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Abstract: To address the limited data problem in real-world fault diagnosis, previous studies have
primarily focused on semi-supervised learning and transfer learning methods. However, these
approaches often struggle to obtain the necessary data, failing to fully leverage the potential of easily
obtainable unlabeled data from other devices. In light of this, this paper proposes a novel network
architecture, named Signal Bootstrap Your Own Latent (SBYOL), which utilizes unlabeled vibration
signals to address the challenging issues of variable working conditions, strong noise, and limited
data in rotating machinery fault diagnosis. The architecture consists of a self-supervised pre-training-
based fault feature recognition network and a diagnosis network based on knowledge transfer. The
fault feature recognition network uses ResNet-18 as the backbone network for self-supervised pre-
training and transfers the trained fault feature extractor to the target diagnostic object. Additionally, a
unique vibration signal data augmentation technique, time–frequency signal transformation (TFST),
is proposed specifically for rotating machinery fault diagnosis, which addresses the key task of
contrastive learning and achieves high-precision fault diagnosis with very few labeled samples.
Experimental results demonstrate that the proposed diagnostic model outperforms other methods in
both extremely limited sample and strong noise scenarios and can transfer unlabeled data utilization
between similar and even different device types.

Keywords: self-supervised learning; data augmentation; fault diagnosis; rotating machinery

1. Introduction

Rotating machinery, such as aero-engines, wind turbines, and gearboxes, is widely
used in industry and is prone to various failures under harsh operating conditions such as
high temperatures, variable speeds, and heavy loads. Timely fault diagnosis is critical to
ensure equipment safety and prevent severe failures [1].

Deep learning [2] has gained increasing attention in the field of fault diagnosis, pri-
marily due to its exceptional feature extraction capability. Convolutional neural networks
(CNNs) [3–5] are particularly favored for their advantages, including parameter sharing
and powerful non-linear feature learning. However, data-driven fault diagnosis models
based on deep learning require a large amount of high-quality raw data [6]. Obtaining large
labeled datasets is impractical, as operating rotating machinery under fault conditions for
extended periods is unrealistic. With only a limited amount of labeled data available, deep
learning models struggle to achieve satisfactory fault diagnosis performance.

To address the above problem in fault diagnosis for rotating machinery, researchers
have primarily utilized semi-supervised and transfer learning methods. Semi-supervised
methods leverage a combination of unlabeled and labeled data to enhance model perfor-
mance. A method called hybrid classification autoencoder was proposed by Wu et al. [7]
to diagnose faults in rotating machinery using features obtained from the autoencoder. A
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semi-supervised deep sparse autoencoder (SSDSAE) with local and nonlocal information
was proposed by Zhao et al. [8] for the intelligent fault diagnosis of rotating machinery.
Transfer learning methods, on the other hand, transfer knowledge from a source domain to
a target domain to improve diagnostic performance. Li et al. [9] proposed an adversarial
transfer learning method based on stacked autoencoders to address fault classification
under different operating conditions. Han et al. [10] combine models of joint distributed
adaptation and deep networks to facilitate the diagnosis of a new but similar target task.

Although the above-mentioned methods have shown promising results, their applica-
bility is limited to specific scenarios. Semi-supervised methods mainly focus on the case
of labeled and unlabeled data from the same diagnostic object, which is difficult to obtain
in practical diagnostic tasks. Similarly, transfer learning methods require labeled source
domain data to improve diagnostic accuracy [11]. Both methods require computationally
expensive training on additional data and target diagnostic data for different diagnostic
tasks. Gaining access to a large amount of data from the specific diagnostic object or
obtaining labeled data from different diagnostic objects can be challenging. However,
unlabeled data from different products is often easily obtainable, raising the question of
how to effectively leverage this data resource.

