19]). However, this
approach only estimates dynamic flight loads from static ground tests, which is inaccurate.
Larger vehicles measure the flight loads directly using strain-based sensors and digitize
and record the data with onboard data acquisition systems [20]. Such data-acquisition
equipment is too large and heavy for electric small UASs.

1.4. Outline

In the methodology section, we outline the hybrid modeling and experimental ap-
proach we undertook to develop and validate the proposed efficiency models. We also
detail the novel experimental test setups we built to generate validation data for the models.
In the subsequent Models and Results section, we discuss each component efficiency model
in more detail and validate it against experimental data. We also integrate and validate the
combined models against novel flight data. Next, we apply the models in case studies to
solve common problems faced by vehicle designers and systems engineers. We conclude
with a high-level discussion of our results, limitations, and suggestions for future work.
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2. Methodology

We approached the research problem in an increasingly broad manner, as abstracted
in Figure 2.

Figure 2. The study methodology.

The novelty of our approach is in how we maximized our models’ predictive fidelity
from the limited information provided by SUAS component datasheets. First, we explored
fundamental electrical literature, such as textbooks, to understand the operating princi-
ples and losses of each powertrain component. The electrical literature uses equivalent
circuits to derive efficiency models of various fidelity for each component. However, the
challenge was to adapt the models such that a user could populate them using SUAS
component datasheets while still capturing the nuances of each component’s efficiency.
Sections 3.1.2, 3.2.2 and 3.3.2 detail the tradeoffs we made for each component model to
achieve the desired balance.

Next, we validated each component model against novel experimental data from a
custom test stand. The stand, detailed shortly, was used to test each component under
constant loads in a controlled environment. The novelty of the experimental test stand data
stems from the separate measurements of motor efficiency and controller efficiency. Other
studies measured the combined motor–controller efficiency [4] to save time and resources.
This stand’s mechanical modularity allowed the testing of a variety of propeller, motor, and
controller combinations. The modularity also enabled testing inside a wind tunnel, which
allowed parametric load cases at different freestream velocities.

Finally, we validated the combined component models as an integrated powertrain
model against novel experimental data from a specially instrumented quadcopter. The
quadcopter, detailed later, was used to test the combined components under realy dynamic
flight loads. The novelty of this approach is two-fold. First, the custom instrumentation
and data itself are novel. The literature does not describe how to directly measure torque
on a flying SUAS, and therefore, the literature does not contain flight data for SUAS torque.
Second, the integrated model calculates instantaneous battery voltage from the time-
varying propeller torque and rotational speed. Other approaches use pre-characterized
look-up tables of throttle and current to estimate voltage [19].

2.1. Test Stand

The test stand pictured in Figure 3 provided steady-state experimental efficiency data
for each component. The stand accepted a variety of propeller, motor, motor controller,
and battery combinations. The stand could be oriented vertically or horizontally, as seen in
Figure 3a and Figure 3b, respectively. We conducted our tests in the horizontal orientation
inside a wind tunnel, as shown in Figure 3b.
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(a) Test stand. (b) Test stand in wind tunnel.

(c) Test stand instrumentation.

Figure 3. Test stand setup.

The block diagram in Figure 3c shows the test stand’s complete instrumentation data
flow. A torque sensor in line with the motor measured torque (M), and a laser tachometer
measured rotational speed (ω). The product of these readings yielded the motor’s output
power (Pmech, Equation (1)). An external pitot tube not visible in the images measured
freestream velocity inside the wind tunnel.

The test stand instrumentation included a three-element power analyzer to measure
electric power. Two elements measured electric power entering the motor (Pac), and the
third element measured electric power entering the controller (Pdc). Thus, the test stand
instrumentation (Figure 3b) separately measured motor efficiency (ηm, Equation (2)), and
controller efficiency (ηc, Equation (3)). Tables A1 and A2 list the devices tested on the stand.

A three-element power analyzer (Yokogawa WT333E) was necessary because brushless
DC motors macroscopically mimic multi-phase AC motors. At any instant in time, a single
phase of current travels through a BLDC motor. However, the motor controller constantly
re-routes this current along two of three wires (phases) of the motor. Thus, accurately
measuring a BLDC motor’s input power requires at least a two-phase power analyzer
(Blondel’s theorem [21]).

Pmech = Mω (1)

ηm = Pmech/Pac (2)
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ηc = Pac/Pdc (3)

2.2. Instrumented Quadcopter

The specially instrumented quadcopter (Figure 4) provided flight-data to validate the
powertrain model under dynamic loads. The onboard data acquisition system measured
torque and rotational speed for the forward-left propeller-motor as well as the overall
battery voltage. Reference [22] discusses the instrumented quadcopter in more detail.

(a) Instrumented quadcopter.

(b) Powertrain and instrumentation devices.

(c) Instrumented quadcopter block diagram.

Figure 4. Instrumented quadcopter system.
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The block diagram in Figure 4c shows the vehicle instrumentation’s data flow. The data
flow consisted of two data streams: a data-logging system built into the motor controller
and the novel external torque measurement system. The built-in system used the data-
logging feature of the motor controller to record rotational speed and battery voltage
directly onto the motor controller’s memory.

