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Abstract: Unmanned aerial vehicle (UAV) swarm coordinated confrontation is a hot topic in academic
research at home and abroad, and dynamic maneuver decision-making is one of the most important
research fields for UAV countermeasures. Aiming at the complexity, uncertainty and confrontation of
UAV cooperative confrontation, concepts such as relative advantage degree and advantage coefficient
are introduced, and game theory is used as a framework to construct a dynamic non-zero-sum
game UAV cluster cooperative confrontation decision-making model, and finally convert it into an
optimization problem. On this basis, using the Nash equilibrium solution method of multi-strategy
fusion particle swarm algorithm, by introducing adaptive inertia weight and local mutation strategy,
while enhancing the diversity of the population, it can ensure the local accurate search ability of the
particle swarm. The simulation results of the example are verified. The effectiveness of the proposed
model and method is confirmed.

Keywords: UAV colony; associated antagonists; dynamic non-zero-sum game; uncertain information;
Nash equilibrium; interval probability

1. Introudction

With the rapid development of UAV technology, UAVs have been widely used in
agriculture, aerial photography, mapping, transportation and rescue fields [1]. On this basis,
UAV cluster technology has also been developed and widely used, such as UAV cluster
light show, UAV cluster confrontation and so on [2,3]. Compared with manned aircraft,
UAVs are cheaper, smaller, and require less of a flight environment. UAV swarms can
not only perform complex, diverse and dangerous missions in the traditional sense, such
as architectural design, but also play an important role in responding to emergencies [4].
In the field of UAV cluster confrontation, currently related research is still in the early
development stage, and its main difficulty lies in how to remove the traditional artificial
path planning, and then realize the intelligent decision making and adaptive cooperation
of the cluster itself. In addition, how to realize the optimization of the intelligent decision
of cooperative maneuver confrontation in the dynamic confrontation process is also an
important issue in the cooperative confrontation of UAV clusters.

From a systems science perspective [5], unmanned aerial vehicle (UAV) cluster systems
are characterized by multi-platform heterogeneity, numerous task demands, input situation
changes, complex tactical objectives, and coupled constraint conditions. To address these
issues, it is necessary to design an autonomous decision-making and planning framework
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for multi-task UAV clusters to reduce the complexity of system research. Reference [6]
established a UAV cluster adversarial game model based on uncertain offensive and
defensive situation information, and designed a game cost function to calculate the optimal
strategy. Reference [7] proposed a multi-UAV distributed intelligent self-organization
algorithm, which decomposes the optimization problem of the cluster reconnaissance-
attack task into multiple local optimization problems, and realizes global optimization
decision-making through information exchange between the cluster and the environment
and within the cluster. Reference [8] used a deep learning method to construct a task
decision-making model for typical cluster tasks such as area reconnaissance, and then
optimized the decision-making model based on a genetic algorithm, providing effective
support for offline learning and online decision-making of the cluster. However, existing
research on UAV cluster autonomous decision-making problems is relatively scarce from a
multi-task perspective.

In this paper, we apply the ideas of game theory to the UAV cluster control problem.
Game theory is a modern scientific system that originated in the early 20th century and has
developed into a complete and rich theoretical science after World War II. Its application to
military operations has become a research hotspot for scholars at home and abroad [9–13].
Multi-UAV cooperation refers to two or more UAVs cooperating and coordinating with each
other to accomplish tasks based on a certain type of motion [6]. Compared with one-on-one
confrontations, the most significant difference in multi-UAV cooperative confrontations is
that multiple task goals need to be addressed by allocating targets and firepower among
various friendly UAVs according to our resources. However, one of the key issues in the
successful completion of tasks by multiple UAVs is the problem of proper coordination
between UAVs [14]. The hot research issue in the field of UAVs is how to use reasonable
decision-making strategies to enable UAVs to coordinate with each other to complete
complex tasks [15].

In 1998, Jun Lung Hu [16] proved that multi-intelligent collaboration converges to
the Nash equilibrium point in a dynamic zero-sum game environment, which provides
a theoretical basis for UAV cluster collaboration. At present, some constructive research
results have been achieved in the field of UAV cluster collaborative countermeasures. Cur-
rently, there are four mainstream UAV cluster decision-making and control methods: expert
system-based, population intelligence-based, neural network-based, and reinforcement
learning-based [17]. Hubert H. Chin and Bechtel R J et al. [18,19] proposed an expert
system-based air combat decision-making method that combines fuzzy logic and an ex-
pert knowledge base to help pilots make maneuver decisions. Bhattacha- rjee et al. [20]
optimized multi-robot path planning by an artificial swarm method. In addition, particle
swarm method [21], firefly method [22] and wolf pack method [23] are also widely used
for UAV cluster coordination control. In recent years, UAV cluster coordinated counter-
measures have started to be studied using the ideas of real-time analysis of posture and
dynamic games. Shao et al. [4] used Bayesian inference to evaluate the air actual environ-
ment in real time by establishing a continuous decision process for multi-UAV cooperative
air combat, and used the designed decision rules to make maneuver decisions. Chen Man
et al. [24] built a game model for multi-drone cooperative combat missions by establishing
the capability function of UAVs, and gave the finite strategy static game model and pure
strategy Nash equilibrium solution method. From the above study, it can be seen that
capability and real-time situational analysis for UAV clusters is the basis of the model for
dynamic cooperative cluster confrontation [25].

By summarizing the above articles and existing research, the research in the field of
UAV cooperative confrontation mainly has the following four characteristics:

(1). Most of the existing research in the field of UAV cooperative confrontation based
on game theory assumes a zero-sum game. Characteristics of a zero-sum game.