In contrast to the algorithms described above, the self-supervised learning methods
explore a new solution that takes full advantage of unlabeled data easily available from
different diagnostic objects [12]. Self-supervised learning methods can learn effective
signal representations from large-scale unlabeled data, and they have better applicability
than semi-supervised learning methods. Moreover, unlike transfer learning methods,
self-supervised methods do not require a large amount of labeled source domain data.
Furthermore, they do not need repeated training with unlabeled data for each downstream
task, so they can be quickly applied to various downstream diagnostic tasks. Many self-
supervised learning methods have been developed in the field of computer vision. Some
methods deviate from contrastive learning and instead adopt manually designed prediction
tasks like image colorization [13], image inpainting [14], image jigsaw puzzle [15], and
image super-resolution [16] to learn representations. These alternative approaches have
demonstrated their effectiveness. Meanwhile, contrastive learning, as the most advanced
self-supervised learning method, performs representation learning by reducing the distance
between representations of different augmented views of the same image (“positive pairs”)
and increasing the distance between representations of views of different images (“negative
pairs”) [17,18]. Contrastive learning has been shown to extract the essential features of the
data and provide better representation learning than the methods described above [19–21].

However, research on self-supervised learning in fault diagnosis is still limited. Wang
et al. [22] employed data augmentation techniques to signals and trained classification
models to identify corresponding augmentation methods. Ding et al. [23] proposed self-
supervised pre-training via contrast learning (SSPCL), which is based on MoCo [24] and
uses momentum contrastive learning for instance-level discrimination, thus enabling
feature learning. Wei et al. [25] used SimCLR [20], which first transforms the signal
from one-dimensional to two-dimensional using a simple matrix operation, then applies
image domain data augmentation methods before converting it back to one-dimensional
for representation learning. Yan et al. [26] proposed SMoCo, which is based on MoCo with
improved structure and data augmentation techniques. It introduces a novel comparison
method and has been successfully applied to bearing fault diagnosis in aero-engines, even
with limited data. Shul et al. [27] developed a deep neural network for detecting anomalies
in washing machines based on the noise spectra generated during their operation. The
main self-supervised task of their architecture is to predict future noise based on past noise.
Nie et al. [28] proposed a generalized model based on self-supervised learning and sparse
filtering, which employs corresponding labels assigned to signals undergoing different
feature transformations for self-supervised learning.

Although the above methods attempt to apply self-supervised learning to fault di-
agnosis, their applicability is primarily limited to utilizing a large number of unlabeled
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samples and a small number of labeled samples of the same diagnostic object. Moreover,
these methods have not undergone thorough investigation across different noise intensities,
operating conditions, sample sizes, and other factors. As a consequence, the lack of a
universal feature extractor that can be applied to various types of equipment greatly limits
their application scope. The reason for this is that the data augmentation methods utilized
in their study were not designed to fully exploit the unique characteristics of vibration
signals. In addition, the model architectures employed exhibited several shortcomings,
posing challenges to achieving high diagnostic accuracy in complex real-world settings
for fault diagnosis purposes. Specifically, Wang and Nie’s method [22,28] only identi-
fies data augmentation categories without instance-level representation learning, limiting
its ability to extract robust fault features effectively. In contrast, for contrastive learning
methods, Ding’s method [23] employs a time-domain transformation for vibration signal
data augmentation but fails to leverage the time- and frequency-domain characteristics
simultaneously. Wei’s approach [25] based on SimCLR requires large batch sizes during
training, and the data augmentation method it uses is limited to the image domain.

