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Abstract: This research investigates the potential application of generative language models, espe-
cially ChatGPT, in aviation safety analysis as a means to enhance the efficiency of safety analyses
and accelerate the time it takes to process incident reports. In particular, ChatGPT was leveraged to
generate incident synopses from narratives, which were subsequently compared with ground-truth
synopses from the Aviation Safety Reporting System (ASRS) dataset. The comparison was facili-
tated by using embeddings from Large Language Models (LLMs), with aeroBERT demonstrating
the highest similarity due to its aerospace-specific fine-tuning. A positive correlation was observed
between the synopsis length and its cosine similarity. In a subsequent phase, human factors issues
involved in incidents, as identified by ChatGPT, were compared to human factors issues identified
by safety analysts. The precision was found to be 0.61, with ChatGPT demonstrating a cautious
approach toward attributing human factors issues. Finally, the model was utilized to execute an
evaluation of accountability. As no dedicated ground-truth column existed for this task, a manual
evaluation was conducted to compare the quality of outputs provided by ChatGPT to the ground
truths provided by safety analysts. This study discusses the advantages and pitfalls of generative
language models in the context of aviation safety analysis and proposes a human-in-the-loop system
to ensure responsible and effective utilization of such models, leading to continuous improvement
and fostering a collaborative approach in the aviation safety domain.

Keywords: Aviation Safety Reporting System; ASRS; aviation safety; human factors; large
language models; LLM; ChatGPT; generative language models; GPT-3.5; aeroBERT; BERT;
InstructGPT; prompt engineering; NLP

1. Introduction

The annual number of reported incidents within the Aviation Safety Reporting System
(ASRS) has been consistently increasing [1], a trend that is anticipated to persist in the
foreseeable future. This projected growth is largely attributable to the ease of submitting
incident reports, the integration of novel systems such as Unmanned Aerial Systems (UAS)
into the National Airspace System (NAS), and the increase in air travel overall. Because the
current initial processing time of one incident report by two ASRS safety analysts can take
up to five business days [2], new approaches are sought to help facilitate and accelerate
such tasks. The development of hybrid human–AI approaches, particularly those involving
the use of Large Language Models (LLMs), is expected to enhance the efficiency of safety
analyses and reduce the time required to process incident reports [3].
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Prior studies, including those mentioned in [4], have utilized the ASRS dataset in
conjunction with Large Language Models (LLMs) such as BERT. However, the conclusions
drawn from these studies are limited for a variety of reasons. The first is the imposed
maximum narrative length of 256 or 512 WordPiece tokens when using BERT, which may
potentially lead to information loss. For comparison, this specified length is below the 25th
percentile of incident narrative lengths used for this study, which stands at 747 WordPiece
tokens. The second reason is the fact that BERT requires specific training or fine-tuning
on domain-specific data. Generative language models, on the other hand, can learn from
a wider range of information due to their expansive training on larger datasets. This not
only makes them more adaptable to evolving linguistic trends and domain shifts but also
enhances their performance in zero-shot tasks, without requiring specialized fine-tuning.

The use of generative language models in the field of aviation safety remains largely
unexplored. These models can serve as effective “copilots” or assistants to aviation safety
analysts in numerous ways. They can automate the analysis of safety reports, identify
patterns or anomalies that highlight potential safety issues, and identify potential risks
based on historical data, hence aiding in the development of proactive safety strategies.
Their proficiency in Natural Language Processing (NLP) can be harnessed for summarizing
incident reports and extracting crucial information of interest. Furthermore, these models
can be employed as training tools to simulate various scenarios or create synthetic data
as a means to test safety measures or fill data gaps. However, their utility relies heavily
on their training and implementation, and they should complement rather than replace
human expertise.

In light of the considerable potential of generative language models, the primary
objective of this work is to conduct a comprehensive assessment of the applicability and
significance of generative language models such as GPT-3.5 (ChatGPT) [5] in the context of
aviation safety analysis, specifically the ASRS dataset. In the context of the ASRS dataset,
these language models hold the potential to serve as instrumental tools to aid human
safety analysts by accelerating the examination of incident reports while simultaneously
preserving the consistency and reproducibility of their analyses. In particular, this paper
focuses on the following tasks:

1. Generation of succinct synopses of the incidents from incident narratives using ChatGPT.
2. Comparison of the faithfulness of the generated synopses to human-written synopses.
3. Identification of the human factors contributing to an incident.
4. Identification of the entity involved in the incident.
5. Providing explanatory logic/rationale for the generative language model’s decisions.

The assembled dataset, which includes the ground truths, generated outputs, and
accompanying rationale, can be found on the HuggingFace platform [6]. This accessibility
allows for additional examination and validation, thereby fostering further advancements
in the field.

This paper is organized as follows. Section 2 provides detailed information regarding
the ASRS, introduces LLMs, and discusses the use of LLMs in the context of the ASRS
dataset. Section 3 elaborates on the methodology implemented in this study, with a
particular focus on the dataset used, prompt engineering, and the methodology used for
comparing the generated outputs to the ground truths. Section 4 discusses the findings of
this work; presents examples of incident narratives, synopses, and human factors errors;
and discusses the evaluation of accountability. Lastly, Section 5 summarizes this research
effort, discusses its limitations, and suggests potential avenues for future work.

2. Background

This section provides more information about the ASRS dataset and the way in which
incident reports are gathered and analyzed by safety analysts to draw useful insights. This
section also offers a comprehensive overview of LLMs as foundation models, specifically
focusing on generative language models, as well as a discussion on the application of NLP
in aviation safety analysis.
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2.1. Aviation Safety Reporting System (ASRS)

The ASRS offers a selection of five distinct forms for the submission of incident reports
by various personnel, as presented in Table 1. It is possible for multiple reports pertaining
to the same event or incident to exist, which are subsequently merged by safety analysts at
a later stage. A segment of the General Form for reporting incidents involving aircraft is
depicted in Figure 1.

Table 1. The ASRS provides a range of five distinct forms for the submission of incident reports by
different personnel. This can be accomplished through either an online form or an offline form, which
is subsequently dispatched to the ASRS via postal mail [7].

Form Name Submitted by

General Report Form Pilot, Dispatcher, Ground Ops, and Other
ATC Report Form Air Traffic Controller
Maintenance Report Form Repairman, Mechanic, and Inspector
Cabin Report Form Cabin Crew
UAS Report Form UAS Pilot, Visual Observer, and Crew

Figure 1. This is part of the General Form used by pilots, dispatchers, etc., to report any incidents
involving aircraft. The form contains fields asking about the Reporter, Conditions/Weather elements,
Light/Visibility, Airspace, Location, Conflicts, Description of event/situation, etc., [8].

Figure 2 illustrates the pipeline for processing incident reports in the ASRS. The process
begins with the ASRS receiving the reports in electronic or paper format. Subsequently,
each report undergoes a date- and time-stamping procedure based on the receipt date. Two
ASRS safety analysts then screen the report to determine its initial categorization and triage
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it for processing [2]. This screening process typically takes approximately five working
days. Based on the initial analysis, the analysts have the authority to issue an Alert Message
and share de-identified information with relevant organizations in positions of authority.
These organizations are responsible for further evaluation and any necessary corrective
actions [2].

Figure 2. The procedural flow for report processing commences with the submission of reports
through either physical or electronic means. These reports are subsequently subject to scrutiny by
safety analysts, and following the necessary de-identification procedures, they are integrated into the
Aviation Safety Reporting System (ASRS) database [2].

Afterward, multiple reports related to the same incident are consolidated to form a
single record in the ASRS database. Reports that require additional analysis are identified
and entered into the database after being coded using the ASRS taxonomy. If further
clarification is needed, the analyst may contact the reporter of the incident and any newly
obtained information is documented in the Callback column. Following the analysis phase,
any identifying information is removed, and a final check is conducted to ensure coding
accuracy. The de-identified reports are then added to the ASRS database, which can
be accessed through the organization’s website. To maintain confidentiality, all original
incident reports, both physical and electronic, are securely destroyed [2]. Table 2 shows
some of the columns included in the ASRS dataset.

Table 2. Below is a list of columns from the ASRS dataset, along with additional accompanying
information. This list is not exhaustive.

Column Name Description

ASRS Record Number (ACN) Unique identifier for each record in the ASRS database;
Example: 881998, 881724, etc.

Date
The date on which the incident occurred is provided in a yyyymm
format. This is done to de-identify incidents by removing “Day”
information;
Example: 201004, 201610, etc.