(2). Most of the existing research is carried out under the condition of certain informa-
tion. However, due to the complexity, concealment and transient nature of the battlefield
environment, the information required for most UAV operations is often uncertain. There-
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fore, in the case of less information, considering the ambiguity of information in the process
of UAV coordinated ground attack meets the actual combat needs.

(3). On the other hand, most of the existing research on UAV cooperative ground attack
task assignment only focuses on unilateral action strategies, but due to the confrontational
nature of the combat environment, it is very applicable to consider the opponent’s possible
defense strategies when attacking modeling and analysis through game theory.

(4). For the solution of the Nash equilibrium of the game model, the traditional
intelligent optimization algorithm still has the shortcomings of weak global search ability
and an easy to fall into local optimum, which urgently needs further optimization.

This article mainly discusses the above four issues, and logically it is a layer-by-layer
progressive relationship, as shown in Figure 1, Section 2. The main work of this paper is to
conduct multi-attribute evaluation and target strategy selection on the decision-making
set through the situation analysis of both parties, and establish the dynamic non-zero and
Nash equilibrium maneuver decision-making model of both parties. On the basis of the
first section, the second section mainly introduces the improved dynamic non-zero and
Nash equilibrium maneuver decision-making model after considering the ambiguity of
information in actual combat and the possible defense strategy of the opponent. In the
third section, the improved particle swarm optimization algorithm is used to solve the
model proposed in the second section. The last section verifies the advantages of this model
algorithm over traditional algorithms with a simulation comparison experiment.

Figure 1. The system architecture of the article.

Based on the above analysis, this paper aims at the cooperative confrontation problem
of UAV clusters. First, under ideal conditions, that is, the information of both sides of the
confrontation is completely accurate and known. Through the situation analysis of both
sides, the multi-attribute evaluation of the decision set and the selection of target strategies
are carried out to establish a dynamic non-cooperative relationship between the two sides.
A zero-sum Nash equilibrium maneuver decision model. On this basis, the ideal conditions
are modified, that is, considering the actual environment of the battlefield, including
the performance difference of the drones of the two sides of the game, it is impossible
for us to grasp the accurate information of the opponent in time, and because the radio
environment of the battlefield is relatively complex, there may be data errors caused by
ground information warfare forces interfering with our information acquisition. This paper
improve the dynamic non-zero and Nash equilibrium maneuver decision-making model.
Afterwards, through the improved particle swarm optimization algorithm, the efficient
calculation of the Nash equilibrium solution of the non-zero-sum game model is realized,
and the optimal mixed strategy of both parties is obtained. Finally, the effectiveness of the
proposed method is verified by numerical simulation experiments.

2. Mathematical Modeling of Dynamic Non-Zero-Sum Game and Nash Equilibrium
Decision-Making under Ideal Conditions

Before discussing the model in this section in detail, the following definitions are
given first:
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Definition 1. Non-zero-sum game [26]: Non-zero-sum game is opposite to zero-sum game. A
zero-sum game means that the sum of the interests of all players in the game is fixed, that is, if one
party gains something, the other party must lose something. A non-zero-sum game means that the
sum of the gains of each player under different strategy combinations is an uncertain variable, also
known as a variable-sum game.

Definition 2. Nash Equilibrium [27] (Nash Equilibrium Point): It refers to the non-cooperative
game (Non-cooperative game) involving two or more participants, assuming that each participant
knows the equilibrium strategy of other participants, a conceptual solution in which no player can
benefit himself by changing his strategy.

Definition 3. The non-zero-sum attack-defense game model (NADG), is a quaternion
NADG = {W, M, S, WH}:

W and M are collectively referred to as participants, where W represents the attacker and M
represents the defender.

S = {SW ,SM} is the strategy set. In this paper, the strategies of all participants are the same,
which are maintaining the original flight state, accelerating, decelerating, turning left, turning
right, climbing and diving.

WH = {WHW , WHM} is the income function matrix of both attackers and defenders.

2.1. Model Assumptions

(1) Under ideal conditions, it is assumed that both parties can grasp all the complete
and accurate information of the other party, and the information is instantaneous, and there
is no time difference in the dissemination of information.

(2) Assuming that the objective conditions (including weather, equipment, etc.) are
good, the onboard computer can accurately calculate the relevant data based on the global
information, and the error is negligible.

(3) Assuming that the UAV cluster flight trajectory is discretized, that is, the confronta-
tion trajectory between the two sides is composed of several maneuvers.

2.2. Set of Maneuvering Strategies for Both Sides of the Game

For dynamic UAV confrontation, the strategy set of dynamic non-zero-sum game Nash
equilibrium maneuvering decision needs to be established. The red and blue UAV swarms
are named W and M, respectively, where the W UAV swarm consists of p individual UAVs
and the M UAV swarm consists of q individual UAVs. In the process of confrontation
between the two sides, by assumption (3), their flight trajectories can be considered as a
combination of several consecutive maneuvers, which are maintaining the original flight
state, accelerating, decelerating, turning left, turning right, climbing, and diving, in order
to be recorded as c1, c2, . . . , c7. In summary, the overall strategy set of the drone swarm can
be expressed as

SM =
{

SM1 , SM2 , . . . , SM7

}
SW =

{
SW1 , SW2 , . . . , SW7

} (1)

where the maneuvering strategy of individual square drones is SW = SM = {c1, c2, . . . , c7}.
Since the strategy number of each individual drone is 7, the strategy numbers of drone
group W and drone group M are nW = 7P and nM = 7P, respectively.