To solve the above problem, this paper proposes a new self-supervised method sig-
nal bootstrap your own latent (SBYOL). SBYOL uses two networks including the online
network and the target network, which interact and learn from each other, and uses the
similarity of the output of the two networks as the loss function. Based on the charac-
teristics of vibration signals, this paper proposes a new contrastive learning data aug-
mentation method, time–frequency signal transformation (TFST). It consists of two parts,
time–frequency contrast (TFC) and segment cross contrast (SCC), which greatly helps the
model to learn the essential features of the signal. SBYOL can effectively utilize easily acces-
sible unlabeled data with different sources from the object to be diagnosed and learn how to
extract the fault characteristics of vibration signals independent from working conditions,
noise, and even equipment types. Then, by transferring this capability to various down-
stream diagnostic tasks, it greatly solves the problems of limited data, complex signals, and
strong noise in practical fault diagnosis scenarios and provides a powerful solution for the
efficient utilization of industrial big data. The contributions and innovations of this paper
are summarized as follows:

(1) This paper proposes a novel data augmentation method called TFST based on the
unique characteristics of vibration signals to address the key points of rotating ma-
chinery fault diagnosis, which enables the model to learn signal representations from
both the time and frequency domains simultaneously.

(2) A universal and robust automated feature extractor is constructed in this paper
through pre-training on a public parallel gearbox dataset. This feature extractor can
achieve excellent diagnostic accuracy using a simple classifier with limited training
data, whether it is a private complex planetary gearbox or public planetary gearbox
dataset, or even two public bearing products of completely different types.

(3) The unlabeled pre-training data used by SBYOL are no longer limited to the same
diagnostic object but can even be completely different types of equipment, which
greatly increases its feasibility in practical tasks.

(4) Further experiments demonstrate that SBYOL still has excellent accuracy for the target
diagnostic object with extremely limited training data and strong noise, has good
stability for the unlabeled pre-training dataset with smaller sampling time and data
size, outperforms other state-of-the-art methods, and further proves its robustness.

The paper is structured as follows. Section 2 introduces self-supervised learning.
Section 3 describes the proposed SBYOL framework. In Section 4, the performance of
SBYOL is experimentally verified. Section 5 summarizes the paper and looks at future work.
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2. Self-Supervised Learning

For supervised learning, given a labeled dataset DL = {xi, yi}NL
i=1, xi and yi are the

samples and the corresponding labels in the dataset DL, respectively. A loss function
is defined to measure the distance between yi and the network output ŷi, usually the
cross-entropy loss function. The optimization objective of the network is to minimize the
cross-entropy loss function, and it performs well on large-scale labeled datasets.

However, labeled data are often difficult to obtain, while self-supervised methods can
learn useful representations from unlabeled data. Given an unlabeled dataset DU = {xi}NU

i=1,
self-supervised methods perform representation learning by constructing a suitable pretext
task that minimizes a predefined loss function, which is then transferred to a downstream
diagnostic task, thereby improving diagnostic accuracy. Self-supervised learning aims
to keep similar samples close and different samples far away [29]. The pretext task is an
important concept in self-supervised learning [12], meaning that it solves a task that is not
directly needed which is a classification task in the field of fault diagnosis. It defines the
task by the attributes found in unlabeled data and thus performs the implementation of
unsupervised representation learning. The pretext tasks proposed by previous work mainly
focused on performing time-domain transformations on the signal, enabling the model
to identify different transformations of the same signal sample and distinguish between
different samples.

3. Signal Bootstrap Your Own Latent (SBYOL)

To address the drawback that previous self-supervised learning methods do not
make full use of the characteristics of the vibration signals to design the pretext task, we
propose a fault diagnosis method based on SBYOL. It has the advantages of strong feature
extraction capability, more focus on the signal itself, and weak task correlation, which
makes it more suitable for fault diagnosis tasks for different models of equipment or even
different types of equipment. This section details the core algorithms of SBYOL, including
a novel and efficient method for signal-specific data augmentation, and how unsupervised
representation learning can be performed and used for downstream diagnostic tasks.