Local Time of Day
The incident time is categorized into specific time buckets to maintain
anonymity and prevent the inclusion of exact incident times. These
time buckets divide the 24-h period into four intervals;
Example: 0001-0600, 0601-1200, 1201-1800, and 1801-2400

Human Factors

Human Factors in aviation refers to the discipline that examines the
impact of human performance, cognition, and behavior on aviation
incidents, with the aim of understanding and mitigating factors, such
as human error, fatigue, communication breakdowns, and inadequate
training, that contribute to accidents or near misses in the
aviation industry;
Example: Communication Breakdown, Confusion, Distraction,
Fatigue, Human–Machine Interface, Situational Awareness, Time
Pressure, Workload, etc.
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Table 2. Cont.

Column Name Description

Contributing Factors/Situations
The factors or circumstances that played a role in the incident’s
occurrence, as identified by the reporter (in the narrative) and/or
safety analyst;
Example: Human Factors, Environment Non-Weather-Related,
Procedure, and Airspace Structure. Each incident can have multiple
contributing factors.

Primary Problem The main cause that led to the incident as identified by the
safety analyst;
Example: Human Factors, Environment Non-Weather-Related,
Procedure, and Airspace Structure. However, each incident can have
only one primary problem that led to the incident.

Narrative

The description of the incident provided by the reporter includes
information about the chain of events, “ how the problem arose”, and
various human performance considerations, such as perceptions,
judgments, decisions, and factors affecting the quality of human
performance, actions, or inactions;
Example: A C680, checked on to frequency (very thick accent). I
verified his Mode C and verified his assigned altitude of 11,000. I
issued a 070 heading out of PVD VOR to intercept the Runway 4R
localizer. He said ‘roger, zero seven zero’. Moments later I noticed his
altitude out of 10,000. I asked for an altitude verification and issued a
climb. Then I pointed the aircraft out to the adjacent facilities who
responded that there was no problem and point out approved.
Continued with routine handling. Just a language barrier. Just a
foreign pilot and language, although we use English as a common
language in ATC, can be a barrier.

Synopsis The summary of the incident written by safety analysts;
Example: A90 Controller described a pilot error event when the flight
crew of a foreign-registered aircraft descended below the assigned
altitude during vectors to final.

In the ASRS database, information in different columns is populated either based on
reporter-provided data or by safety analysts who analyze incident reports. For instance, the
Narrative column is examined to populate related columns like Human Factors, Contributing
Factors/Situations, and Synopsis.

With the increase in the number of incident reports over time, there is a need for
a human-in-the-loop system to assist safety analysts in processing and analyzing these
reports, which will help reduce the processing time, improve labeling accuracy [3], and
ultimately enhance the safety of the NAS. LLMs, which are introduced in the section below,
have the potential to help address this need.

2.2. Large Language Models (LLMs) as Foundation Models

This section provides an overview of LLMs and their pre-training and fine-tuning
processes and highlights their significance as foundational models. Furthermore, it explores
recent advancements in the field, with a particular focus on generative language models
and their relevance to the present work on aviation safety.

LLMs, such as Bidirectional Encoder Representations from Transformers (BERT) [9]
and the Generative Pre-trained Transformer (GPT) family [10–13], LLaMA [14], Llama 2 [15],
LaMDA [16], and PaLM [17], are advanced NLP systems that have shown remarkable
capabilities in understanding and generating human-like text. These models are built upon
Transformer neural networks with attention mechanisms [18]. Neural networks, inspired
by the functioning of the human brain, consist of interconnected nodes organized in layers
that process and transform input data. The attention mechanism enables the model to
focus on relevant parts of the input during processing, effectively capturing dependencies
between different words and improving contextual understanding. Transformers’ neural
architectures have been particularly successful in NLP tasks, providing an efficient and
effective way to process text.
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The training process of LLMs involves two main stages: pre-training and fine-tuning.
During pre-training, the model is exposed to vast amounts of text data from the Internet
or other sources, which helps it learn patterns, grammar, and semantic relationships.
This unsupervised learning phase utilizes large corpora of text to predict masked words,
allowing the model to capture the linguistic nuances of the language. The pre-training
stage often involves a variant of unsupervised learning called self-supervised learning [19],
where the model generates its own training labels using methods such as Masked Language
Modeling (MLM), Next-Sentence Prediction (NSP), generative pre-training, etc. This enables
the model to learn without relying on human-annotated data, making it highly scalable.
Unsupervised pre-training typically uses general-purpose texts, including data scraped
from the Internet, novels, and other sources. This helps overcome the non-trivial cost and
limits on scaling associated with data annotation.

After pre-training, LLMs are often fine-tuned on specific downstream tasks. This stage
involves training the model on annotated data for NLP tasks like text classification, question
answering, or translation. Fine-tuning allows the model to adapt its pre-learned knowledge
to the specific requirements of the target task and domain, enhancing its performance and
accuracy. The fine-tuning process typically involves using gradient-based optimization
methods to update the model’s parameters and minimize the discrepancy between its
predictions and the ground-truth labels.

The general schematics of pre-training and fine-tuning LLMs are shown in Figure 3.

Figure 3. This figure demonstrates the training process of large language models (LLMs) in two stages:
pre-training and fine-tuning. In the pre-training stage, the LLM learns from a large unlabeled corpus
to capture language patterns and semantics. In the fine-tuning stage, the LLM is further trained on
labeled corpora specific to downstream tasks, adapting its knowledge to improve performance in
task-specific domains [20].

As mentioned, LLMs, including BERT and GPT, are often termed as foundation models.
They provide the basis for an extensive range of specialized models and applications [21].

Fine-tuned models have been developed specifically for the aerospace field. These
include, for example, aeroBERT-NER [20] and aeroBERT-Classifier [22], developed by
fine-tuning variants of BERT on annotated aerospace corpora [20,22–24]. These models
were designed to recognize aerospace-specific named entities and categorize aerospace
requirements into different types, respectively [24].

The next subsection introduces a specific type of foundation model, namely generative
language models.

2.2.1. Generative Language Models

An alternative to BERT’s MLM and NSP pre-training is generative pre-training. This
approach draws inspiration from statistical language models [25,26], which aim to generate
text sequences by choosing word (token) sequences that maximize next-token probabilities



Aerospace 2023, 10, 770 7 of 26

conditioned on prior text. Neural language models [27] use neural networks to estimate the
conditional next-token probabilities. During generative pre-training, a model is fed a partial
sequence of text, with the remainder hidden from itself, and it is trained to complete the text.
Hence, the corpora for generative pre-training can be unlabeled, as in the self-supervised
training of BERT.

GPT [10] is a neural language model that employs a Transformer-based decoder [18]
as its neural architecture. This is in contrast to the Transformer encoder of BERT, which is
pre-trained with MLM and NSP. The decoder-only structure of GPT allows the model to
perform diverse NLP tasks, such as classifying text, answering questions, and summarizing
text, with minimal architectural changes.

In GPT-1 [10], generative pre-training is followed by task-specific supervised fine-
tuning by simply adding a dense layer and softmax and fine-tuning for only a few training
epochs. This approach is similar to BERT in that it requires sufficiently large annotated
datasets for supervised fine-tuning. GPT-2 and GPT-3 place greater focus on zero-shot
and few-shot learning, where the model must learn how to perform its tasks with zero
or only a few examples of correct answers. GPT-2 [11] proposed conditioning its output
probabilities on both the input and the desired task. Training a model for this multi-task
learning through supervised means is infeasible, as it would require thousands of (dataset,
objective) pairs for training. Therefore, GPT-2 shifts focus and demonstrates that strong
zero-shot capabilities on some tasks without supervised fine-tuning can be achieved with
a larger model (1.5B parameters). GPT-3 [12] scales GPT-2 up to 175B parameters, which
greatly improves task-agnostic performance in zero-shot, one-shot, and few-shot settings
without any supervised fine-tuning or parameter updates. It even outperforms some
fine-tuned models, achieving state-of-the-art performance on a few NLP benchmarks.

However, GPT-3 has numerous limitations. It struggles to synthesize text by repeat-
ing itself, losing coherence in long-generated text, and including non-sequitur sentences.
It lags far behind fine-tuned models in some NLP tasks, such as question answering.
In addition, its responses to user prompts are not always aligned with the user’s intent
and sometimes show unintended behaviors, such as making up facts (“hallucinating”),
generating biased or toxic text [28], and not following user instructions. These limitations
stem from a fundamental incompatibility between the pre-training objective of generating
the next token and the real objective of following user instructions safely and helpfully.
InstructGPT (GPT-3.5) [5], the underlying LLM for ChatGPT by OpenAI, aims to correct
this misalignment.

Since the mistakes GPT-3 makes are not easy to evaluate through simple NLP metrics,
InstructGPT employs reinforcement learning with human feedback (RLHF) [29,30] after
pre-training to dramatically improve performance. This is a three-step process:

1. Supervised policy fine-tuning: Collect a set of instruction prompts and data labelers
to demonstrate the desired output. This is used for supervised fine-tuning (SFT) of
GPT-3.