The novel torque measurement data stream used commercial hardware and open-
source software to measure and record torque onto the flight controller’s memory card. The
software can accommodate additional sensors, such as thrust and torque cells for multiple
propeller arms. The data flow consisted of the following:

1. Torque sensor (Futek MBA500), which measures torque up to 5.6 N·m (50 lb·in).
2. Strain-gauge amplifier (Texense XN4-v2), which excites the torque sensor and ampli-

fies and offsets the resulting output voltage into a 0–5 V analog signal.
3. Analog-to-digital converter (ADC) (Arduino Mega), which digitizes the torque signal.

Commercial flight controllers, like the Cube Orange, do not have 0–5 V analog inputs.
4. Software bridge (I2C Slave library), which transfers the digitized torque voltage from

the Arduino to the flight controller via an I2C bus.
5. Flight controller (CubePilot Cube Orange), which stores the torque voltage datastream

onto a memory card.

The vehicle itself was a 3.7 kg (8.2 lb) quadcopter with an estimated thrust-to-weight
ratio of 3.2 at full throttle. The footprint was 65.0 cm (25.6 in). The rotors were two-bladed
propellers with a diameter of 38.1 cm (15 in) and a pitch of 5.5 degrees. A KDE Direct
4014XF-380 motor powered each propeller, and a Castle Phoenix Edge 60 electronic speed
controller (ESC) controlled each motor. A single 6 A·h, 6S (25.2 V peak) battery supplied
power to all four motor systems. The vehicle had a number of custom 3D-printed dummy
sensors and mechanical adapters. Each dummy sensor had the same volume and nearly
the same mass as the real sensor to balance the vehicle inertia.

3. Models and Results

We present each component efficiency model and validate its predictions against exper-
imental measurements from the test stand. Each model has two sets of inputs: (1) external
settings, like the applied torque, and (2) datasheet specifications, like winding resistance.

Next, we combine the component models into an integrated powertrain model and
validate its predictions against experimental flight data from the instrumented quadcopter.
The inputs are (1) the externally applied propeller torque and rotational speed time histories
and (2) the datasheet specifications of the constituent components.

All the models are size-agnostic because the physics-based internal specifications
inherently scale with size.

3.1. Motor Model

A motor has three sources of inefficiency: resistive losses, which grow with torque;
iron losses, which grow with rotational speed; and harmonic losses, which stem from
voltage modulation [7]. Motor resistive losses are analogous to an aircraft’s induced drag.
Resistive losses are a by-product of generating torque just as induced drag is a by-product
of generating lift. Conversely, iron losses—also known as no-load losses—are analogous
to an aircraft’s parasitic drag. Iron losses increase with rotational speed just as parasitic
drag increases with forward velocity. Harmonic losses occur when waveform harmonics at
partial throttle (throttle < 100%) generate heat without contributing to useful work in the
motor or the motor controller.

Equation (4) is the salient equation of the motor efficiency model, which captures the
three main losses. The user must supply the following:

Three external parameters—applied torque (M), rotational speed (ω), and DC voltage
(VDC). A user populates these from the expected load and the system bus voltage.
Three internal parameters—torque constant (kt), equivalent winding resistance (Rm), and
no-load current (I0). All these parameters are published in SUAS motor datasheets.
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ηm =
Pout,m

Pin,m
=

Pout,m

1.1Pout,m + (Prm + Pi)/D
. (4)

The output power term (Pout,m = Mω) is a product of the applied torque and rota-
tional speed. The resistive losses (Prm = I2

z Rm) are the product of the ideal current draw
(Iz = M/kt + I0) and the equivalent resistance of the motor’s winding. The iron losses
(Pi = ktωI0) are the product of the torque constant, rotational speed, and no-load current.
The duty ratio (D = ktω/VDC) amplifies resistive and iron losses when D < 1.0 to model
harmonic distortion from modulating voltage (VDC) at partial throttle settings. A 10%
penalty to the denominator’s output power term captures high-order iron losses, which
we detail in the discussion. The motor’s true current draw (Im) is a function of the motor’s
input power, DC voltage, and duty ratio (Im = Pin,m/(VDCD)).

3.1.1. Validation

Figure 5 plots the mechanical load profile of four different brushless DC motors and
motor controllers on the test stand. A fixed-pitch propeller of varying diameter provided
the mechanical load at freestream velocities of 0 m/s and 10 m/s. For a constant rotational
speed, the motor torque decreased when freestream airflow was present because the axial
flow would reduce the propeller blades’ angle of attack and, thereby, reduce the torque
load on the motor. This experimental torque and rotational speed data were fed into the
motor efficiency model (Equation (4)). Table A1 in Appendix A contains the specifications
of the tested components.

Figure 6 plots the corresponding motor efficiency profiles for the tests in Figure 5.
Each sub-figure in Figure 6 plots the experimental measurements and our motor model
predictions for each load profile (0 and 10 m/s).

(a) Configuration 1.

(b) Configuration 2.

Figure 5. Cont.
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(c) Configuration 3.

(d) Configuration 4.

Figure 5. Mechanical load profiles for different motor–controller configurations.

(a) Configuration 1.

(b) Configuration 2.

Figure 6. Cont.
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(c) Configuration 3.

(d) Configuration 4.

Figure 6. Motor efficiency profiles for different motor–controller configurations.