2.3. Maneuver State Assessment of Both Sides of the Game

In the text, based on the research of Zhang Shuo et al. [28], the situational advantage
equation function is used to evaluate and qualitatively describe the state of maneuvering
attributes of both players in the game. Assume that in the actual combat process, the
maneuver attributes are mainly characterized qualitatively by distance advantage, speed
advantage, and angle advantage, and each advantage is characterized by the existing
situational advantage equation. By weighting and summing the above three advantages,
the dominant state of the UAV group at a certain moment can be obtained.
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Record the maneuvering attribute as Q, distance advantage D, speed advantage V,
and angle advantage A.

Q = {D, V, A} (2)

Distance advantage

Define MD as the speed advantage of a single existing drone over a single enemy
drone:

MD = e−(
D−R0

Rmin−Rmax )
2

(3)

where D is the Euclidean distance between the two sides of the game, Rmax is the maximum
starting distance, Rmin is the minimum starting distance, R0 = (Rmin − Rmax)/2 where
Rmax, Rmin are, respectively, determined by the attribute parameters of the UAVs of both
sides of the game.

Speed advantage

Define MV as the speed advantage of your own single UAV over the target UAV:

MV =


0.1 0.1VWi ≤ 0.6VMj ,

VWi
VMj
− 0.5 0.6VMj ≤ VWi ≤ 1.5VMj ,

1 VWi ≥ 1.5VMj .

(4)

where Vwi is the individual flight speed of W UAV group and VMj is the individual flight
speed of M UAV group.

From the above speed advantage function, it can be seen that when the speed VWi
of the own drone is greater than 1.5 times the speed VMj of the target drone, the speed
advantage MV is the largest.

Angle advantage

Define MA as the speed advantage of a single UAV of one’s own side relative to a
single UAV of the enemy.

MA =
A1

180◦ −
Aυ

180◦ + 1
2

(5)

Among them, Al is the incident angle of the target, and AV is the angle of view of the own
side’s single UAV. Al and AV can be calculated from the real-time position, declination
angle, pitch angle and other information of both parties. From the above angle advantage
function, it can be found that when the target incident angle Al is larger and the viewing
angle AV is smaller, the angle advantage MA is greater.

2.4. Establishment of the Overall Dynamics and Payoff Matrix of a Single Game per Unit of Time
2.4.1. Overall Posture Matrix

From Section 2.2, the number of strategies for UAV group W and UAV group M are
nW = 7P and = 7P, respectively. When W adopts the l (l = 1, 2, · · · , nW) strategy and M
adopts the mth (m = 1, 2, · · · , nW) strategy, the ith (i = 1, 2, · · · , p) individual UAV in W has
the distance advantage, speed advantage and angle advantage for the jth (j = 1, 2, · · · , q)
individual UAV in M. The distance advantage, speed advantage and angle advantage of
the individual UAV are WMD(i,j), WMY(i,j), WMA(i,j), respectively. The overall posture can
be obtained as follows.

WX(i,j) = Wk1MD(i, j) + Wk2MV(i, j) + Wk3MA(i, j)

i = 1, 2, · · · , p, j = 1, 2, · · · , q
(6)

where Wk1Wk2Wk3 are the overall posture weighting parameters, and Wk1 +Wk2 +Wk3 = 1.
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Therefore, the matrix WX is the overall posture matrix of the UAV swarm W when
the UAV on the W side adopts the 1st strategy and the UAV on the M side adopts the m
strategy.

The matrix WX is the overall posture of W to M. Similarly, the matrix MX can be
built in the same steps. jth individual of M(j = 1, 2, · · · , q), its distance advantage, speed
advantage and angle advantage to ith (i = 1, 2, · · · , p) individual UAVs of UAV group W
are MMD(i,j), MMY(i,j), MMA(i,j), and the overall posture can be calculated as

MX(j,i) = Mk1MD(j, i) + Mk2MV(j, i) + Mk3MA(j, i)

i = 1, 2, · · · , p, j = 1, 2, · · · , q
(7)

where Mk1Mk2Mk3 are the overall posture weighting parameters, respectively, and
Mk1 + Mk2 + Mk3 = 1.

Therefore, matrix WX is the overall posture matrix of UAV swarm M when UAV on
M side adopts the m strategy and UAV on W side adopts the lst strategy. Therefore, the
matrix WX is the overall situation matrix for the UAV group M when the M-side UAV
adopts the Mth-th strategy and the W-side UAV adopts the lth strategy.

2.4.2. Overall Payoff Matrix

Based on the establishment of the overall situation matrix in the previous section, the
income matrices (also called payment matrices) of W and M are, respectively, established
according to different strategy sets. In actual scenarios, cluster confrontation strategies
can be divided into global confrontation strategies, local confrontation strategies, global
penetration strategies and local penetration strategies. The profit matrix under different
strategies is different. This article mainly considers the global object, so the following
mainly uses W as an example to introduce the establishment process of the profit matrix
under the global confrontation strategy and the profit matrix under the global penetration
strategy.

(1) Global confrontation strategy. The main objective of this strategy is to optimize the
overall posture of our side, and according to this objective, the gain matrix of W can
be obtained:

WH(l, m) =
1
pq

p

∑
i=1

q

∑
j=1

WXl,m(i, j).

l = 1, 2, · · · , nW , m = 1, 2, · · · , nM.

(8)

(2) Global penetration strategy. The main objective of this strategy is the worst overall
posture of the opponent, and according to this objective, the gain matrix of W can be
obtained:

WH(l, m) = − 1
pq

p

∑
i=1

q

∑
j=1

MXm,l(i, j).

l = 1, 2, · · · , nW , m = 1, 2, · · · , nM.

(9)

Similarly, the payoff matrix of M under different strategies can be built based on the
above steps. Similarly, in this paper, only the gain matrices of the global confrontation
strategy and the global surprise strategy of M are illustrated.