2. Training a reward model: Collect a set of instruction prompts, each with multiple
different model outputs, and have data labelers rank the responses. This is used to
train a reward model (RM) starting from the SFT model with the final layer removed.

3. Optimizing a policy against the RM via RL: Collect a set of prompts, outputs, and
corresponding rewards. This is used to fine-tune the SFT model on their environment
using proximal policy optimization (PPO).

Once InstructGPT fine-tunes GPT-3 through these steps, it becomes a standalone, off-
the-shelf LLM that can effectively perform a diverse set of tasks based on text instructions,
without the need for any additional training. Indeed, it has numerous benefits over GPT-3:
labelers prefer InstructGPT outputs, it is more truthful and less toxic, and it generalizes
better to tasks and instructions not seen during training.

In the context of this study, the terms InstructGPT, GPT-3.5, and ChatGPT are used
synonymously, as they fundamentally represent the same technology utilized via an API.
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The following section discusses the application of NLP more broadly in support of
aviation safety analysis

2.2.2. NLP in Aviation Safety Analysis

There has been a decrease in the occurrence of incidents resulting from technical
failures; however, incidents arising from human factors issues have emerged as the predom-
inant underlying cause of the majority of incidents [31,32]. Several studies, such as [33–40],
have looked into human factors issues in aviation. One of the most complex and difficult
tasks when classifying aviation safety incidents is sub-classifying incidents stemming from
human factors complications, which is a primary area of interest in this research.

Presently, incident/accident narratives are predominantly analyzed by safety analysts
for the identification of factors that led to the incident/accident and to identify the root
cause. The investigation conducted in [3] gathered labels from six individual annotators
with aviation/human factors training, each working on a subset of 400 incident reports,
culminating in a collective 2400 individual annotations. The outcomes indicated that there
was a high level of disagreement among the safety analysts. This highlights the potential
for LLMs to assist in incident classification, with subsequent verification by safety analysts.

In light of contemporary advancements in the field of NLP, numerous LLMs have
been employed for the evaluation of aviation safety reports. The majority of research
conducted in this sphere has largely concentrated on the classification of safety documents
or reports [4,41].

In their study, Andrade et al. [4] introduced SafeAeroBERT, an LLM generated by
initially training BERT on incident and accident reports sourced from the ASRS and the
National Transportation Safety Board (NTSB). The model is capable of classifying reports
into four distinct categories, each based on the causative factor that led to the incident.
Despite its capability, SafeAeroBERT outperformed BERT and SciBERT in only two out of
the four categories in which it was explicitly trained, thereby indicating potential areas
for enhancement. In a similar vein, Kierszbaum et al. [41] proposed a model named
ASRS-CMFS, which is a more compact model drawing inspiration from RoBERTa and is
trained using domain-specific corpora. The purpose of the training is to perform diverse
classifications based on the types of anomalies that resulted in incidents. From the authors’
findings, it became evident that in most instances, the base RoBERTa model maintained a
comparative advantage.

Despite the abundance of research and literature in the domain of aviation safety
analysis [42,43], the application of generative language models remains largely unexplored
within this field.

The following section discusses the dataset and methodology developed to demon-
strate the potential of generative language models in the realm of aviation safety analysis.

3. Materials and Methods

This section details the dataset utilized in this work, the specific prompt employed,
and the methodology adopted for interacting with ChatGPT.

3.1. Dataset

The ASRS database contains 70,829 incident reports added between January 2009 and
July 2022. A total of 10,000 incident reports whose Primary Problem was labeled as human
factors were downloaded for use in this study. This choice was motivated by the large
number of incidents resulting from human factors compared to other causes [1].

3.2. Prompt Engineering for ASRS Analysis

This work leverages GPT-3.5 (via the OpenAI’s ChatGPT API) [44] to analyze incident
narratives, identify the human factors issues that led to incidents (Table 3), identify respon-
sible entities, and generate incident synopses. As mentioned, the primary objective is to
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investigate and validate the potential uses of generative language models in the context of
aviation safety analysis.

Table 3. List of human factors issues and their definitions. One or more of these factors can result in
an incident or accident.

Human Factors Issue Definition

Communication Breakdown
Failure in the exchange of information or understanding between
pilots, air traffic controllers, or other personnel, leading to potential
errors or safety issues in flight operations

Confusion
State where pilots, air traffic controllers, or other personnel are
uncertain or lack clarity about flight information or procedures,
potentially compromising flight safety or efficiency

Distraction
Any event, process, or activity that diverts attention away from a
pilot’s primary task of safely controlling the aircraft or prevents air
traffic controllers from effectively managing flight operations

Fatigue State of mental or physical exhaustion that reduces a pilot’s ability to
safely operate an aircraft or perform flight-related duties

Human–Machine Interface
Problems or difficulties in the interaction between pilots (or other
personnel) and aviation equipment or systems, which can hinder
operations and potentially compromise flight safety

Physiological—Other

Can include conditions like fatigue, hypoxia, barotrauma,
dehydration, deep vein thrombosis, jet lag, spatial disorientation,
effects of G-force, chronic noise and vibration exposure, radiation
exposure, and disruptions to circadian rhythms, each resulting from
the unique environmental and physical challenges of flight

Situational Awareness

Refers to a scenario where a pilot or crew has an incomplete,
inaccurate, or misinterpreted understanding of their flight
environment, which can potentially lead to operational errors
or accidents

Time Pressure
Urgency or stress that pilots or air traffic controllers may experience
when they have limited time to make crucial decisions or complete
necessary tasks, often impacting safety and operational efficiency

Training/Qualification

Problems or challenges arising due to insufficient, inadequate, or
improper training and certification of aviation personnel, including
pilots, air traffic controllers, and maintenance crews, potentially
impacting the safety and efficiency of aviation operations

Troubleshooting
Process of identifying and solving mechanical, technical, operational,
or human factors-related problems that occur in the functioning of
aircraft or in aviation operations, to maintain safety and efficiency

Workload
Tasks or responsibilities assigned to aviation personnel, such as pilots,
air traffic controllers, or maintenance crews, exceed their capacity,
potentially resulting in fatigue, errors, and safety risks

Other/Unknown
Problems, errors, or challenges occurring within aviation operations
that cannot be readily categorized or identified under established
categories and might require further investigation

Interacting with ChatGPT involved testing a variety of prompts before selecting the
most suitable one. A prompt forms the initial input to a language model, shaping its
subsequent output and significantly impacting the generated text’s quality and relevance.
Prompt engineering is the act of optimizing these prompts. This process refines the input to
effectively guide the model’s responses, improving its performance and output applicability.
The temperature parameter of ChatGPT was set to near zero for this task. When the value
is set to near zero, the output becomes predominantly predetermined and is well-suited for
tasks that necessitate stability and yield the most probable outcome.

The initial step in the prompt engineering process involved assigning the persona of an
aviation safety analyst to ChatGPT. Subsequently, ChatGPT was instructed to produce a
brief synopsis based on the incident description. Initially, there were no restrictions on the
length of the generated synopses, resulting in significant variations in length compared to
the actual synopses. To address this, the lengths of the actual synopses were examined, and
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a maximum limit of two sentences was imposed on the generated synopses. Because the
model appeared to omit the names of the systems involved at first, it was then specifically
prompted to include system names and other relevant abbreviations.

Subsequently, the model was tasked with identifying various human factors issues
responsible for the incident based on the provided incident narratives. While the model
demonstrated the ability to identify these human factors issues, its responses exhibited
significant variability due to its capability to generate highly detailed causal factors. This
made it challenging to compare the generated responses with the ground truths, which
encompassed twelve overarching human factors issues. Consequently, adjustments were
made to the prompt to instruct the model to categorize the incidents into these twelve
predefined classifications, where the model could choose one or more factors for each
incident. Additionally, the model’s reasoning behind the identification of human factors
issues was generated via a prompt to provide an explanation for the decision made by the
language model. Likewise, the model was directed to determine the entity accountable for
the incident from a predetermined list of general options (such as ATC, Dispatch, Flight
Crew, etc.) to prevent the generation of excessively specific answers, thereby facilitating the
aggregation and subsequent evaluation process. The rationale behind these classifications
was generated as well.

Lastly, the model was prompted to generate the output in a JSON format for which the
keys were provided, namely Synopsis, Human Factors issue, Rationale-Human Factors issue,
Incident attribution, and Rationale-Incident attribution. This was done to make the parsing
of the model outputs easier. The structured format was then converted into a .csv file for
further analysis using Python.

The prompt employed in this work can be found in Appendix A.

3.3. Analyzing ChatGPT’s Performance

The .csv file generated was further analyzed to benchmark ChatGPT’s performance
against that of the safety analysts.