The experimental measurements exhibit similar trends to data collected by Gong [2].
The motor efficiency is markedly less than the popular assumption of 90%, and the efficiency
tends to increase as rotational speed decreases. Some of our experimental measurements
captured peaks and subsequent drop-offs in motor efficiency, such as the peak that occurs
for the 10 m/s case in Figure 6a. However, Gong’s experimental results did not capture any
peaks in efficiency. The presence or lack of a peak efficiency value is merely a coincidence
in the different load profiles used to test the motors and does not reflect a deficiency in
either study.

Our model precisely captures changes in the motor’s efficiency profile. For example,
the minimum measured efficiency in Figure 6b decreases from 70% to 65% as the wind
tunnel flow increases from 0 to 10 m/s. The maximum measured efficiency does not change
between the two cases. The predicted efficiency curves roughly match these changes. The
minimum predicted efficiency decreases from 68% to 65% as the wind tunnel velocity
increases from 0 to 10 m/s, and the predicted maximum efficiency does not change.

The motor model predicts efficiency accurately within 10% of measured values. The
worst-case predictions are in Figure 6a. The model under-predicts motor efficiency by about
seven percentage points at 3000 rev/min, 0 m/s. This absolute difference corresponds to a
relative difference of about 10% with respect to the measured motor efficiency (70%).

3.1.2. Discussion

Our approach sacrifices some fidelity to ensure engineers can use the model without
experimental pre-characterization. In Figure 6a, the 0 and 10 m/s experimental efficiency
curves peak around 4200 and 4400 rev/min, respectively, before gradually decreasing.
However, our model predictions merely plateau and do not decrease like the experimental
profiles. This is a limitation of relying on the I0 constant to model no-load losses. Hobby
manufacturers provide I0 as a static snapshot of no-load losses at an unspecified rotational
speed. However, the electrical literature shows that no-load losses vary with ω3 and ω2 [23].
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Gong measured the change in I0 as a function of ω for their test motor and incorporated
this information into their no-load loss term [2]. However, this approach requires a user to
experimentally characterize each motor they wish to model. We pursued a less accurate
but more general solution by applying a 10% penalty to the denominator’s output power
term to reclaim some of the higher-order iron losses, as recommended in [24]. Similarly, the
electrical literature uses more complex Fourier methods to calculate non-linear harmonic
losses [25]. We approximate harmonic losses with the duty-ratio amplification factor since
modulating voltage is a strong function of duty ratio (throttle).

Nevertheless, our motor model improves on the existing literature. The aerospace
literature often assumes a constant and ideal 90% efficiency for the combined motor and
controller [12] or requires that a user provide the efficiency data for a particular powertrain.
Our model can predict a motor’s changing efficiency within 10% of measured values using
high-level motor specifications. Even in the worst case, Figure 6a, our model only under-
predicts efficiency by seven percentage points (63% vs. 70% at 0 m/s) or about 10% of the
actual efficiency (70%). In contrast, the error in the popular 90% efficiency assumption
(20 percentage points) is almost 30% of the experimental efficiency!

The improvements in efficiency prediction have significant implications at the vehicle
level. Using the previous set of numbers, a vehicle designed with our code would carry
a 10% oversized battery and still likely achieve its desired mission. However, a vehicle
designed with the constant efficiency assumption would carry a 30% undersized battery
and more likely would not achieve its mission.

An SUAS conceptual designer can use our motor model as a sanity check within the
first few design steps. First, a designer can size a hypothetical motor using sizing codes like
SUAVE [13] or NDARC [26]. Next, the designer can find commercial motors that best match
the ideal size requirements. At this point, the designer can populate our model with the
salient datasheet specs and evaluate the candidate motors under expected loads without
running any characterization experiments. The user can then select the most efficient motor
and size the battery to a more realistic powertrain efficiency figure.

Our motor model is also applicable to newer, high-specific torque motors, like axial-
flux motors. Brushed DC motors, brushless DC motors, and permanent magnet syn-
chronous machines (PMSMs) are fundamentally the same type of motor, so the model can
predict efficiency for all three aforementioned motor designs. Manufacturers can build
these three motors in axial- or radial-flux topologies, yet this difference only affects the
strength of the magnetic interactions inside the motor (the value of kt)—not the operating
principles of the motor. Therefore, the motor model is also flux-agnostic. The motor model
does not work for induction or reluctance motors, which operate on different principles.

3.2. Controller Model

A controller has four sources of inefficiency: resistive losses associated with current,
switching losses associated with multiple parameters, harmonic losses, and standby power
losses [25]. The controller’s resistive losses are most closely related to the mechanical load:
higher torque generally increases controller resistive losses. The controller’s switching
losses are more related to system settings, such as the selected DC bus voltage [27]. Just
like in the motor, harmonic losses also bleed in from modulating powertrain throttle. The
standby losses stem from powering the controller’s various internal circuits.

Equation (5) is the salient equation of the controller efficiency model. The user must
supply the following:

Three external parameters—motor power draw (Pout,c = Pin,m), motor current draw (Im),
and available voltage (VDC). A user can populate these parameters using the predictions of
the motor model.
Four internal parameters—switch resistance (Rds,ON), pulse-width modulation frequency
( fPWM), switching delay (Tsd), and standby power (Psb).