3.1. Methodology Overview

The purpose of this study is to improve the diagnostic accuracy of the target diagnostic
task by making full use of easily available task-independent unlabeled data in cases where
there are limited data in practical fault diagnosis. The method allows representation
learning on a pre-training dataset without any manual annotation to obtain a feature
extractor capable of extracting the essential features of the vibration signal. The learned
feature extractor is then transferred to a downstream diagnostic task, thereby improving
diagnostic performance. Our approach is divided into three stages, and the flow chart
is shown in Figure 1. In the first stage, data collection is performed and divided into
an unlabeled pre-training dataset and a labeled target diagnostic dataset, where the pre-
training dataset is different from the target diagnostic object. In the second stage, self-
supervised learning is used to learn how to extract robust features from unlabeled vibration
signal data. In the third stage, the online network encoder obtained by self-supervised
learning is transferred to the target diagnosis task and used as a feature extractor with fixed
weights. Finally, support vector machine (SVM) is used to classify the features extracted by
the feature extractor to obtain the fault diagnosis model. Next, we will describe the second
and third learning stages in detail.
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3.2. Data Augmentation Based on the Time–Frequency Signal Transformation (TFST)

In contrast to supervised learning, self-supervised learning relies more on the design
and optimization of data augmentation methods [20], and it is therefore necessary to design
augmentation methods according to the characteristics of the vibration signal. In the actual
operation of rotating machinery, there are many diagnostic difficulties, such as variable
working conditions and strong noise. If a model can be independent of these factors,
then this model can extract essential features from the signal, and therefore, transferring
this capability to fault diagnosis tasks can greatly improve diagnostic performance. In
contrast to previous approaches that focus solely on morphological changes and time-
varying operations, this paper introduces a novel set of pretext tasks based on signal
transformations, specifically leveraging the time–frequency characteristics of the signal.
Notably, the innovative TFST method is proposed, significantly enhancing the model’s
capability for representation learning. Details of how these methods transform a given
vibration signal x = [x1, x2, · · · , xN ] are described below:

(1) Normalize, as shown in Figure 2a. As there are differences in the measurement ranges
of different sensors, this strategy normalizes the signals to a uniform measurement
range, and in addition, it optimizes the convergence of the model. The formula is
as follows:

∼
x = −1 + 2× x− xmin

xmax − xmin
(1)
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(2) AddGaussian, as shown in Figure 2b. As noise is inevitable in the actual operating
environment of the device, this strategy improves the model’s immunity to noise by
randomly adding Gaussian noise to the input signal, which is formulated as follows:

∼
x = x + n, n ∼ N(0, σn) (2)

where n is generated by Gaussian distribution N(0, σn).

(3) Scale, as shown in Figure 2c. Since the equipment is loaded to different degrees in
the actual operating environment, the sensitivity of the model to signals of different
amplitudes can be improved by changing the amplitude of the signals, thus enabling
the diagnosis of variable working condition faults. The strategy multiplies the input
signal randomly by a factor s, which is calculated as follows:

∼
x = x× s, s ∼ N(1, σs) (3)

where s is generated by the Gaussian distribution N(1, σs).

(4) Stretch, as shown in Figure 2d. In response to the existence of different working
conditions in the operation of the equipment, the signal is resampled, and its length
is converted to the original length in s ∼ N(1, σs) times, simulating the speed varia-
tion of different operating conditions. Finally, equal lengths are ensured by zeroing
and truncation.

(5) Crop, as shown in Figure 2e. For the problem of missing data during fault diagnosis,
this strategy randomly overwrites some signals with the following equation.

∼
x = x×mask (4)

where the mask is a binary sequence with a random subsequence of zeros.

(6) Flip, as shown in Figure 2f. The vibration signal usually oscillates up and down
with an average value of zero. To improve the model from the effects of positive and
negative signals, the strategy simulates this variation by randomly flipping the signal
with the following equation.

∼
x = −x (5)

(7) Time–frequency signal transformation (TFST)

The proposed time–frequency signal transformation (TFST), illustrated in Figure 3,
integrates both segment cross contrast (SCC) and time–frequency contrast (TFC) techniques.
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This combination enables the extraction of features from both the time domain and the
frequency domain simultaneously. Moreover, it retains the prior information from the
time-domain signal interception, thereby greatly improving the ability of representation
learning for contrastive learning. Next, we will introduce the intuition and principles of
SCC and TFC in detail.
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Figure 3. The framework of TFST.