The quality of ChatGPT-generated incident synopses was analyzed first. Two ap-
proaches were taken to assess quality: (1) the similarity of ChatGPT-generated synopses
to human-written synopses using BERT-based LM embeddings, and (2) the manual exam-
ination of a small subset of the synopses. These two approaches are discussed in more
detail below.

3.3.1. Similarity Analysis Using BERT-Based LM Embeddings

When a sequence of text is fed to a BERT-based LM, it is first encoded by its pre-
trained Transformer encoder into a numerical representation (i.e., an embedding). This
same embedding may be fed to heads (or decoders) that perform various NLP tasks,
such as sentiment analysis, text summarization, or named-entity recognition. Hence, this
embedding contains deep syntactical and contextual information characterizing the text.
For standard-size BERT models, the hidden representation of a text sequence made up of
T WordPiece tokens is of the dimension 784 × T, and the row sum is commonly used as
the embedding. Two text sequences are thought to be similar if their embedding vectors
from the same LM have a similar angle, i.e., have high cosine similarity (close to 1), and
dissimilar when they have low cosine similarity (close to 0). Hence, the cosine similarities
of all pairs of human-written and ChatGPT-generated incident synopses were measured
using several BERT-based LMs, including BERT [9], aeroBERT [20,22], and Sentence-BERT
(SBERT) [45]. It is important to note that the latter uses a Siamese network architecture
and fine-tunes BERT to generate sentence embeddings that the authors suggest are more
suited to comparison by cosine similarity. This was followed by a manual examination of
some of the actual and generated synopses to better understand the reasoning employed
by ChatGPT for the task.
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3.3.2. Manual Examination of Synopses

Subsequently, a comparison was made between the human factors issues identified
by ChatGPT and those identified by the safety analysts. The frequency at which ChatGPT
associated each human factors issue with incident narratives was taken into account. To
visualize these comparisons, a histogram was constructed. Furthermore, a normalized
multilabel confusion matrix was created to illustrate the level of concordance between
ChatGPT and the safety analysts in attributing human factors issues to incident narratives.
Each row in the matrix represents a human factors issue assigned to cases by the safety
analysts. The values within each row indicate the percentage of instances where ChatGPT
assigned the same issue to the corresponding narrative. In an ideal scenario where ChatGPT
perfectly aligned with the safety analysts, all values except for those on the diagonal should
be zero. Performance metrics such as precision, recall, and F1 score were used to assess the
agreement between ChatGPT and the safety analysts.

Finally, an analysis was conducted regarding the attribution of fault by ChatGPT. The
focus was placed on the top five entities involved in incidents, and their attributions were
qualitatively discussed, supported by specific examples.

The subsequent section discusses the results obtained by implementing the methodol-
ogy described in the current section.

4. Results and Discussion

The dataset of 10,000 records from the ASRS database was first screened for duplicates,
as represented by the ASRS Case Number (ACN), and all duplicates were deleted, resulting
in 9984 unique records. The prompt shown in Appendix A was run on each record’s
narrative via the OpenAI ChatGPT API, resulting in five new features generated by GPT-
3.5, as outlined in Table 4.

Table 4. Features (columns) generated by GPT-3.5 (ChatGPT) based on ASRS incident narratives.

Generated Feature Description

Synopsis
A synopsis of the narrative in 1–2 sentences that includes important
details, such as the name of the system, and other relevant abbreviations,
as necessary.

Human Factors Issue

A list of human factors issues predicted from the narrative, from the
categories Communication Breakdown, Confusion, Distraction, Fatigue,
Human–Machine Interface, Other/Unknown, Physiological—Other,
Situational Awareness, Time Pressure, Training/Qualification,
Troubleshooting, and Workload (mirroring the issues used in the ASRS),
along with additional issues that ChatGPT was free to suggest.

Human Factors Issue (Rationale) A 1–2 sentence description of the rationale ChatGPT used to decide
which human factors issues were relevant.

Incident Attribution An entity/entities to whom the incident can be attributed based on the
narrative.

Incident Attribution (Rationale) A description of the rationale ChatGPT used to attribute the incident to
the specified party.

4.1. Generation of Incident Synopses

Two approaches were employed to assess the quality of ChatGPT-generated incident
synopses: (1) the similarity of ChatGPT-generated synopses to human-written synopses
using BERT-based LM embeddings, and (2) the manual examination of a small subset of
the synopses.

As depicted in Figure 4, all the models (BERT, SBERT, and aeroBERT) found the
synopses to be mostly quite similar. aeroBERT, with its fine-tuning on aerospace-specific
language, evaluated the sequences as most similar, whereas the dedicated but general-
purpose sequence-comparison model SBERT found the ChatGPT synopses to be similar
but less so. SBERT is trained to excel in sentence similarity comparison, which inherently
makes it more perceptive at distinguishing between sentences. This characteristic accounts
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for the wider distribution observed in the histogram. However, its limitation lies in the
absence of domain-specific comprehension, leading to a lower median in the histogram.

Figure 4. This histogram presents the cosine similarities computed by BERT, SBERT, and aeroBERT.
Remarkably, aeroBERT, having undergone targeted fine-tuning on aerospace text, demonstrates
a notably heightened level of similarity between the generated synopses and those composed by
safety analysts in comparison to the other two models. Furthermore, aeroBERT exhibits superior
proficiency in capturing semantic meaning beyond the mere lengths of the synopses being compared,
contributing to its enhanced performance in capturing similarities within the aerospace domain.

Because the practicality of these similarities was not evident, the next step involved a
manual evaluation of a sample of high- and low-similarity pairs of synopses from each of
the three models.

Table 5 displays the top three synopses with the highest cosine similarity between the
embeddings generated by each LM for the generated synopses and the synopses written by
the safety analysts. Notably, the lengths of the generated and ground-truth synopses were
very similar in this instance. As a general observation, the synopses generated by ChatGPT
were found to be more comprehensive, presenting incident details in a chronological
manner compared to the approach adopted by the safety analysts, who tended to include
only the most critical elements in their synopses. For instance, upon analyzing the narrative
for ACN 1759478, ChatGPT’s synopsis encompassed the nuanced observation that the
passenger was permitted to fly but subsequently removed upon arrival at the gate. In
contrast, this specific detail was omitted in the synopsis generated by the safety analyst.

Regarding ACN 940308 (Table 5), an inaccuracy was observed where the model incor-
rectly abbreviated Routine Overnight as RON, whereas the correct abbreviation is Remain
Overnight. This error arises from the incident narrative’s usage of the incorrect abbreviation.
To address such discrepancies, utilizing vector databases to store the meanings of abbrevi-
ations and other pertinent information could be beneficial. This approach would enable
querying and extracting the appropriate information based on the context provided in a
prompt, leading to more accurate and contextually relevant responses.

Similarly, Table 6 illustrates the three synopses with the minimum cosine similarity
between the embeddings of the generated synopses and the corresponding synopses written
by the safety analysts. A noteworthy observation from this data is the significant difference
in length between the generated synopses and the ground truths for all three LLMs. The
lengths of the generated synopses fluctuate depending on the narrative’s length and the
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prompt’s restriction to produce 1-2 sentences. In contrast, the ground-truth synopses are
notably concise. Furthermore, there appears to be a degree of overlap for some of the
synopses that obtained the lowest ranking in terms of cosine similarity. ACN 837587 “A
light twin and a single engine have a NMAC at Isla Grande”, for example, was ranked one of
the lowest in terms of similarity when compared to the synopsis embeddings generated by
both BERT and SBERT. However, the cosine similarity between the generated synopsis and
the ground-truth synopsis, as determined using the aeroBERT embeddings, was computed
to be 0.936. It is important to acknowledge that, typically, the embeddings produced by
aeroBERT perceived the generated synopses and the ground-truth synopses as being more
similar in comparison to those derived from BERT and SBERT.

The cosine similarities between human-written and ChatGPT-written synopses for
aeroBERT, SBERT, and BERT show correlations of 0.25, 0.32, and 0.50, respectively, to the
lengths of the human-written synopses (in words). This suggests that aeroBERT is less
likely to attribute similarities based on the confounding variable of synopsis length.

Table 5. Table displaying the three top-matched synopses generated by the safety analysts and
ChatGPT, as determined by cosine similarity (CS) scores calculated using different LLM embeddings.

ACN Synopsis (Safety Analyst) Synopsis (ChatGPT) CS

BERT Embedding

963743 As a J3 slowed after landing the pilot over corrected a left
drift so the aircraft veered right off the runway where the
left wheel hit a prairie dog hole and broke the axle.

During landing at the home airport, the Piper J-3 Cub veered left
and the pilot over-corrected, causing the aircraft to turn hard right
and run off the right side of the runway. The left tire hit a prairie
dog hole and bent the left axle.