We recommend Rds,ON = 1 mΩ, Tsd = 200 ns, fPWM = 12 kHz, and Psb = 0.5 W. Man-
ufacturers do not produce SUAS controllers in as many varieties as motors, and the con-
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trollers rarely come with any documentation. One controller manufacturer, Jeti, publishes
Rds,ON ≈ 1 mΩ for some of its controllers [28]. A datasheet for an electrical switch similar
to those found in SUAS motor controllers suggests Tsd ≈ 200 ns [29]. The default value for
most controllers’ fPWM ≈ 12 kHz [28]; however, users can sometimes adjust this value by
re-programming the controller’s firmware. Our tests indicated Psb ≈ 0.5 W.

Users can supply our models with more accurate parameter values in the future. SUAS
parts manufacturers should provide more rigorous documentation to meet certification
demands for electric aviation.

ηc =
Pout,c

Pin,c
=

Pin,m

Pin,m + (Prc + Psw)/D + Psb
. (5)

The controller’s resistive losses (Prc = 2I2
mRds,ON) are the product of the motor’s

input current and the controller’s switch resistance. The controller’s switching losses
(Psw = fPWMTsd ImVDC) are the product of the controller’s pulse-width modulation fre-
quency, the switching delay, the motor’s input current, and the DC voltage. The duty ratio
again amplifies resistive and switching losses to model harmonic losses. The controller’s
standby power models the power drain by the controller’s secondary circuits. The con-
troller’s input current (Ic) is a function of the controller’s input power and the DC voltage
(Ic = Pin,c/VDC).

3.2.1. Validation

Figure 7 plots the corresponding controller efficiency profiles for the experiments con-
ducted in Figures 5 and 6. Each sub-figure in Figure 7 plots the experimental measurements
and our controller model predictions for the different load profiles (0 and 10 m/s).

(a) Configuration 1.

(b) Configuration 2.

Figure 7. Cont.
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(c) Configuration 3.

(d) Configuration 4.

Figure 7. Controller efficiency profiles for different motor–controller configurations.

Like motor efficiency, our controller efficiency measurements are similar to measure-
ments by Gong. Moreover, the popular assumption of 90% efficiency is valid for the
controller because the measured efficiency exceeds 90% in almost every case. Moreover,
the measured controller efficiency does not experience a peak plus roll-off in any case. The
controller efficiency increases with rotational speed in all cases.

In terms of accuracy, our controller model generally over-predicts losses and under-
predicts efficiency for the 0 m/s profiles. In the worst case (Figure 7a), our model
under-predicts controller efficiency by 10 percentage points (85% vs. 95% efficiency at
1500 rev/min). This absolute difference corresponds to a relative difference of 10%. Our
model is generally more accurate for the 10 m/s profiles.

In terms of precision, our controller model matches the experimental trends in all cases
despite the fact that we parameterized the model with values from similar devices—not
the unpublished specifications of the device under test.

3.2.2. Discussion

Our controller model sacrifices some accuracy for robustness. Thurlbeck developed
a high-fidelity physics-based controller model. The model can work for any controller,
but it requires detailed information about the controller’s switches, such as gate driver
voltage [17]. Unfortunately, almost all SUAS motor controllers come without any datasheets.
Gong, on the other hand, developed a purely empirical regression model tuned for a
specific controller [2]. We pursued a middle ground. We developed a physics-based model
with fewer inputs, and we recommend reasonable values for these inputs based on what
limited data are available for controllers and their switches. Unlike Gong’s model, our
approach is immediately usable for any controller—not just the controller in their study.
Moreover, our model, like Thurlbeck’s model, can be easily parameterized with more
accurate specifications once rigorous controller datasheets are published.
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Again, our model improves on the existing literature. The aerospace literature assumes
a constant efficiency for the combined motor and controller [12], or some literature requires
that a user provide the efficiency data for a particular powertrain. For the first time, the
motor controller model can predict the changing efficiency of a controller using a few
high-level specifications. The user does not have to experimentally develop an empirical
regression for each controller like in the research by Gong [2].

At the vehicle design level, our model’s precision can improve how concept designers
conduct tradeoff analysis for different operating conditions. The experimental results show
that a controller’s efficiency is usually greater than or equal to 90%, so users can assume
an ideal and constant 90% controller efficiency. However, our model can provide further
insight into how that efficiency may change for different operating conditions. For example,
assuming a controller efficiency of 90% may suffice to analyze the powertrain of a large
and lumbering cargo SUAS with fairly constant cruise conditions. However, our model is
more appropriate for analyzing the powertrain of a small and nimble surveillance SUAS,
which experiences large swings in propeller torque and speed.

The controller model works best for brushless DC motor controllers, which use square-
wave commutation. Users can apply the trends to permanent-magnet synchronous motor
controllers, which use sinusoidal commutation (field-oriented control). Both types of
controllers employ the same hardware to control nearly identical motors.

3.3. Battery Model

Batteries have multiple losses, but most of these losses occur at timescales far slower
or faster than the mechanical timescale of an SUAS mission. For example, select tran-
sient losses occur in microseconds, while self-discharge losses occur over the course of
months [30].

Equation (6) only captures the series resistance loss that occurs at the mechanical
timescale of a flying vehicle. The user only needs to provide the external current draw
(Ibatt(t)), the rated internal capacity (Qr), the number of cells in series (nser), and the internal
cell resistance (Rint). All of these parameters are available in SUAS battery datasheets.