(3) Global confrontation strategy. The main objective of this strategy is to optimize the
overall posture of our side, and according to this objective, the gain matrix of M can
be obtained:

MH(m, l) =
1
pq

p

∑
i=1

q

∑
j=1

WXl,m(j, i).

l = 1, 2, · · · , nW , m = 1, 2, · · · , nM.

(10)
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(4) Global penetration strategy. The main objective of this strategy is the worst overall
posture of the opponent, and according to this objective, the gain matrix of M can be
obtained:

MH(m, l) = − 1
pq

p

∑
i=1

q

∑
j=1

MXm,l(j, i).

l = 1, 2, · · · , nW , m = 1, 2, · · · , nM.

(11)

In summary, the preparation of the mathematical model for dynamic nonzero and
Nash equilibrium decision making under ideal conditions is basically completed. Since
the model in this section is based on the assumption of ideal conditions, the mathematical
model will be improved in the next section of this paper to make it closer to the actual
situation, which in turn makes the decision more accurate and informative.

3. Improvement of Mathematical Modeling of Dynamic Non-Zero and Nash Equilibrium
Decision Making under Non-Ideal Conditions
3.1. Problem Analysis
3.1.1. Consider the Enemy’s Strategy Choice

Now consider the following situation, when our UAV group adopts two different
strategies, A and B, the maneuver advantage over the enemy is 100, and the enemy responds
to our A and B with the same maneuver, respectively. In terms of strategy, the maneuvering
advantages relative to our side are 60 and 80, respectively. According to the above case
analysis, if we adopt different strategies based solely on our maneuvering advantage over
the enemy, there is no difference between A and B strategies at this time. But in fact, when
strategy A is adopted, the enemy’s threat to our side is relatively small, and our optimal
strategy should adopt strategy A. Therefore, based on the simple analysis of the above
examples, the own side should consider the enemy’s strategy when making a decision.

3.1.2. Considering the Actual Battlefield Operational Environment

The model in Section 2 is based on two assumptions. However, in actual conditions,
due to the performance differences between the UAVs of the two sides of the game, it is
impossible to grasp the accurate information of the other side in time, and because of the
more complex radio environment on the real field and because the other party may have
information jamming technology, there may be errors in the acceptance of the other party
information by the UAV of the already side. In summary, the assumptions of model 1 do
not meet the actual combat situation and will be improved in this section.

3.2. Model Revision
3.2.1. Model Correction Based on Information Uncertainty

Under the assumptions in the previous section, each element of the gain matrix is a
definite value, but in reality, there is a certain error in the transmission and acquisition of
information, so there is a certain error in the information received by the UAV. In order to
be closer to the actual situation, when calculating the posture value using the dominance
function, an error factor (sign) is introduced, and (2) (3) (4) is amended to obtain the
following new posture dominance function.

M̃D = e−
(

D−R0
Rmax−Rmin

)2

α

M̃D ∈ (MD min, MD max)

MD min = MD · αmin, MD max = MD · αmax

(12)

where α is the error factor of distance dominance, M̃D is the probability interval infor-
mation of distance dominance, αmin is the lower limit of error, αmax is the upper limit
of error, MD min is the lower limit of the large probability value of distance dominance,
and MD max is the upper limit of the large probability value of distance dominance. The
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distance dominance accuracy values are taken randomly on this interval and obey uniform
distribution.

M̃V = MV β

M̃V ∈ (MV min, MV max)

MV min = MV · βmin, MV max = MV · βmax

(13)

where β is the error factor of speed advantage, M̃V is the probability interval information of
distance advantage, βmin is the lower error limit, βmax is the upper error limit, MV min is the
lower limit of the large probability value of speed advantage, and MV max is the lower limit
of the large probability value of speed advantage. The accurate value of speed advantage is
taken randomly on this interval and obeys uniform distribution.

M̃A = [(A1/180◦)− (Aυ/180◦) + 1]/2γ

M̃A ∈ (MA min, MA max)

MA min = MA · γmin, MA max = MA · γmax

(14)

After the above corrections, a new overall posture dominance function is obtained.

T̃ = k1M̃D + k2M̃V + k3M̃A (15)

Since M̃D, M̃V , M̃A are all interval numbers, T̃ is also an interval number.

3.2.2. Non-Zero and Dynamic Nash Equilibrium Decision Model Based on
Information Uncertainty

The analysis in this section is based on the assumptions of Section 3.2.1. Due to
information uncertainty, each element in the resulting payoff matrix is an interval number,
and the matrix W̃L is the matrix of the overall posture function when W takes the m strategy
and M takes the 1st strategy as follows.

W̃L =


W̃La11 W̃La12 · · · W̃La1n
W̃La21 W̃La22 · · · W̃La2n

...
... · · ·

...
W̃Lan1 W̃Lan2 · · · W̃Lapq

 (16)

=


(
WLa11

min, WLa11
max
) (

WLa12
min, WLa12

max
)
· · ·

(
WLa1n

min, WLa1n
max
)(

WLa21
min, WLa21

max
) (

WLa22
min, WLa221

max
)
· · ·

(
WLa2n

min, WLa2n
max
)

...
...

...
...(

WLan1
min, WLan1

max
) (

WLan2
min, WLan2

max
)
· · ·

(
WLann

min, WLapq
max

)
 (17)

The payoff interval matrix is built on the basis of the overall posture matrix, and the
specific process is similar to Section 2.4.2 and will not be repeated here, the payoff matrix is
as follows.