0.963

1268182 A B-747 flight crew attempted to do a 180-degree turn on
a runway due to taxiway closures. The Captain began the
turn with about seven knots but was unable to complete
the turn with that initial ground speed. The nose tire
partially departed the runway and cables were used to
get the Aircraft back on to the Runway. The aircraft was
found to have no damage and cleared for flight.

The crew of Aircraft X attempted to perform a 180-degree turn on
Runway 08, which was narrower than the minimum width required
for the turn. The crew’s decision to continue with the turn was influ-
enced by the urgency of transporting high-priority cargo, including
blood supplies. The aircraft skidded twice during the turn, and
the crew decided to stop the aircraft and request tug assistance to
complete the turn. The aircraft was eventually pulled back onto the
runway and cleared for flight after inspection.

0.962

1230761 A Line Aircraft Maintenance Technician (AMT) reports
finding the inboard end of a left aileron contacting a wing
rib directly inboard of the aileron on a Cessna CE-560EP
aircraft. Rivets and screws retaining the balance weight
cover were gouging into the rib. Aileron had been in-
stalled three years earlier, but was found to be incorrect
for the aircraft.

During a preliminary inspection of a Cessna CE560EP aircraft, the
inboard end of the L/H aileron was found to be contacting the wing
rib directly inboard of the aileron. Maintenance Control initially
suggested grinding the aileron to get clearance, but a later E/O
was issued to grind the rivet down and fly the aircraft under Ferry
permit to get repaired properly. Three days later, it was discovered
that the aileron was the wrong part number installed three years
prior.

0.959

aeroBERT Embedding

1759478 Air carrier Captain reported a passenger appeared in-
toxicated during boarding, but was allowed to fly. Dur-
ing the flight the passenger was non-compliant with face
mask policy.

During the flight, a passenger appeared to be intoxicated and was
non-compliant with mask requirements. The flight crew notified
customer service and had the passenger removed upon arrival at
the gate.

0.987

1112916 An experienced pilot was distracted by conversation with
a passenger and neglected to remove the tow bar during
pre-flight. This was discovered when attempting to repo-
sition into the hangar after the flight. The tow bar was
found off the runway with no damage to the aircraft.

The pilot was distracted during pre-flight and failed to remove the
aircraft tow bar. The tow bar was found 1,800 FT from the departure
end of the runway after the flight. No apparent damage was found
on the aircraft.

0.987

1158337 After landing in MIA, a fatigued flight crew realized that
they were on Approach Control frequency and had not
received landing clearance.

The flight crew forgot to switch to the Tower frequency and landed
without clearance due to a lack of situational awareness and fatigue.

0.985
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Table 5. Cont.

ACN Synopsis (Safety Analyst) Synopsis (ChatGPT) CS

SBERT Embedding

1011027 A pilot reported loosing control of a Maule Amphibian on
takeoff after he lifted off to soon in a crosswind causing a
wing to stall and forward parts of the floats to contact the
runway.

The pilot lost control of a Maule Amphibian during takeoff in strong
crosswind conditions, causing the aircraft to contact the ground
with the forward parts of the floats.

0.924

917365 A Line Mechanic was informed that a lock-pin from the
aft service door evacuation slide inflation valve had not
been removed after he replaced a MD-88 door slide. The
lock-pin was allegedly found six months later during a
cabin maintenance visit.

During a cabin maintenance visit, it was found that the lock pin
from the aft service door evacuation slide inflation valve had not
been removed after the replacement of evacuation slides in a MD-88
aircraft.

0.921

940308 A Line Mechanic loosely installed mount bolts during
replacement of a Center Tank Fuel Quantity Transient
Suppression Device (TSD) on a B737-300 aircraft to al-
low another Mechanic to connect a wire harness to the
TSD. Mechanic realized after the aircraft departed that
the mount bolts may not have been tightened.

During maintenance work on a B737-300 aircraft, a lack of commu-
nication between two Aviation Maintenance Technicians (AMTs) led
to the temporary installation of the Center Fuel Quantity Transient
Suppression Device (TSD) box with mount bolts finger tight. The
AMT who installed the TSD harness was not informed about this,
leading to loose bolts. The issue was later corrected by another AMT
during a Routine Overnight (RON) inspection.

0.920

Table 6. The three worst-matched synopses generated by the safety analysts and ChatGPT, alongside
their cosine similarity scores calculated using different language model embeddings.

ACN Synopsis (Safety Analyst) Synopsis (ChatGPT) CS

BERT Embedding

837587 A light twin and a single engine have a NMAC at Isla
Grande.

The pilot was unable to communicate effectively with the tower due
to a congested frequency, resulting in a near mid-air collision with
another aircraft on converging flight paths.

0.559

1889454 Air carrier ground personnel reported Hazmat cargo was
transported on wrong aircraft.

Hazmat intended for a later mainline trip was mistakenly loaded
onto an express trip.

0.621

1231062 CE525 Captain expresses confusion over RNAV SID’s
STAR’s after modification by ATC, in general and the
UECKR1 specifically.

The flight crew received conflicting instructions from ATC during
clearance, which led to confusion and misinterpretation of the clear-
ance.

0.623

aeroBERT Embedding

1671165 C172 Pilot reported a NMAC while training. During air work, the pilot was distracted by maintaining airspeed
and bank angle while performing an emergency descent, leading
to a lack of situational awareness. The pilot did not take sufficient
steps to confirm the other aircraft’s position, and the two aircraft
passed each other with a relatively small clearance.

0.890

1878408 Small Aircraft Instructor Pilot reported a NMAC. On DATE at XA:20, a flight crew and their student were flying
in the Northeast Practice Area in Arizona when they encountered
another aircraft, Aircraft Y, that was not following the right of way
standard right turn to avoid traffic. The incident was caused by a
communication breakdown between the flight crew and the other
aircraft on the NE Practice area frequency.

0.882

1638197 C310 pilot reported flying VFR into IMC. The pilot cancelled IFR based on the belief that VMC prevailed in the
area, which was not the case. The pilot had an unreasonable belief
that the weather would improve and did not consider requesting
immediate IFR clearance or performing a 180 turn. The incident
was caused by the pilot’s decision-making and actions.

0.894

SBERT Embedding

837587 A light twin and a single engine have a NMAC at Isla
Grande.

The pilot was unable to communicate effectively with the tower due
to a congested frequency, resulting in a near mid-air collision with
another aircraft on converging flight paths.

0.123
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Table 6. Cont.

ACN Synopsis (Safety Analyst) Synopsis (ChatGPT) CS

1409509 C172 pilot reported an NMAC in the vicinity of IGX air-
port.

During a VFR flight utilizing flight following, the pilot failed to
set the ascent rate on the autopilot, causing the aircraft to hold the
current altitude instead of climbing to the requested altitude of
4500 feet. This led to a potential conflict with another aircraft, and
the pilot had to descend further to maintain separation.

0.162

1028402 EMB145 Captain describes the factors that resulted in
missing a crossing restriction during the GIBBZ1 RNAV
arrival to IAD.

The flight crew deviated from a new arrival procedure due to the
First Officer’s inexperience in the aircraft and uncertainty about an
acceptable rate of descent. The Captain’s focus on the next waypoint
ahead of the current one led to a delay in realizing the aircraft was
too high.

0.218

4.2. Performance with Human Factors-Related Issues

In this section, we evaluate how the safety analysts and ChatGPT compare in attribut-
ing human factors issues to ASRS incidents. ChatGPT was prompted (see Appendix A) to
attribute the human factors issues listed in Table 3 to each incident narrative and to explain
its rationale in doing so.

Initially, an assessment was made regarding the rate at which ChatGPT associated
each human factors issue with incident narratives. When compared with the assessments
made by the safety analysts, it was observed that ChatGPT attributed human factors issues
to narratives less frequently, with the sole exception being the Training/Qualification cate-
gory, which is a systemic issue that ChatGPT assigned with a higher frequency (Figure 5).
ChatGPT’s propensity to frequently assign the Training/Qualification category might be
associated with its algorithmic interpretation of the narratives. Since the model is designed
to identify patterns and make decisions based on those patterns, the prevalence of Train-
ing/Qualification assignments could potentially reflect patterns within the training data
related to language usage or context. Furthermore, Training/Qualification issues might be
more straightforward and explicit in the narratives, leading to their higher representation.
These elements could appear more clearly and concretely in the text, leading to their more
frequent identification by the model. This does not necessarily imply a bias in the model
but rather illustrates the intricacies involved in training a language model to understand
and interpret human factors in complex real-world scenarios.