The SCC is shown on the left side of Figure 3. During signal acquisition, the state of
the device does not change much over a short period, thus allowing it to be considered as
the same state. After sampling, a long signal is obtained, and it is necessary to segment
the long signal to obtain multiple signal instances that can be used as training data for the
model. However, traditional contrastive learning only considers instances as individual
classes and disregards that different instances segmented from the same long signal belong
to the same class. To address this issue, we propose a strategy of comparing signal instances
obtained by intercepting the same long-sampled signal with each other. This approach can
increase the prior knowledge of model training, facilitate the identification and aggregation
of similar samples during the representation learning process, and enhance the model’s
ability to withstand time disturbances. Specifically, two different signals x1 and x2 are
randomly selected from the same long-sampled signal interception set. They undergo a
series of signal transformations, respectively, and finally, their representations are made as
similar as possible.

The TFC, depicted on the right side of Figure 3, leverages both time-domain and
frequency-domain features of vibration signals, which are commonly extracted as fault
features, to enable effective analysis of such signals. In this paper, the original time-domain
signal is compared with its fast Fourier transform (FFT) counterpart, allowing signal repre-
sentation extraction from two dimensions. To achieve this, a series of data augmentation
methods are applied to the time-domain signal, including Normalize, AddGaussian, Scale,
Stretch, Crop, and Flip, which is referred to as time domain transformation (TDT). Addi-
tionally, the FFT, Normalize, and AddGaussian are used as data augmentation methods
to generate the frequency-domain feature, referred to as frequency-domain augmentation
(FDT). The overall strategy involves comparing the original signal after TDT transform
with the original signal after FDT transform, to minimize the distance between the two
representations.

Therefore, the overall process of TFST is that, given a long-sampled signal from which
two segments of the signal x1 and x2 are randomly intercepted, the TDT transform of x1
and the FDT transform of x2 are performed, respectively, and finally, their representations
are made as close as possible.
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3.3. Self-Supervised Signal Representation Learning

In the self-supervised signal representation learning stage, SBYOL uses two neural
networks for training: the online network and the target network, as shown in Figure 4.
SBYOL obtains new and continuously enhanced representations by enabling the online
network to predict the representations of the target network. This iterative process results
in a sequence of representations that become increasingly refined. After completing the
training, only the encoder fθ of the online network is retained for use in downstream tasks.
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The online network consists of a set of weights θ and includes three components: an
encoder fθ , a projector gθ , and a predictor qθ . While the original self-supervised learning
methods with a deeper ResNet encoder were designed for computer vision tasks, fault
diagnosis of rotating machinery is simpler compared to representation learning of images,
and it can be difficult to achieve convergence with high computational complexity when
using a deep network architecture. Therefore, this paper employs the encoder with a
lighter architecture ResNet-18 [30], to reduce the computational complexity. Specifically,
ResNet-18 consists of 18 layers in total, including 16 1D convolutional layers and 2 fully
connected layers. The initial convolutional layer performs a 1 × 7 convolution with stride
2, followed by a max pooling layer. Then, four sets of residual blocks are stacked, each
containing two 1D convolutional layers with 1 × 3 filters. The number of filters in each
block gradually increases from 64 to 512, capturing more complex patterns as the spatial
dimension reduces. Both the projector and the predictor are multilayer perceptrons (MLP),
with the same output dimensions. To ensure stable training, batch normalization (BN) [31]
is incorporated into the projector and predictor.