W̃H =


W̃Ha11 W̃Ha12 · · · W̃Ha1n
W̃Ha21 W̃Ha22 · · · W̃Ha2n

...
... · · ·

...
W̃Han1 W̃Han2 · · · W̃Hapq

 (18)

After obtaining the gain interval matrix, based on the consideration of Section 3.2.1, in
order to better measure the true posture of the already side’s UAV, not only the gain interval
matrix of the already side is needed, but also the gain interval matrix of the opposite side
M̃H is needed to calculate the gain interval matrix of the enemy, and WHij and MHji are
analyzed and compared, and the specific analysis and comparison process is as follows:
according to the matrix (true value matrix), WHij can be compared with MHji in two cases,
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which are if WHij is greater than MHji and WHij is less than MHji. If WHij is greater than
MHji, there are three more cases as follows [3].

Definition 4. Relative dominance: Assuming that the upper limit of the interval of W̃Hij is

higher than the upper limit of the interval of M̃Hij, there are only three cases: W̃Hij and M̃Hij have

no intersection (Figure 2a), W̃Hij and M̃Hij have intersection and B is not completely contained

in W̃Hij (Figure 2b), M̃Hij is completely contained in W̃Hij (Figure 2c). According to these three
situations, this paper defines the result calculated by Equation (19) as the relative dominance of
W̃Hij to M̃Hij.

(a)

(b) (c)

Figure 2. Three situations of interval MH relative to interval WH. (a–c) see Definition 4.

pW̃Hij>M̃H ji
=


1, MHji max ≤WHij min;

g1
max−g2

max
g1

max−g1
min

+
g2

max−g1
min

g1
max−g1

min
· g1

min−g2
min

g2
max−g2

min
+ 0.5 g2

max−g1
min

g1
max−g1

min
· g2

max−g1
min

g2
max−g2

min
, MHji min < WHij min < MHji max

g1
max−g2

max
g1

max−g1
min

+ 0.5 g2
max−g2

min
g1

max−g1
min

, WHij min ≤ MHji min < MHji max

(19)

Definition 5. Dominance coefficient, a value measuring the degree of dominance of an existing
UAV over an opposing UAV, judged by the degree of relative dominance, calculated as follows.

ψij =


1, 0.9 < Hij < 1;

0.9, 0.6 < Hij < 0.9;
0.8, 0 < Hij < 0.6

(20)

According to the definition of the dominance coefficient, if the dominance coefficient
is 1, when both sides take the 1st strategy the mth strategy, respectively, under the premise
of our dominance, the overall posture of the already side is absolutely dominant relative
to the overall posture of the enemy, and the opposite side is less threatening to us when
we complete the 1st strategy; if the dominance coefficient is 0.9, it means that the overall
posture of the already side is relatively dominant relative to the overall posture of the
opposite side, and if the dominance coefficient is 0.8, it means that the overall posture of the
opponent is generally superior to the overall posture of the opposite side, and the opponent
needs to pay a larger price while completing their tactical moves.

According to Equations (10) and (16), we can obtain the gain interval matrix W̃H
and M̃H for W and M, respectively, after which we can derive the dominance coefficient
matrix of the already party’s UAV group W according to Equations (17) and (18). Using the
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dominance coefficients, the matrix WH can be modified, which in turn yields the matrix
ŴH as follows.

Ŵ H =


ŴH11 ŴH12 · · · ŴH1nM

ŴH21 ŴH22 · · · ŴH2nM
...

... · · ·
...

ŴHnW1 ŴHnW 2 · · · ŴHnW nM

 (21)

=


WH11 · ψ11 WH12 · ψ12 · · · WH1nM · ψnM

WH21 · ψ21 WH22 · ψ22 · · · WH2nM · ψ2nM
...

... · · ·
...

WHnW1 · ψnW 1 WHnW 2 · ψnW 2 · · · WHnW nM · ψnW nM

 (22)

After building the improved payoff matrices ŴH and ŴH for W and M, respectively,
the confrontation between the two sides of the game is a typical non-zero-sum game due to
the different nature and purpose of the drone swarms on both sides of the confrontation

Definition 6 ([2]). Mixed strategy Nash equilibrium: Let a non-cooperative game in which
there are n insiders involved, where the pure strategy of insider i is denoted as si =

{
si

1, si
2, . . . , si

mi

}
and the mixed strategy of i is defined as xi =

{(
xi1, xi2, . . . , ximi

)
| xij ≥ 0, ∑

mij
j=1 Xij = 1

}
, i.e.,

the inning chooses the jth strategy with the probability of xij. If a mixed strategy combination
X∗ =

{
x∗1 , x∗2 , . . . , x∗n

}
satisfies µi(X∗) ≥ µi

(
xi, X∗−i

)
(i = 1, 2, . . . , n), where µi denotes the

payoff function of i and X∗−i =
{

x∗1 , x∗2 , . . . , x∗i−1, x∗i+1, . . . x∗n
}

, i.e., a single inning changes its
strategy and its payoff value does not increase, then X∗ is said to be the Nash equilibrium of this
non-zero-sum game.

From Definition 6, let the pure strategy sets of W and M be SW
l ∈ SW and SM

m ∈ SM,
respectively, and the probabilities of individual UAVs of the already party to choose the
corresponding strategies are xl(l = 1, 2 . . . , nW) and ym(m = 1, 2 . . . , nG). In summary, the
mixed strategy of W and G can be expressed in the following form.

X =

{
x ∈ RnW |

nW

∑
l=1

xl = 1, xl > 0, l = 1, 2, . . . , nW

}

Y =

{
x ∈ RnM |

nM

∑
m=1

xl = 1, xm > 0, l = 1, 2, . . . , nM

}
,

(23)

Based on the characteristics of non-zero-sum games, the following theorems exist.

Theorem 1 ([29]). For any mixed strategy (X, Y), there exists a Nash equilibrium solution
(X∗, Y∗) satisfying the following conditions.