Notably, ChatGPT rarely assigned Confusion, Human–Machine Interface, Other/Unknown,
and Troubleshooting. These human factors issues can be relatively nuanced and involve a
complex interplay of human behavior and situational context. These elements could poten-
tially be more challenging for the model to consistently identify due to their complexity and
the subtlety with which they may be conveyed in the text. It should be emphasized that
there were variations in the human factors issues identified by the safety analysts due to
subtle differences in categories like Confusion, Situational Awareness, Fatigue, Physiological—
Other, Time Pressure, etc., due to their broad definitions. For instance, in the case of the
narrative pertaining to ACN 1758247 presented in Table 7, one safety analyst could poten-
tially identify the related human factors issue as Fatigue. Conversely, another analyst might
designate the issue as falling under the category of Physiological—Other, which was the
case in this specific instance. The differences in these attributions underscore the challenge
of categorizing complex human factors in aviation safety, as categories such as Situational
awareness, Confusion, Time Pressure, and Physiological—Other can be broadly interpreted and
may overlap. For instance, Time Pressure could result in Confusion, and both could affect
Situational awareness and lead to various Physiological—Other conditions, including fatigue.
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Figure 5. Frequency of human-attributed and ChatGPT-attributed human factors issues

Table 7 depicts a sample of five incident narratives where the safety analyst and
ChatGPT did not agree on the identification of the human factors issue. For the narrative
associated with ACN 1013382, a safety analyst attributed the installation of an incorrect
Flight Management System (FMS) database to Human–Machine Interface and Situational
Awareness, emphasizing the pilot’s interaction with the system and their failure to fully
grasp the situation. In contrast, ChatGPT classified the cause as Training/Qualification,
pointing toward potential inadequacies in the pilot’s training, specifically the thorough
verification of the installed database. These different attributions underscore the complex
nature of aviation safety issues, with the safety analyst’s perspective focused on in-flight
actions and interactions, whereas ChatGPT emphasized the need for comprehensive pre-
flight training and checks.

Similarly, for ACN 834159, there was a discrepancy between the incident cause attribu-
tion assigned by the safety analyst and ChatGPT. The safety analyst identified the cause as
Troubleshooting, likely focusing on the situation’s process aspect and the decision to continue
with the journey despite visible issues. In contrast, ChatGPT attributed the incident to
Maintenance, possibly due to the mechanic’s involvement and the re-occurrence of the
problem, hinting at an underlying maintenance issue that was not resolved initially. The
distinction in the interpretations might be due to the subjective nature of human analysis,
which can lead to variations in classification among safety analysts. An analyst’s interpreta-
tion may be influenced by their individual experiences, expertise, and perception of what
constitutes the core issue in a given scenario. On the other hand, ChatGPT classified the
issue under ‘Maintenance’ by associating keywords like ‘mechanic’, ‘condensation’, ‘win-
dow’, and ‘blocked’ with a maintenance problem, a classification approach that remained
constant across various scenarios. This method can potentially lead to a more uniform and
consistent categorization of incident causes, which is crucial for trend analysis and effective
mitigation strategies.



Aerospace 2023, 10, 770 17 of 26

Table 7. Five incident narratives where discrepancies exist between the human factors issues identi-
fied by the safety analyst and those recognized by ChatGPT.

ACN Incident Narrative Label (Analyst) Label (ChatGPT)

1758247 After reporting at XA:15 for a XB:45 pushback to ZZZZ, we were delayed for a
maintenance issue. Our CCO time was XD:28, we waived and agreed to extend for
2 h until XF:28. The time ran out and we were delayed because of legality issues.
It took us 1 h to get to the hotel, because of late night and COVID-19 procedures. I
entered my room at XG:30. I tried to find some food because the intention was to
complete the 15 h flight to ZZZZ. I found no food so elected to try to rest. I rolled
around trying to decompress and unwind from the on again off again rolling
delay of the maintenance issue. I finally fell asleep around XJ:00. At XK:00, the
hotel started to come alive. There were numerous door openings and closings.
They were obviously crew members leaving for work. Not 45 min after numerous
crew members departed for work housekeeping arrived to clean and disinfect the
rooms. It seemed like due to COVID-19 the process took longer and was much
louder than it should have been. By that time it was XN:00 and I had slept for
maybe 60 min. I decided I was not fit to fly due to operational caused fatigue and
informed the crew desk at XO:00.

Physiological—Other Fatigue

1568978 (It was a) normal pattern to a base leg. After deploying flaps, the boost pump
was accidentally switched on, which flooded the engine and caused a total loss
of engine power. Due to the low altitude and the flaps being fully deployed,
the aircraft could not glide to the runway, so I made the decision to take control
and land off to the left side just short of the runway. The aircraft stopped rolling
approximately 25 feet before the runway threshold. There appears to be no damage
to the area where the landing occurred or to the aircraft itself. There is no sign of
mechanical failure, only pilot error.

Other/Unknown Distraction

1021950 July 2012. On Aircraft X, an ERJ-190 aircraft, I removed and replaced the Captain’s
Pitch-Trim switch in accordance with Aircraft Maintenance Manual (AMM). Did a
Return to Service and Operational Test per AMM. Operational Check good, MEL
was cleared. Two days later, Pilot in ZZZ1 reported Captain’s yoke Elevator Trim
(Pitch Trim) switch operates opposite to input. In ZZZ1, Captain’s [Pitch] Trim
switch was re-installed per AMM and Operational Check good, OK for service.

Communication Break-
down; Confusion; Situ-
ational Awareness; Trou-
bleshooting

Maintenance

1013382 I was informed by operations that the aircraft that I flew had the wrong database
installed in the FMS. It had a B777 database instead of an MD11 database. I did
check the date of the database but did not check the numbers at the top to verify
correct installation. After seeing the same thing at the top of the screen I rarely
verify the correct database installed! We proceeded to destination without any
issues or ATC questions so I am assuming the data base was close enough to
operate a MD11. Have Maintenance verify the aircraft type and database type
before installation then reverify after load.

Human–Machine Inter-
face; Situational Aware-
ness

Training/Qualification

834159 When I was doing my safety check I noticed that the window on door 2 L was
covered in condensation. The mechanic came on removed the interior window
and wiped off the condensation. He replaced the interior window stated it would
be deferred and was ’good’ for 100 h. Upon landing at our destination the window
was again 100 percent blocked. 1R was 100 percent blocked and 2R was about
60 percent blocked. The plane continued to be released despite the serious safety
concerns of the flight attendants. We went on to our next destination and again
upon landing 2 L window was 100 percent blocked.

Troubleshooting Maintenance

Next, a normalized multilabel confusion matrix [46] was generated, as shown in
Figure 6. The confusion matrix helps visually represent the agreement (or disagreement)
between the human factors issue attributions made by ChatGPT and those made by the
safety analysts for each record in the ASRS database. Each row corresponds to a human
factors issue as identified by the safety analysts. The values in each row signify the
percentage of times ChatGPT attributed the same issue to the incident narrative as the
safety analyst. The darker shades of blue indicate a higher agreement between the ChatGPT
and safety analyst attributions. In an ideal scenario, if ChatGPT’s assessments perfectly
match those of the safety analysts, all the values outside the diagonal should be zero,
depicted by the color white.

We note that ChatGPT agreed with the safety analysts more than 40% of the time
for the following classes: Communication Breakdown, Fatigue, Situational Awareness, and
Training/Qualification (note the dark shades of blue on the diagonal for these issues). It
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agreed substantially less for the other classes. The most common source of disagreement
was when ChatGPT chose not to attribute any human factors issues (as shown in the right-
most column of the multilabel confusion matrix in Figure 6, where moderate shades of
blue are common). In addition, ChatGPT attributed many more incidents to Communication
Breakdown, Distraction, Situational Awareness, and Training/Qualification compared to the
safety analysts (these columns are shaded a bit more than the other columns).

Figure 6. Normalized multilabel confusion matrix for human factors issues.

The lower precision and recall values achieved by ChatGPT (Table 8) in attributing
human factors issues, compared to the safety analysts, can be understood through various
perspectives that highlight both the strengths and limitations of humans and LLMs.

Firstly, it is important to acknowledge the subjectivity of human interpretation. Safety
analysts, with their individual experiences and knowledge, may have varied interpretations
of the same incident narrative, which can lead to inconsistencies in the identification of
human factors issues. The process relies heavily on personal judgment, leading to potential
inconsistencies in classifications (Table 7), even among different analysts.

Secondly, the identification of human factors issues in aviation incidents is inherently
complex. A single event can trigger a cascade of other factors, and the precise categorization
of these factors can be difficult due to their interconnectedness. On the other hand, ChatGPT,
which is trained on vast amounts of data, offers a more uniform approach to categorization.
It identifies patterns in the narratives and bases its attributions on these patterns, leading to
better consistency. However, ChatGPT is generally more conservative in assigning human
factors issues compared to safety analysts, often missing factors that a safety analyst may
deem significant, thus leading to lower recall values.