Vb(t) = ns(VSOC(t)− Itot(t)Rint). (6)

The first term represents the ideal voltage that cells inside the battery generate at a
particular state of charge (VSOC(t)). The second term represents the internal losses of the
battery as the product of the total current and the battery’s internal resistance. Reference [31]
defines Vsoc(t) as a non-linear function of Ibatt(t) and Qr for lithium-based chemistries. The
total number of cells in series inside the battery (ns) scales both terms.

3.3.1. Validation

Figure 8 plots the measured and predicted battery voltages for three batteries. In each
sub-figure, the x-axis is the relative discharged capacity (depth of discharge or DOD), and
the y-axis is the per-cell voltage (total battery voltage per number of cells in series).

Each battery was discharged at two different discharge rates. Battery 1, a 0.6 A·h
unit, was discharged at 1.2 A and 2.4 A, which correspond to double (1.2/0.6) and quadru-
ple (2.4/0.6) its rated output current. Battery 2, a 2 A·h unit, was discharged at 6 A and
8 A, which correspond to triple and quadruple its rated current. Battery 3, a
1.8 A·h unit, was discharged at double and triple its rated current. Table A2 in Appendix A
contains the specifications of the tested batteries.

The experimental measurements reflect the trends in the literature. As the discharge
rate increases, more battery energy is wasted across its series internal resistance, which
reduces the voltage available to the load.

The battery model predicts voltage within 5% of experimental values throughout the
test domain for all batteries and all test cases.
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(a) Battery 1 (3S, 600 mAh).

(b) Battery 2 (4S, 2000 mAh).

(c) Battery 3 (4S, 1800 mAh).

Figure 8. Battery model validation for different batteries.

3.3.2. Discussion

Compared to the electrical literature, our battery model is easier to populate. Our
model requires two battery specifications—battery capacity (Qr) and internal resistance
(Rs)—both of which a user can obtain from reputable battery datasheets. The popular
shepherd model requires three more constants that not all datasheets provide [32]. A
user can directly provide the current time history (I(t)) or estimate this input using our
proposed motor and controller models. A user can even model other battery chemistries if
they populate the appropriate VSOC(t) function for the desired chemistries.
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Moreover, our battery model only simulates losses that are relevant to aircraft design
timescales. The electrical literature describes methods that characterize battery discharge
in higher fidelity [30], but these discharge modes occur at timescales that are much shorter
or much longer than an aircraft mission. As such, our model does not waste time and
resources to simulate irrelevant losses.

At the vehicle design level, our battery model enables a user to evaluate a battery’s
effective energy density for each mission. Initially, an engineer may size a concept vehicle’s
battery, assuming constant energy density. Then, the engineer may identify candidate
commercial batteries that roughly satisfy the desired size and mass constraints. Next, the
engineer can evaluate how each battery performs under the expected mission loads using
our model and the candidate batteries’ specifications. If a candidate battery depletes before
the end of the mission, then that battery is undersized. If a candidate battery has excess
voltage at the end of the mission, then that battery may be too large. Unlike the constant-
energy density assumption, our approach captures how a battery wastes load-dependent
portions of its own energy across its internal series resistance.

3.4. Integrated Powertrain Model

Figure 9 details how the component efficiency models are integrated into a quad-
copter powertrain model. The most upstream model inputs are the vehicle’s propeller
torque and rotational speed time histories. Each component model is parameterized with
salient datasheet specifications, like torque constant, switching frequency, and the rated
battery capacity.

First, our model reads the initial battery voltage (V(0)), torque (M(0)), and rotational
speed (ω(0)) data points. The motor model predicts the motor’s losses and the motor’s
total power draw. Next, the controller model predicts the downstream controller losses and
the controller’s total current draw. The integrated model assumes that all four controllers
(propellers) draw the same amount of power from the battery. Then, the battery model
applies the combined load from all controllers to the battery and predicts the new battery
voltage, which starts the next iteration. The simulation steps forward in time until the
battery reaches a 20% state of charge or a cutoff voltage of 3.3 V per cell.

Figure 9. Implementation of the powertrain models.

3.4.1. Validation

Figure 10 shows the flight plan for the instrumented quadcopter’s outdoor flight. The
vehicle took off, climbed to roughly 15 m (50 ft.), and began flying 100 m (328 ft.) laps. The
prevailing winds exceeded 5 m/s (10 kts), and the vehicle flew with the wind for half the
lap and against the wind for the other lap half. The vehicle flew for almost 6 min before the
pilot noticed sluggish performance that indicated a near-depleted battery.
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Figure 10. Flight plan of the instrumented quadcopter.

Figure 11 plots select flight data collected by the instrumented quadcopter. Figure 11a
plots the vehicle’s pitch angle. The pitch angle is almost always negative because the
quadcopter was flying forward with its nose pitched down. Figure 11b,c plot the rotational
speed and torque, respectively, of the quadcopter’s forward-left propeller. All of these
parameters oscillated as the vehicle flew against and with the wind. The torque data exhibit
similar trends as the speed data since torque is proportional to rotational speed.

(a) Vehicle pitch angle.

(b) Propeller rotational speed.

(c) Propeller torque.