XT FHY∗ ≤ X∗T FHY∗,

X∗T FHTY ≤ X∗T FHTY∗
(24)

The Nash equilibrium solution obtained at this point is the optimal strategy of the nonzero-sum
game for W and M. In order to quickly solve the Nash equilibrium solution satisfying Equation (15),
Equation (15) is transformed into the following optimization problem.

min E∗(X∗, Y∗){
X∗ =

{
x∗ ∈ RnF | ∑nF

l=1 x∗l = 1, xl ≥ 0, l = 1, 2, · · · , nF
}

,
Y∗ =

{
y∗ ∈ RnG | ∑nG

m=1 y∗m = 1, ym ≥ 0, m = 1, 2, · · · , nG
}

,
(25)
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E∗(X∗, Y∗) = max
{

maxl=1,2,···nF

(
FHlY∗ − X∗T FHY∗

)
, 0
}
+ max

{
maxm=1,2,···nG

(
X∗TGHT

∗ − X∗TGHTY∗
)

, 0
}

(26)

where the mixed strategy in which the function E(X∗, Y∗) or E∗(X∗, Y∗) takes the minimum value
of 0 is the Nash equilibrium point of the original non-zero-sum game problem.

3.3. Dynamic Nash Equilibrium Decision Model

The non-zero-sum game process of W and M within the unit process is given in the
first two sections, and in the actual situation, the two drone swarms are a dynamic game
process, which is combined via several unit processes, so a dynamic Nash equilibrium
decision model is needed. The specific steps of the model are as follows.

(1) Set the simulation parameters and initial conditions according to the actual situation
of the UAVs on both sides of the game, and specify the unit step size and the maximum
number of iterations.

(2) According to the real-time state parameters of both sides, under the combination
of different strategies, the overall state advantage function of individual UAVs is calculated
according to Equations (6)–(9), so as to obtain the gain matrix of both sides and finally
obtain the single-step non-zero-sum game model.

(3) Calculate the Nash equilibrium solution of the non-zero-sum game according
to Equations (15) and (16), and obtain the optimal hybrid strategy of both sides of the
single-step game.

(4) Calculating the position and other state parameters of each UAV where it will be
located next from the step length specified in step (1).

(5) According to the state parameters calculated in step (4), determine whether the
game is over, if the conditions for the game to proceed are still met, return to step (2), if the
conditions for the game to end have been met, proceed to step (6).

(6) The game ends, and the results of both sides of the game are derived.

4. Optimization and Solution of Dynamic Nash Equilibrium Strategy

For the intelligent algorithm solution of non-cooperative game model Nash equilib-
rium, predecessors have carried out a lot of related work. The research results show that
the PSO algorithm is excellent in finding Nash equilibrium [30]. Therefore, this paper uses
the PSO algorithm to solve the Nash equilibrium. In view of the disadvantages of the
classic PSO algorithm, such as premature convergence and low precision, this paper makes
certain improvements to the PSO algorithm.

4.1. Classical Particle Swarm Algorithm

Section 3.3 gives the Nash equilibrium maneuver decision model and its solution
process for the dynamic non-zero-sum game of cooperative UAV swarm confrontation
under asymmetric uncertain information, the core of which is in the solution of the opti-
mization problem Equation (15) with step (3). Therefore, how to find the optimal solution
of Equation (15) quickly and efficiently becomes the key to the optimization of dynamic
non-zero-sum Nash equilibrium strategies.

In this paper, the search capability of PSO is improved by optimizing the adjustment
of inertia weights in it based on the use of the classical particle swarm optimization (PSO)
algorithm, which is an optimization algorithm that simulates the foraging process of a flock
of birds, where the potential solution of each optimization problem is a bird in the search
space, called a particle.

Assuming that the search space is a multidimensional space of D dimensions, the
velocity vector and position vector of a particle can be defined as follows, respectively:

Xi = (xi1, xi2, . . . , xiD), i = 1, 2, . . . , N

Vi = (vi1, vi2, . . . , viD), i = 1, 2, . . . , N
(27)
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The equation for its velocity and position update is

υid = ωυid + c1r1(pid − xid) + c2r2

(
pgd − xgd

)
xid = xid + υid

(28)

where c1, c2 are called learning factors, also known as acceleration constants, r1, r2 are
random numbers in the range [0, 1], Pid is the optimal position searched so far by the ith
particle, i.e., the individual extremum, and Pgd is the optimal position searched so far by
the whole particle population, i.e., the global extremum, and ω is the inertia weight.

4.2. Control of Inertia Weight of Particle Swarm Algorithm

As can be seen from the above equation, the inertia weight controls the influence of
the previous variable on the current variable. If ω is larger, it can search the area that the
particle failed to reach before, which makes the global search ability of the whole algorithm
enhanced, on the contrary, if ω is smaller, the particle mainly searches within the area
of the current solution, and the local search ability is enhanced. Therefore, in the field
environment, the need to solve the Nash equilibrium solution quickly and accurately is
crucial to the field situation, and in the classical PSO, ω is a constant, which cannot adapt
to the needs of the solution in different situations, so it needs to be improved.

There are three common methods to improve ω in PSO, adaptive weight method,
random weight method and linear decreasing weight method.

4.2.1. Linear Decreasing Method

This method addresses the phenomenon that the PSO algorithm is prone to premature
maturity and to oscillation near the global optimal solution at a later stage, even though
the inertia weights are decreasing one at a time in accordance with linearity from large to
small, and the variation formula is

ω = ωmax −
t× (ωmax −ωmin)

tmax
(29)

where ωmax is the maximum value of inertia weight, ωmin is the minimum value of inertia
weight, tmax is the total number of iteration steps, and t is the number of current iteration 3.