The precision value of 0.61 implies that when ChatGPT identified a human factors
issue, safety analysts agreed with this categorization around 61% of the time. The variations
in recall and precision values between ChatGPT and the safety analysts indicate that there
is room for growth and fine-tuning in the model.
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Table 8. Classification report of ChatGPT predictions vs. human-attributed human factors issues.

Class Precision Recall F1 Score Support

Communication Breakdown 0.67 0.62 0.64 4332
Confusion 0.67 0.05 0.1 2570
Distraction 0.53 0.38 0.44 2072
Fatigue 0.71 0.69 0.7 481
Human–Machine Interface 0.44 0.04 0.08 1210
Other/Unknown 0.19 0.03 0.05 609
Physiological—Other 0.42 0.25 0.32 208
Situational Awareness 0.74 0.52 0.61 6475
Time Pressure 0.59 0.15 0.24 1132
Training/Qualification 0.32 0.47 0.38 1649
Troubleshooting 0.45 0.07 0.12 455
Workload 0.48 0.16 0.24 1305

Weighted Average 0.61 0.38 0.43 22,498

The integration of human expertise with LLM capabilities presents a promising solu-
tion to this challenge. While safety analysts bring experience-based insight and intuition to
the table, ChatGPT offers large-scale, consistent data analysis. Together, they can enhance
the accuracy and efficiency of incident-cause attribution in aviation safety, leveraging both
the strengths of human judgment and the precision of LLMs. This collaborative approach
can help ensure a more comprehensive, balanced, and consistent analysis, enhancing the
overall effectiveness of safety measures in aviation.

4.3. Assessment of Responsibility

ChatGPT was also leveraged to ascertain the involvement of different entities in the
event. It is essential to clarify that the goal here was not to impose penalties on the entities
identified but to harness these specific occurrences as rich resources to bolster the base of
aviation human factors safety research. This becomes especially significant considering the
widely accepted notion that human performance errors underpin more than two-thirds of
all aviation accidents and incidents.

The responses from ChatGPT were not strictly confined to the options offered in the
prompt. Instead, it skillfully produced associated entities based on the provided narrative.
Additionally, in instances where involvement could be distributed among multiple entities,
the model exhibited its ability to effectively identify such cases. Table 9 highlights the top
five entities, as identified by the model, involved in incidents tied to human factors.

In the scope of this effort, the ‘flight crew’ included all personnel on board the flight,
except for passengers. A collective number of 5744 incidents were linked to the flight
crew. The model was also capable of identifying incidents arising from Air Traffic Con-
trol (ATC), with the model demonstrating its ability to recognize distinct entities, such
as ATC (Approach Control), ATC (Ground Control), ATC (Kona Tower), ATC (Military
Controller), ATC (TRACON Controller), ATC (Indy Center), and so on. The model’s ability
to specify these particular towers can be explained by the presence of that information in
the incident narratives, as those details were not anonymized. These diverse categories
were consolidated into a singular ATC classification by the authors.

Table 9. List of top five entities identified by the model, as associated with incidents where the
predominant contributing factor was determined to be human factors.

Entity Associated with Incident Count

Flight Crew 5744

ATC 1838

Ground Personnel 805

Maintenance 738

Flight Crew, ATC 133
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To fully grasp the mechanism behind ChatGPT linking a specific event to a partic-
ular entity, the model was prompted to articulate the underlying reasoning behind each
association. Table 10 shows various examples of this to promote a comprehensive under-
standing of the principles that influence association reasoning. A meticulous examination
of certain event reports revealed that the entity identified by ChatGPT, along with the
rationale behind the identification, demonstrated a commendable degree of precision in
the model’s responses and justifications. For instance, as depicted in the initial case (ACN
1805938) shown in Table 10, the lead Flight Attendant, overly concerned with a passenger’s
non-compliance with mask policies, violated sterile cockpit procedures by alerting the
flight crew via a chime during landing rollout to request a supervisor, a gesture typically
associated with emergencies or critical aircraft issues. As a result, the linking of the incident
to the flight crew by ChatGPT seems suitable. Furthermore, the reasoning behind this
attribution is well-founded.

Table 10. Three incident narratives, the assessment of responsibility, and the rationale used by
ChatGPT for the attribution.

ACN Incident Narrative Incident
Attribution
(ChatGPT)

Rationale (ChatGPT)

1805938 The lead Flight Attendant was so uptight with a passenger not complying with the Mask
policies, (Flight Attendant) thought it was prudent to chime the cockpit during landing
rollout and advise the flight crew to notify a Supervisor to meet the aircraft. This was a
direct violation of sterile cockpit procedures. Because flight crews repeatedly experience
chimes from the cabin while in simulator training, they are most associated with fire
or critical aircraft issues. This is never a good time to chime the cockpit unless it is an
emergency. Especially for a mask compliance issue. Relaxed emphasis from Leadership
on the tattling on passengers for improper use of masks (never saw this type of behavior
from FA when it came to early seat-belt releases. Reissued sterile cockpit etiquette with a
bulletin on scenario that are and are not acceptable for chiming the cockpit during landing
rollout.

Flight Crew The flight attendant’s ac-
tions caused a distrac-
tion to the flight crew
during landing rollout.

874307 I was working Aircraft X inbound to ADS. Along with this aircraft I had several other VFR
pop up aircraft that had to be low level to remain VFR, typically around 1500 feet. Aircraft
X was at 2000 on a vector for an ILS approach approximately 15 miles southeast of ADS. I
observed the aircraft in proximity to a 2200 foot MVA. I, for some reason, registered that
the aircraft was VFR and instructed the aircraft to maintain VFR at or below 2500 so that
he could maintain obstacle clearance. The pilot complied and descended to 1600 to VFR
conditions. I pointed out the antenna and the pilot reported it in sight. It was then that I
realized that the aircraft was in fact IFR and I climbed him immediately to 3000. By that
time the aircraft was inside the MVA at 1600. Recommendation, this event could have
been avoided had I had a better scan. It was complicated with bad weather and having to
watch aircraft that were deviating and descending/climbing in areas where they would
not normally be being worked by other positions.

ATC The incident was caused
by the controller’s error
in providing incorrect in-
structions to the pilot.

868384 Aircraft was presented to Crew in ZZZ with a deferred item open, stating the forward
coffee maker and spigot were inop’ed at a previous Station and the deferred MEL included
draining the A320 of potable water and deferring the entire water system. While reviewing
the Maintenance Release, the First Officer reported the forward lavatory toilet flushed
normally. Water (H20) quantity was checked and it was found to be full, in direct contrast
to the MEL instructions for the deferral on the Maintenance Release. Maintenance Control
was contacted and a Maintenance Report item sent. Contract Maintenance called to aircraft
in ZZZ and he reinstated the water system as no faults could be located. A few other
write-ups were handled by ZZZ Maintenance Technician and he left the aircraft, with
the Deferral placard still located on the forward Cabin Intercommunication Data System
(CIDS) panel. This item was not discovered until en-route to ZZZ1. Aircraft was not
serviced with potable water in ZZZ, so it operated at least one leg in violation of the
MEL. The ZZZ Maintenance Technician stated the aircraft appeared to be not configured
correctly for the ‘No’ potable water operation as all the valves had been left open. If the
aircraft had a frozen water system as originally expected in the first write-up, how can one
drain a water system that is frozen? Rhetorical question but that was the procedure listed
under the MEL.

Maintenance The incident was caused
by a maintenance error
in deferring the water
system and not properly
configuring the aircraft
for ‘No’ potable water
operation.

Similarly, for ACN 874307, ChatGPT identified ATC as the responsible entity. This
determination was based on the narrative where the ATC’s misinterpretation of the aircraft’s
status led to instructions that put the aircraft at risk of violating the Minimum Vectoring
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Altitude (MVA). Importantly, both the safety analyst and ChatGPT identified Situational
Awareness as the underlying human factors issue. The situation was complicated by adverse
weather and irregular aircraft movements, which could have disrupted ATC’s situational
awareness, leading to the mistaken instruction. This particular alignment between the
safety analyst’s and ChatGPT’s attributions underlines the language model’s capacity to
accurately identify complex human factors issues, mirroring the insight of a safety analyst.

As mentioned, Table 10 contains a column detailing the rationale used by ChatGPT
to arrive at the responsibility attribution. Soliciting a rationale from the model for its
identification of a particular human factors issue not only enhances transparency in the
decision-making process but also fosters confidence in the model’s outcomes. It facilitates
an understanding of the model’s reasoning, which can prove instrumental in pinpointing
inaccuracies, thereby enabling model refinement and boosting the precision of incident
responsibility assignment. This is especially important in regulatory settings, where pro-
viding a discernible trail of how conclusions were reached supports auditability, a key
component of accountability. In addition, a visible rationale enables a critical examination
of potential bias in the responsibility assignment process, promoting the creation of fairer
and more equitable conclusions.