Figure 11. In-flight quadcopter data.
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Figure 12 plots the battery voltage measurements from the flight. The battery voltage
experienced a stepped decrease in the beginning as the vehicle took off and climbed. This
sharp drop stemmed from the four quadcopter arms simultaneously pulling a large amount
of current across the battery. The voltage then decreased more slowly as the vehicle entered
cruise. The voltage experienced periodic oscillations like the other flight measurements in
Figure 11 as the vehicle flew windward (against the wind) and leeward (with the wind).

Figure 12 also plots the integrated powertrain model’s voltage prediction. The com-
bined motor, controller, and battery models predict the vehicle’s voltage time history within
5% of in-flight measurements throughout the entire mission. We hypothesize the predicted
voltage oscillated more dramatically than the measured voltage because of instrumentation
limitations. The model only has mechanical data for a single propeller, so it assumes all
four propellers experience uniform loading. In reality, each propeller experienced slightly
different loads, and the loading variations across all propellers probably dampened some
of the total current demand on the battery.

Figure 12. Battery flight data vs. model predictions.

3.4.2. Discussion

Our component models’ fidelity is sufficient for power and efficiency analysis by
vehicle designers and test engineers. Our combined models predicted battery voltage
accurately in a dynamic outdoor flight despite the limited input parameters. The accuracy
is even more remarkable since the integrated model must contend with two types of
error propagation: propagation “down” the powertrain from the motor to the battery and
cumulative propagation “through” the simulation time history.

At the aircraft design level, our models enable engineers to virtually optimize the
entire powertrain for a given mission. Now, a user can analyze different powertrain
configurations from end to end (propulsor torque to battery voltage) using commonly
published component specifications rather than using experimental data like other literature
studies [6]. This is extremely valuable once a user has identified a number of candidate
parts that meet initial sizing requirements. The user can also conduct trade studies for
different voltage settings or vehicle configurations (e.g., quad- vs. hexa-copter) and examine
the impact on every mission phase. Our models offer more nuance than constant efficiency
assumptions without encumbering the user with as many input requirements as proprietary
Simulink or AMESim models.

4. Case Studies

We showcase how our validated efficiency models can deliver unique insights at
the vehicle design level. Three independent and hypothetical cases are inspired by real
scenarios. The first case shows how the models can inform decisions for an existing
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vehicle, not just a paper concept. In the second case, the models reveal nuances about
voltage and efficiency that conventional wisdom does not capture. The third case shows
how the powertrain models can even inform decisions about other vehicle aspects, like
aural signature.

4.1. Case 1: Reducing Vehicle Weight

A systems engineer has been tasked with reducing the gross weight of an existing
heavy-lift hexacopter (example in Figure 13) to increase its endurance. The engineer
suspects that the original motors were oversized, so installing smaller motors can reduce
the gross weight. However, the engineer is concerned the smaller motors may instead draw
more current from the battery since efficiency decreases with size [7]. The engineer wants
to evaluate the new motors without having to buy and test them.

Figure 13. Notional hexacopter for Case 1 (photo by A. Glinz, Wikimedia).

Table 2 lists the salient information known by the engineer for the oversized motors
configuration (Configuration 1) and the proposed lighter motor configuration (Configuration 2).
Except for the motors, everything in the two configurations is the same, including the
propellers, motor controllers, and the main battery. The engineer calculates the new hover
torque and rotational speed from in-house propeller data. The only unknown is the DC
current for the new configuration.

Table 2. Salient hexacopter information.

Configuration 1 2

Mass (kg) 16 14

Hover propeller torque (mN·m) 725 600

Hover propeller speed (rev/min) 2750 2500

DC voltage (V) 50 50

Motor specifications

kt (mN·m/A) 80 71

Rm (mΩ) 41 94

I0 (A) 2.0 0.9

km (mN·m/
√

W) 393 231

IDC (A) 7.6 -

We can quickly solve this problem using our validated models. First, we solve for the
motor’s efficiency using Equation (4). We populate the expression using the expected loads
and motor specifications listed in Table 2. We then propagate the predicted motor values
into our controller model and calculate the controller’s DC current draw. We parameterize
the controller using the values recommended in Section 3.2. We ultimately obtain a DC
current of 5.6 A for the second, lighter configuration.
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The smaller DC current for the second configuration confirms that installing smaller
motors will, in fact, increase vehicle endurance. The smaller current will not only draw
less power from the battery but will also generate fewer losses across the battery’s internal
series resistance and, thereby, increase the battery’s effective energy density. Now, the
systems engineer can confidently swap motors.

A user cannot attain such insights using other approaches in the literature. The
constant efficiency assumption does not distinguish between different motors. Powertrain
models developed by Gong [2] and Thurlbeck [17], as well as high-fidelity modules in
Simulink, require experimental tuning of the new motor, which defeats the purpose of
using a model to predict performance in lieu of experimental testing.

4.2. Case 2: Increasing Overall Efficiency

For basic circuit elements, like a resistor, increasing the applied voltage reduces
resistive losses (V2/R or I2R). However, the same principle does not always apply to
a more advanced circuit, like an electric powertrain. Sometimes, increasing the applied
voltage can actually increase losses and reduce overall efficiency.

Figure 14 shows two efficiency contours of a brushless DC motor with kt = 29 mN·m/A,
Rm = 44 mΩ, and I0 = 0.7 A. Equation (4) is used to calculate the motor’s efficiency for each
torque–speed point in each plot window.