4.2.2. Adaptive Modification Weighting Method

1. Adjustment according to the distance of global optimum

According to previous studies, the size of the inertia weight is considered to be related
to its distance from the global optimum in some papers, and related papers suggest that
the inertia weights of different particles proposed in the previous section not only decrease
linearly with the increase in the number of iterations, but also decrease with the increase
in the distance from the global optimum solution, because the probability of searching
for a better solution is greater when the particle is closer to the global optimum solution,
so it is necessary to decrease the inertia weight to achieve the purpose of enhancing the
local search ability of the particle. In summary, the inertia weights change dynamically
depending on the particle positions. And the linear equations generally cannot meet the
requirements, so most of them currently use the coefficient formula of nonlinear dynamic
inertia weights, which is as follows.

ω =

{
ωmin − (ωmax−ωmin)×( f− fmin)

favg− fmin
, f ≤ favg

ωmax, f > favg
(30)

where f is the objective function value of the current step, favg and fmin are the minimum
and average values of the objective function values of all particles in the current step,
respectively.
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As can be seen from the above equation, ω is constantly adjusted as the dispersion of
particles changes, and the inertia weight will be reduced when the target value of particles
is more dispersed; when the target value of particles is more concentrated, the inertia
weight increases.

2. Adjust the weights according to the degree of early convergence and adaptation value.

The improvement method adjusts its own weights according to the degree of early
proficiency of the particle population and the adaptation value of the objective function of
each particle, as follows.

ω =


ω− (ω−ωmin)

∣∣∣∣ fi− f ′avg
fm− favg

∣∣∣∣ fm > fi > f ′avg

ω, fm > fi > f ′avg
1.5− 1

1+k1·exp(−k2·∆)
, fi > f ′avg

(31)

where fi is the adaptation value of particle pi, and fm is the optimal particle fitness. Then,

the average fitness of the particle swarm is favg = 1
n

n
∑

i=1
fi. The particle fitness values

that are better than the average fitness values are averaged, denoted as f ′avg, and define

∆ =
∣∣∣ fm − f ′avg

∣∣∣. k1, k2 are called regulation parameters, k1 is used to regulate the upper

limit of ω and k2 is used to control ω = 1.5− 1
1+k1·exp(−k2·∆)

of the regulation capacity.
From the definition of ∆, it is known that if the particles in the swarm are too dispersed,

∆ becomes larger, thus ω decreases, which enhances the local search ability of the swarm; if
the particles in the swarm are too concentrated, ∆ becomes smaller, thus ω increases, which
enhances the global search ability of the swarm to help jump out the local optimal solution
effectively.

In this paper, the adaptive modified weight method is used to improve the PSO
algorithm.

5. Simulation Experiments of UAV Cooperative Dynamic Maneuver
Decision Algorithm

Based on the UAV cluster adversarial algorithm model based on asymmetric uncertain
information environment proposed in the previous two sections, numerical simulation
experimental results are presented in this section to verify the validity of the model. The
simulation experiments apply the game confrontation steps in Section 3.3, in which the
adaptive algorithm in Section 4.2.2 is used to optimize the speed of the algorithm in
“calculating the Nash equilibrium solution of the non-zero-sum game and obtaining the
optimal hybrid strategy for both sides of the single-step game”.

In order to compare the superiority of the proposed algorithm, W uses the “global
adversarial strategy” of the UAV cluster adversarial algorithm based on asymmetric un-
certain information environment proposed in this paper, and M uses the classical global
adversarial strategy based on the maximum–minimum pure strategy [31]. The following
Table 1 shows the initial parameters of the numerical simulation experiment.

Substituting the initial conditions into Equations (3)–(5), we can see that M has a
clear advantage in angular posture in the initial stage of the confrontation. In the total
40 steps of the confrontation, they can be roughly divided into “posture equilibrium
phase”, “cooperative confrontation phase” and “absolute advantage phase”, and part of the
confrontation process is shown in Figures 3–8. The red “∆” is the path trajectory position
of W at each step, and the blue “*” is the path trajectory position of M at each step. The
confrontation ends when one side has an absolute advantage over the other side or reaches
the maximum number of confrontation steps.
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Table 1. Numerical experiments against double-fire initial basic parameters.

Parameters W1 W2 M1 M2Drone Number

Initial location (−400 m, 0 m, 1000 m) (−400 m, 200 m, 1000 m) (400 m, 0 m, 1000 m) (400 m, 200 m, 1000 m)
Initial speed 200 m/s 200 m/s 200 m/s 200 m/s

Initial deflection angle 60◦ 60◦ −118◦ −118◦

Initial pitch angle 3◦ 3◦ 5◦ 5◦

Acceleration 60 m/s 60 m/s
Deceleration 60 m/s 60 m/s

Time per Maximum deflection 30◦ 30◦unit angle variable
Maximum pitch 10◦ 10◦angle variable

Overall situational Wk1 = 0.3, Wk2 = 0.2, Wk3 = 0.5 Mk1 = 0.3, Mk2 = 0.2, Mk3 = 0.5weighting parameters
Confrontation step limit 40 step

Unit decision time 1 s

Figure 3. Simulation of UAV cooperative dynamic maneuvering decision algorithm (step 5).

The first stage is the situational balance stage (see Figures 3 and 4). The initial positions
of the two sides are far apart. In the fifth step, the two sides enter the opponent’s combat
radius, and a confrontation situation occurs. W1 and M1 are close to each other and confront
each other, and W2 and M2 approach each other against each other, as shown in Figure 3.