The target network has the same structure as the encoder and projector of the online
network but uses different weights ξ. During training, the online network predicts the
targets generated by the target network, and the predictor in the online network greatly
increases flexibility, as it allows for different features in the online and target networks to be
matched by the predictor, thereby improving representation learning. To prevent the target
network parameters ξ from updating during training, stop-gradient (sg) is employed, and
the target network is updated via exponential moving average using the online network
parameter θ. This approach ensures that the two networks have different parameters so
that when the online network regresses the signal features, the targets are distinct, and
feature dispersion is preserved. Given the update parameter τ ∈ [0, 1), after each epoch, it
updates the target network as follows.
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ξ ← τξ + (1− τ)θ (6)

To generate the pretext task for self-supervised learning in SBYOL, two random sam-
ples (x1 and x2) are extracted from a long signal, and data augmentation is applied to each of
them using two distributions (TDT and FDT) to create two corresponding augmented time
series (v and v′). For the first augmented sequence v, the online network outputs the feature
zθ = gθ( fθ(v)) and then uses the predictor to predict zθ to obtain qθ(zθ). For the second
augmentation sequence v′, the target network outputs z′ξ = gξ

(
fξ(v′)

)
. Additionally, to

prevent the scale of features from approaching zero and avoid model collapse, both qθ(zθ)
and z′ξ are normalized by l2, resulting in qθ(zθ) = qθ(zθ)/‖qθ(zθ)‖2 and z′ξ = z′ξ /‖ z′ξ ‖2

.
This normalization ensures that the model does not learn shortcuts and that the features
remain well-scaled. Training is performed by minimizing the mean square error between
the normalized online network prediction and the target network projection.

Lθ,ξ ,
∥∥qθ(zθ)− zξ

∥∥2
2 = 2− 2 ·

〈
qθ(zθ), z′ξ

〉
‖qθ(zθ)‖2 ·

∥∥∥z′ξ
∥∥∥

2

(7)

The SBYOL network gets the symmetric loss function
∼
Lθ,ξ of Lθ,ξ by sending v′ to

the online network and v to the target network. Finally, the network updates the online
network θq by minimizing the loss LSBYOL

θ,ξ :

LSBYOL
θ,ξ = Lθ,ξ +

∼
Lθ,ξ (8)

The detailed training algorithm for self-supervised signal representation learning is
shown in Algorithm 1.

Algorithm 1: Self-Supervised Signal Representation Learning

Input:
Structure of fθ , gθ , qθ , fξ , gξ , initial online network parameters θ, initial target network parameters ξ,
update parameter τ, batch size M, learning rate η, optimization step N,
distributions of transformations TDT, FDT, set of signals D
for n = 1 to N do

Batch← {(x1i, x2i) ∼ D}M
i=1

for (x1i, x2i) ∈ Batch do
t ∈ TDT and t′ ∈ FDT
z1 ← gθ( f θ(t(x1i))) and z′1 ← gξ( f

ξ
(t′(x2i)))

z2 ← gθ( f θ(t(x2i))) and z′2 ← gξ( f
ξ
(t′(x1i)))

li ← −2×
(

〈qθ(z1),z′1〉
‖qθ(z1)‖2·‖z′1‖2

+
〈qθ(z2),z′2〉

‖qθ(z2)‖2·‖z′2‖2

)
end

//Back-propagation

θ ← θ − η ·
∂ 1

M ∑M
i=1 li

θ
//Exponential moving average without back-propagation

ξ ← τξ + (1− τ)θ
end
Output: Online network encoder fθ

3.4. Fault Diagnosis Based on Knowledge Transfer

After training, the convolutional layers of the online network encoder are extracted
and used for feature extraction in the downstream tasks. It is worth noting that the weights
of the convolutional layers are kept fixed to handle downstream complex tasks under
challenging conditions, such as limited data and significant noise. This strategy helps
maintain the robustness of the model, preventing bias caused by overfitting with small
training sets. Additionally, by keeping the weights fixed, the model can be readily used
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for downstream diagnostic tasks without requiring any additional training. This approach
not only ensures efficiency but also allows for faster deployment of the model in practical
applications. Since SVM is the classifier with the largest interval in the feature space and
has stronger robustness in problems with limited data, this paper uses SVM to classify the
extracted features to build the final fault diagnosis model.