5. Conclusions

The primary objective of this study was to assess the applicability and suitability of
generative language models, particularly ChatGPT, as tools for aviation safety analysis.
ChatGPT was deployed to generate incident synopses based on provided narratives. These
generated synopses were then compared to the ground-truth synopses found in the Synopsis
column of the ASRS dataset. This comparative analysis involved using embeddings
generated by LLMs (BERT, aeroBERT, and SBERT) and manually comparing the synopses.
Upon manual evaluation, it was observed that synopses with higher cosine similarities
tended to exhibit consistent similarities in terms of length. Conversely, synopses with lower
cosine similarities showed more pronounced differences in their respective lengths.

Subsequent to this, the human factors issues linked to an incident, as determined
by safety analysts, were compared to those identified by ChatGPT based on the incident
narrative. In general, when ChatGPT identified a human factors issue, safety analysts
agreed with this categorization around 61% of the time. ChatGPT demonstrated a more
cautious approach in assigning human factors issues compared to the safety analysts. This
may be ascribed to its limitation in not being able to infer causes that extend beyond the
explicit content described within the narrative, given that no other columns were provided
as inputs to the model.

Lastly, ChatGPT was employed to determine the entity to which the incident could be
attributed. As there was no dedicated column serving as the ground truth for this specific
task, a manual inspection was undertaken on a limited dataset. ChatGPT attributed 5877,
1971, 805, and 738 incidents to Flight Crew, ATC, Ground Personnel, and Maintenance,
respectively. The rationale and underlying logic provided by ChatGPT for its attributions
were well-founded. Nonetheless, due to the sheer volume of incidents used in this study, a
manual examination of approximately 1% of the incident reports was performed. Validation
of the results of generative models remains a challenge since the manual examination of
large amounts of data is humanly impossible. Using embeddings from various LLMs to
compute the cosine similarities, as conducted as part of this effort, represents a first valid
step toward validating the outputs of ChatGPT or other similar generative language models.

The aforementioned results lead to the inference that the application of generative
language models for aviation safety purposes presents considerable potential. However,
it is suggested that these models be utilized in the capacity of “co-pilots” or assistants to
aviation safety analysts, as opposed to being solely used in an automated way for safety
analysis purposes. Implementing ChatGPT-like models as assistants to aid safety analysts
in analyzing incident reports could significantly transform the analysts’ workflow. The
AI assistant could automate routine tasks such as data extraction, report summarization,
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and trend identification, freeing up the analyst’s time for more critical tasks. With its
ability to swiftly process and analyze large volumes of incident data, the AI assistant
could potentially uncover patterns and anomalies that might be challenging for a human
analyst to detect. Moreover, it could offer faster information retrieval by accessing relevant
databases and safety records, providing timely and accurate information to support decision
making. Over time, the AI assistant could learn and improve from its interactions with
the analyst, becoming increasingly effective. It could also provide decision support by
suggesting insights and highlighting areas of concern, although the ultimate decision-
making authority would remain with the human analyst. The system’s design could
encompass a user-friendly natural language interface, integration with incident databases,
pre-training, fine-tuning on domain-specific data, and a human-in-the-loop approach to
decision making. Ethical considerations would be paramount, ensuring the system avoids
bias, respects privacy, and prevents over-reliance on automation. With regular updates and
a feedback mechanism, the AI assistant’s performance would be expected to continuously
improve, supporting safety analysts and fostering a collaborative approach to incident
analysis in the aviation domain. Such AI assistants have already demonstrated successful
implementation in various industries, including customer support, healthcare, retail and
e-commerce, education, and the legal industry, among others.

Future work in this area should primarily focus on broadening and validating the
application of generative language models for aviation safety analysis. More specifically,
fine-tuning models such as ChatGPT on domain-specific data could enhance their under-
standing of the field’s nuances, improving the generation of incident synopses, identifica-
tion of human factors, and assessment of responsibility. The assessment of responsibility,
as detailed on the ASRS landing page, is conducted to aid in enhancing the training of a
specific group (such as pilots, maintenance personnel, and so on), and is in no way intended
to impose punitive measures. In addition, the significant positive correlations between the
synopsis length and the cosine similarity suggest the need for future experiments to be
conducted to isolate and account for this bias.

Broadening the scope of the assessment of responsibility to encompass additional
entities, such as passengers, weather conditions, or technical failures, and incorporating
more detailed sub-categories could enhance the precision and effectiveness of these models.
To solidify the ground truths for the assessment of responsibility, future research should
scale manual inspection or employ other methods on a larger dataset. Following the
suggestion to utilize these models as “co-pilots”, the development of human–AI teaming
approaches is another promising avenue. By designing interactive systems where safety
analysts can guide and refine model outputs, or systems providing explanatory insights for
aiding human decision making, both efficiency and accuracy could be enhanced. Finally,
assessing the generalizability of these models across other aviation datasets, such as ATC
voice communications, and other safety-critical sectors, such as space travel, maritime, or
nuclear industries, would further solidify their wider applicability and suitability.

Author Contributions: Conceptualization, A.T.R., A.P.B., O.J.P.F. and D.N.M.; methodology, A.T.R.,
A.P.B., R.T.W. and V.M.N.; Software, A.T.R., R.T.W. and V.M.N.; validation, A.T.R. and R.T.W.; formal
analysis, A.T.R. and A.P.B.; investigation, A.T.R., A.P.B. and R.T.W.; data curation, A.T.R. and A.P.B.;
writing—original draft preparation, A.T.R. and R.T.W.; writing—review and editing, A.T.R., A.P.B.,
O.J.P.F., R.T.W., V.M.N. and D.N.M.; visualization, A.T.R. and R.T.W. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The dataset used for this work can be found on the Hugging Face
platform, URL: https://huggingface.co/datasets/archanatikayatray/ASRS-ChatGPT (accessed on
4 July 2023).

Acknowledgments: The authors would like to thank Karl R. Vliet for his subject matter expertise
in Air Traffic Control (ATC) procedures, aviation incident/accident investigation, and training and
operation of the ATC facility and personnel, which were crucial for this work.

https://huggingface.co/datasets/archanatikayatray/ASRS-ChatGPT


Aerospace 2023, 10, 770 23 of 26

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
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AI Artificial Intelligence
ATC Air Traffic Control
ASRS Aviation Safety Reporting System
BERT Bidirectional Encoder Representations from Transformers
CSV comma-separated values
FAA Federal Aviation Administration
GPT Generative Pre-trained Transformer
JSON JavaScript Object Notation
LaMDA Language Models for Dialog Applications
LLaMA Large Language Model Meta AI
LLM Large Language Model
MLM Masked Language Modeling
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NAS National Airspace System
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PaLM Pathways Language Model
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RLHF reinforcement learning from human feedback
RM Reward Model
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Appendix A

The prompt used for this work is presented below.

Listing A1. Prompt used for this work.

1

2 import openai
3 openai.api_key = "YOUR -API -KEY"
4

5 def get_completion(prompt , model="gpt -3.5- turbo"):
6 messages = [{"role": "user", "content": prompt }]
7 response = openai.ChatCompletion.create(
8 model=model ,
9 messages=messages ,

10 temperature =0, # this is the degree of randomness of the model ’s
output

11 )
12 return response.choices [0]. message["content"]
13

14 prompt = f"""
15 You are an aviation safety analyst who analyzes aviation incident reports.
16

17 Can you write a synopsis of the narrative in 1-2 sentences? Make sure to
include the important details such as the name of the system , and other
relevant abbreviations , as necessary.

18

19

20 What are the main human factor issues that led to the incident based on the
narrative? Choose single or multiple causes (as necessary) from the
following options:

21 Communication breakdown ,
22 Confusion ,
23 Distraction ,
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24 Fatigue ,
25 Human -Machine Interface ,
26 Physiological -Other ,
27 Situational Awareness ,
28 Time Pressure ,
29 Training/Qualification ,
30 Troubleshooting ,
31 Workload ,
32 Other / Unknown.
33 Also , provide the rationale about how did you decide on the human factor

issues that led to the incident in 1-2 sentences.
34

35

36 Based on the narrative , the incident can be attributed to which of these
entities:

37 ATC (air traffic control),
38 Dispatch ,
39 Flight crew ,
40 Ground Personnel ,
41 Maintenance ,
42 Aircraft Manufacturer ,
43 Other.
44 Provide the rationale behind the attribution.
45

46

47 The output should be in a JSON format with the keys , "Synopsis", "Human
Factor issue", "Rationale - Human Factor issue", "Incident attribution",

48 "Rationale - Incident attribution ".
49

50

51 Narrative: ‘‘‘{narrative}‘‘‘
52 """
53

54 response = get_completion(prompt)
55 print(response)
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