When the first stage reaches the 10th step, W1 adjusts the pitch angle by a large margin
in order to increase the advantage of the situation, and quickly raises the height of the UAV.
Since M1 is relatively close to W1, in order to maintain the overall advantage of M and W,
M1 also quickly adjusts the pitch angle and follows W1 to reach a higher altitude; while M2
is responsible for continuing to approach W2 to expand its own advantages. At this time,
due to the hysteresis of the M1 response, W1 has a greater advantage over M1; while W2 is
in a tracked state, therefore, M2 has a greater advantage over W2. In the first stage, the two
sides have not yet formed a cooperative confrontation, and are still in the stage of balanced
confrontation. The confrontation process of step 10 is shown in Figure 3.
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Figure 4. Simulation of UAV cooperative dynamic maneuvering decision algorithm (step 10).

Figure 5. Simulation of UAV cooperative dynamic maneuvering decision algorithm (step 14).

The second phase is the postural equilibrium phase (see Figures 5 and 6). At the
14th step, M2 is still at a disadvantage relative to W2, but because M1 could not form
an absolute advantage over W1 alone due to the large distance and the limitation of the
single-step deflection angle change, M2 gave up the strategy of fighting M2 alone and
makes a strategic adjustment of approaching W1 and cooperating with M1 to surround
and fight W1. And W2 could not change the direction in time to assist W1 due to the long
distance; at this time, M1 and M2 as a whole maintain the advantage over W1, as shown in
Figure 5.
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Figure 6. Simulation of UAV cooperative dynamic maneuvering decision algorithm (step 20).

Figure 6 shows the 20th step, W2 collaborates with W1 to approach M2, at this time W1
completely removes M1, and the M2 form is intertwined, the advantage of both sides is
still not obvious, because the distance W2 in a shorter number of steps fails to approach
M2 in time, and W2 together form a pincer attack on M2. As shown in Figure 6, at this
time, the local gradually forms two against one state, and W’s overall posture advantage
gradually forms.

Figure 7. Simulation of UAV cooperative dynamic maneuvering decision algorithm (step 31).

The third phase is the absolute advantage phase (see Figures 7 and 8), in which W
maintains the absolute advantage of the overall posture. In step 31 (see Figure 7), W
maintains the posture of pinning M2, with two chasing one, and the threat to W basically
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disappears as M1 maintains a large distance between M1 and W. W maintains the absolute
advantage of the overall posture.

Figure 8. Simulation of UAV cooperative dynamic maneuvering decision algorithm (step 36).

Figure 8 shows the course of the confrontation between the two sides at step 36. In
terms of the overall confrontation posture, W maintains the absolute advantage of the
overall posture into the third phase. At this point, the confrontation ends.

6. Conclusions

In this paper, a more practical UAV cluster cooperative adversarial decision algo-
rithm based on a dynamic non-zero-sum game under uncertain asymmetric information is
proposed based on the actual situation. This article mainly completed the following work:

1. Firstly, based on the actual situation of the actual field, the posture advantage of the
adversarial parties under ideal conditions is calculated, and thereafter the gain matrix of
the adversarial parties under ideal conditions is further calculated.

2. Secondly, considering the uncertainty of both adversaries in acquiring information
and the complexity and variability of the real-time field situation, the information acquired
by both adversaries is not the exact value, and the gain matrices of both sides of the game
are modified. Then, the particle swarm algorithm is improved to solve the dynamic non-
zero and Nash equilibrium maneuver decision model efficiently and quickly to obtain the
optimal hybrid strategy based on the actual situation.

3. Finally, a 2-to-2 unmanned cluster cooperative countermeasures simulation experi-
ment is given to verify the superiority and realism of the algorithm proposed in this paper
to solve the UAV cooperative countermeasures problem.

Based on the idea of non-zero-sum game, this model regards the solution of Nash
equilibrium as the maneuvering action of the UAV cluster. Compared with the traditional
model, it has the following advantages:

1. Optimal Strategy: A Nash Equilibrium is an optimal strategy in which each player
cannot improve his individual payoff by changing his own strategy given the strategies of
the other players. This means that the Nash equilibrium strategy adopted by drone clusters
is not easy to be defeated, and it is a relatively stable strategy. It is more suitable for objects
such as drones that require high stability.
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2. Predictability: Nash equilibrium can be used to predict and understand various
game scenarios, especially in complex environments where multiple parties interact. By
analyzing and calculating the Nash equilibrium, the drone swarm can speculate on the
possible behavior and outcomes of the participants, so as to better predict and plan the
strategy of the swarm.

3. Stability: Nash equilibrium is theoretically stable. Even in the face of some distur-
bances or external pressures, participants will tend to stick to their equilibrium strategies.
This stability can help maintain a balanced state of the game and reduce possible con-
flicts and confrontations. In a more complex actual environment, external disturbances or
changes are very frequent. If the UAV cluster changes its strategy too frequently, it will
cause damage to itself.

Although this paper has performed some research on the UAV swarm confrontation
decision-making problem based on incomplete information, there are still some unresolved
problems:

1. In this paper, incomplete information refers to unknowable information such as
enemy strategy, enemy revenue, and the partially observable environment when making
simultaneous decisions, and does not discuss in depth the unavailable information and
untrustworthy information of incomplete information.

2. This paper simplifies the flight process in the UAV swarm air-to-air confrontation
environment, and does not take into account the flight characteristics of the UAV itself. In
future work, we will focus on a swarm confrontation that is closer to the real environment,
including specific attack processes such as missile attacks. In addition, the complex en-
vironmental characteristics of the real battlefield have not been fully considered, such as
electromagnetic space, weather effects, etc.

3. In the process of UAV swarm confrontation, problems such as large-scale (num-
ber greater than 1000) will lead to joint state-action dimensional explosion and dynamic
changes in the number of UAVs (scalability) are not considered, which does not meet the
requirements of swarm operations actual needs.

To sum up, although this paper has made further research on the basis of existing
research, there is still a big gap with the actual environment. The above points will be the
key issues of our next research.
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