(a) Efficiency contour at 10 V.

(b) Efficiency contour at 20 V.

Figure 14. Increasing voltage can decrease efficiency.
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Figure 14a predicts the efficiency contour with a supply voltage of 10 V. The efficiency
generally increases with torque and rotational speed, and the efficiency exceeds 70% within
the plot window. The plot also overlays a hypothetical load point at 15,000 rev/min and
60 mN·m. This hypothetical load can be a quadcopter’s rotor in hover or a fixed-wing
drone’s propeller in cruise. The motor drive system operates at approximately 60% effi-
ciency at this point.

Figure 14b predicts the efficiency contour of the same motor with double the supply
voltage (20 V). Again, the efficiency generally increases with torque and rotational speed.
However, the peak efficiency is now less than 70%. Increasing the supply voltage has
decreased the overall efficiency because the upstream controller must modulate the voltage
and current waveforms to achieve the same torque and rotational speed given a higher sup-
ply voltage. Consequently, the motor experiences higher harmonic losses and a reduction
in efficiency. The motor’s efficiency has decreased to 40% at the hypothetical load point.

These results are insightful in the initial design stages when an aircraft designer is
conducting trade sweeps for system parameters like bus voltage. Our model predictions
show that aircraft designers cannot apply basic circuit principles, like higher voltage
lowers losses, to electric powertrains. Higher voltage can reduce I2R losses in cables, but
higher voltages can also increase harmonic losses inside the motor and controller. Again,
a user cannot achieve these results using other approaches outlined in the literature. The
constant efficiency assumption does not distinguish between the old and new voltage
settings. Powertrain models developed by Gong and Thurlbeck and high-fidelity modules
in Simulink require experimental tuning for parameters like the no-load loss map [16].

4.3. Case 3: Voltage vs. Range

A conceptual designer has been tasked with quieting an off-the-shelf electric fixed-
wing SUAS like the Raven pictured in Figure 15. The designer knows that reducing
propeller speed can reduce noise [33], but the designer is curious how that affects the
vehicle’s overall range. The designer is particularly curious if he or she should change other
settings, such as bus voltage, to maintain the vehicle’s current flight metrics, like range.

Figure 15. Example fixed-wing SUAS (photo by A. Pena, US Air Force).

Equation (7) predicts range for an all-electric aircraft [34] as a function of the battery
energy density (E), gravitational acceleration (g), total powertrain efficiency (ηtot), vehicle
lift-to-drag ratio (L/D), and the battery mass fraction (mb/mtot). As an example, we populate
all the terms except the total efficiency with conservative static estimates for an SUAS like the
Raven. We set E = 170 Wh/kg, g = 9.81 m/s2, L/D = 5, and mb/mtot = 0.3. Documentation
for the military Raven SUAS is sparse, and the particular values we select are not as
important as the modeling capabilities.

Range = E
1
g

ηtot
L
D

mb
mtot

(7)

Our motor and controller models enable us to predict ηtot for different propeller
speeds. The required inputs are propeller speed, propeller torque, system voltage, and
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the component specifications of the motor and controller. We prescribe a propeller speed
range of 1000–3000 rev/min. We assume a constant mechanical power of 200 W, so the
corresponding torque range is 1.9–0.7 N·m for the prescribed speed points. We also
prescribe a voltage range of 12–24 V since voltage and rotational speed are closely linked
in a motor [7]. We prescribe the specifications of the second motor in Table A1 and the
controller specifications recommended in Section 3. Again, documentation for the Raven is
sparse, and the particular values we assign for the model parameters are not as important
as the high-level trends and insights that the models can deliver.

Figure 16 plots the range predicted using Equation (7) in combination with our inte-
grated motor–controller model. The plot window is bounded by the prescribed voltage and
propeller speed ranges. The contour lines mark the predicted range. At constant voltage,
decreasing propeller speed decreases the overall range because of the same dynamics
seen in the previous case study: harmonic losses. The motor controller must increasingly
modulate (inhibit) the system voltage to achieve a lower propeller speed. The modulation
introduces noise into the waveforms between the motor and controller, which generate heat
and decrease overall efficiency. However, decreasing voltage alongside propeller speed
can maintain the vehicle’s range. Directly decreasing the system voltage, such as with a
different battery configuration, relieves the controller of the modulation burden.

Figure 16. Aircraft range predicted using motor and controller models.

These results are valuable because they shed light on the coupling between different
sub-systems with minimal user input. Reducing propeller speed to reduce vehicle noise can
also reduce the vehicle range if commensurate changes are not made to the vehicle’s bus
voltage. A conceptual designer cannot attain such information as easily with other tools.
The constant efficiency assumption does not inherently capture how changing propeller
speed at constant mechanical power affects overall efficiency. The methods in the literature
developed by Thurlbeck [17] and Gong [2] and the pre-built modules in proprietary tools
like Simulink [16] require the designer to obtain certain model inputs experimentally, like
the no-load current curve or the motor inductances, to populate the particular motor and
controller models.