4. Experiment Validation

Due to the small number of scenarios in which planetary gearboxes are used, they
often have limited data problems, and there are almost no public data. In addition, com-
pared to parallel gearboxes, their structure is more complex, and their signal composition is
relatively complicated, making their diagnosis a difficult task. In contrast, parallel gearbox
data are relatively easier to obtain, so in this paper, the unlabeled public University of
Connecticut (UoC) parallel gearbox dataset [32,33] is used as the pre-training dataset. To
verify the effectiveness and superiority of SBYOL, SBYOL first performs self-supervised
signal representation learning on the unlabeled pre-training dataset; then, the learned
feature extractor is transferred to the private Drivetrain Prognostics Simulator (DPS) plan-
etary gearbox under limited data conditions and uses the public SEU planetary gearbox
dataset [34] for further validation. To further validate the robustness and generalizability of
SBYOL, this paper further increases the difficulty by using the trained feature extractors for
fault diagnosis in limited data cases on two public datasets, the Paderborn University (PU)
bearing dataset [35] and the Polytechnic University of Turin (PUT) aero-engine bearing
dataset [36], which are characterized by completely different types of equipment than the
pre-training parallel gearbox data. The data distribution between the pre-training dataset
and the target diagnostic object is significantly different, and thus, it can be effectively veri-
fied that SBYOL learns a universal feature extractor that can efficiently diagnose different
types of rotating machines under limited data.

4.1. Self-Supervised on the Unlabeled Pre-Training Parallel Gearbox Dataset

In this paper, the UoC parallel gearbox fault dataset [32,33] provided by the University
of Connecticut is used as the unlabeled pre-training dataset, which is the most difficult
public dataset with different failure modes and degrees [37]. The dataset is collected at
20 kHz and introduces nine different gear states for pinions on the input shaft, including
health condition, missing tooth, root crack, spalling, and chipping tip with five different
levels of severity, and they are labeled from 0 to 8, respectively. The test rig is shown in
Figure 5.
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Our method selects the raw vibration signal as the input data without any signal
pre-processing, and 4096 was chosen as the sample length to contain enough information.
In addition, the overlap length between two adjacent samples is 3036 when using the
sliding segmentation method to obtain training samples, thus greatly increasing the size
of the pre-training dataset. This is also a data augmentation strategy that increases the
consideration of temporal offset; however, the information capacity of the dataset does not
increase. To mimic the phenomenon of intercepting a signal from a long sampling signal,
this paper treats approximately 9.43 s of data as a long sampling signal with 175 samples



Aerospace 2023, 10, 681 11 of 31

intercepted from a single sampling signal, and finally, an unlabeled pre-training dataset
containing nine classes with 350 samples per class is obtained.

Since this paper uses both time-domain and frequency-domain data for learning and
even contains learning between different samples, the data distribution between them
is quite different; the learning task is also more complicated, and 0.1 is chosen as the
initial learning rate. In this study, we adopted the numerical values of Momentum and
Weight decay from [24], while the update parameter τ was derived from [18]. Regarding
data augmentation methods, using larger values can enhance the model’s noise resistance
capability. However, it is essential to strike a balance and avoid excessive values that may
lead to information overload. The specific hyperparameter values are shown in Table 1. It is
worth noting that all the data augmentation methods except TFC and SCC are implemented
with a probability of 0.5 to increase the complexity of the pretext task. The learning rate is
updated by the cosine learning rate scheduler with the following formula.

ηt =
1
2

(
1 + cos

(
tπ
T

))
η (9)

where η is the initial learning rate, ηt is the current learning rate, T is the maximum number
of epochs, and t is the current epoch.

Table 1. Hyperparameter setting.