5. Discussion
5.1. Experimental Data

The experimental results show that a small electric UAS’s powertrain efficiency is far
below the popular assumption of 90% efficiency. For example, the motor efficiency alone
dips as low as 60% in Figure 6c. Assuming a 90% efficiency for the controller is reasonable,
though not always true. The motor controller, which consists of solid-state electronics with
no moving parts, dips below 90% efficiency in Figure 7d.
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The experimental results motivate the need for aircraft designers to account for pow-
ertrain losses early in the design stage. Electrical power requirements increase by 40% as
calculations shift from an ideal 90% powertrain efficiency to more realistic values between
60%–70% efficiency. The increased power requirement then significantly affects other
parameters like battery size and aircraft weight.

The experimental results can also help aerospace researchers validate other electric
powertrain or aerodynamics models. Researchers and practitioners can use the proposed
instrumentation to capture other in-flight phenomena. For example, an instrumentation
system with six-axis force sensors for each rotor can capture all six forces & moments to
validate rotor aerodynamics models.

5.2. Analytical Models

Our models push the boundary without encumbering the user with esoteric input
requirements. The motor, controller, and battery models can predict the respective com-
ponents’ losses using a few readily available parameters listed in Section 3. The battery
model, for example, works with even fewer inputs than the popular shepherd model [32].

Now, aircraft designers can simulate different powertrain configurations over the
course of an entire mission. The proposed integrated model can predict a quadcopter’s
mission performance in seconds. Winslow et al. had to experimentally test for this data
over minutes and hours [6]. Moreover, the user does not need empirical data to initialize
the models. The user only needs (1) component specifications easily found in datasheets
and (2) high-level parameters like torque and rotational speed, which the user can derive
from a vehicle dynamics module.

The results of the integrated powertrain validation suggest our models are better than
higher-fidelity tools like Simulink or AMESim for power and efficiency analysis by vehicle
designers. The latter tools require inputs like motor inductance and rotor inertia to predict
the transient response of a motor with micro-second precision. Unfortunately, SUAS motor
manufacturers do not publish these parameters, so a user must empirically measure these
specifications for every motor they wish to evaluate. Our integrated models accurately
predicted a battery’s dynamic discharge versus time within 5% of experimental values
despite assuming instant motor response and steady-state losses. Moreover, our model
used parameters that are published in SUAS motor datasheets.

5.3. Case Studies

The case studies encourage aerospace engineers to use the proposed models in all
stages of aircraft development.

The weight reduction scenario in Case 1 shows how the models can help identify
positive tradeoffs even for existing vehicles. Rather than physically swap motors to test per-
formance, an engineer can analytically predict the current draw for different configurations
using specifications commonly published for SUASs. Other models in the literature still re-
quire the user to characterize each motor experimentally to populate select inputs [2,16,17].

In Case 2, the models dynamically generate efficiency contours that show how only
increasing the DC voltage can increase losses contrary to popular belief. Established motor
design tools can also generate the requisite efficiency contours [35], but these methods are
too complicated and computationally burdensome for aircraft designers.

The range analysis in Case 3 shows how the models can help predict ripple effects
between aircraft systems in early design. Decreasing the nominal propeller speed can
reduce acoustic signature, but aircraft designers should also adjust the nominal powertrain
voltage in order to maintain the desired aircraft range.

5.4. Future Work

Peers may build upon this work by validating the component models for larger electric
powertrains rated for manned vehicles (powertrains rated for tens of kilowatts). At small
scales, aerospace researchers may expand the instrumentation of our quadcopter to measure
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the torque and rotational speed of all four propeller arms. Obtaining the torque for all
four motors can improve the downstream battery voltage predictions. Instrumenting all
four rotors with six-degree-of-freedom force sensors can also generate novel flight data for
aerospace researchers to validate aerodynamic models.

6. Conclusions

Novel efficiency models were developed for the motor, motor controller, and battery
found in small unmanned aerial systems. Novel efficiency data from a test stand validated
the individual models. Novel torque data and battery data from a flying quadcopter
validated the combined models. The integrated models predicted the quadcopter’s voltage
discharge within 5% of experimental flight data for a 5+ min outdoor flight. Case studies
showed how the models can inform vehicle-level design for a conceptual or existing small
UAS. Practitioners can use the novel powertrain models to reduce development costs
and timelines. Researchers can use the novel experimental data to validate other electric
powertrain or aerodynamic models.
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Appendix A

Table A1 lists the motors tested on the test stand along with salient specifications for
the motor model. All motors were paired with a Castle Creations HV Edge 60 A motor
controller (also known as an electronic speed controller or ESC). All motors were sourced
from KDE Direct. The tabulated model numbers omit the common “KDE” prefix for clarity.

Table A1. Motors tested on test stand.

Model No.
kt I0 Rm Propeller Diameter No. Blades

(mN·m/A) (A) (mΩ) (in) (cm) (-)

2814XF-515 18.5 0.3 130 15.5 39.3 2
4215XF-465 20.5 0.7 52 15.5 39.3 3
5215XF-330 28.9 0.7 44 21.3 54.1 3
4012XF-400 23.9 0.3 78 15.5 39.3 2

Table A2 lists the batteries tested on the test stand along with their internal resistance.
These were generic hobbyist lithium-polymer batteries sourced from a variety of vendors.
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Table A2. Batteries tested on test stand.

Battery
Capacity Series Cells Rint

(A·h) (-) (mΩ)

1 0.6 3 17
2 2 3 13
3 1.8 3 22
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