Hyperparameter Value Data Augmentation Value

Batch size 64 Normalization /
Optimizer Stochastic gradient descent (SGD) AddGaussian Noise coefficient σn = 0.05

Learning rate 0.1 Scale Scale coefficient σs = 0.05
Momentum 0.9 Stretch Stretch coefficient σs = 0.3

Weight decay 1 × 10−4 Crop Crop length = 100
Epochs 3000 Flip /

Learning rate schedule Cosine
Update parameter τ 0.996

The model has a parameter count of 8.48 million and achieves a computational effi-
ciency of 2.81 billion floating-point operations per second (GFLOPs). The experimental
environment was PyTorch 1.11 under Windows 11, running on a computer with the fol-
lowing configuration: i5-12400F, NVIDIA RTX 3060, 16 GB RAM. The changes in the loss
values during the training process are shown in Figure 6, from which it can be found that
the loss values become smooth in the later stages of training indicating that the model has
reached the fitting state, and the total training time is about 6.5 h.
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As a comparison, other self-supervised learning methods, SimSiam [39], SimCLR,
BYOL, MoCo, and SMoCo, are also used in this paper for self-supervised pre-training
on the unlabeled pre-training dataset. In addition, to further demonstrate the powerful
performance of SBYOL, this paper also uses the labeled pre-training dataset for supervised
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pre-training, called Labeled Pre-Training. To exclude the influence of other factors, the
backbone network of all methods is ResNet-18, which is trained using time-domain signals.
After training, the feature extractors of all methods, i.e., the convolutional layers of ResNet-
18, are used to extract features from a portion of the pre-training dataset and downscale it
to two dimensions using T-SNE for visualization; the results are shown in Figure 7. Our
method, SBYOL, achieves very good results with inter-class separation and intra-class
aggregation, reaching the results of Labeled Pre-Training. In the face of such complex data,
other self-supervised methods not only have no clustering within the class but also do not
have an effective separation between classes, and only SMoCo performs better roughly
achieving clustering of three classes of samples.
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4.2. Application on Planetary Gearbox from Private DPS Test Rig

In this section, the pre-trained SBYOL feature extractor is used to perform fault
diagnosis on the planetary gear from our Drivetrain Prognostics Simulator (DPS) test rig,
which is characterized by a different device with different failure levels, different failure
modes, and different working conditions compared with the unlabeled pre-training dataset.

The Drivetrain Prognostics Simulator is shown in Figure 8a which is manufactured by
Spectra Quest, U.S.A. The test rig is mainly composed of the following parts: driver (control
cabinet), lubrication system, drive motor, testing planetary gearbox, three load parallel
gearboxes, load motor and supporting torque transducer and force transducer, etc. The
testing planetary gearbox of this test rig is a one-stage drive, compared with the parallel
gearbox, it has a more complex structure, including the central fixed sun wheel, planetary
frame, and gear ring, and also includes four planetary wheels that change with the sun
wheel rotation center at all times; the signal composition is very complex, and therefore,
fault diagnosis is a more difficult task. During the data collection, we collected gear data
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for five states, including wear, broken teeth, missing teeth, root crack, and healthy, where
the four failure modes of the gears are shown in Figure 9.
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Figure 9. Gears with four failure modes in the DPS test rig. (a) Wear; (b) broken tooth; (c) missing
tooth; (d) root crack.

Two vibration sensors were used in the experiment, one is an end cap sensor shown in
Figure 8b, and the other is a three-phase sensor mounted on the box shown in Figure 8c.
The sampling frequency is 12.8 kHz. Due to the complex transmission path of the fault
signal through the gear, shaft, bearing, and end cup to reach the box, the signal collected
by the box vibration sensor will become weak. To verify the effectiveness of SBYOL in
extreme cases, this paper selects the Z-axis box vibration signal, which is more in line with
the complex environment in the actual diagnosis task. To reflect the extremely limited
data situation in the actual diagnosis process, only 5 samples per class are used in the
training set, and 50 samples per class are used in the testing set. The details of the DPS gear
dataset are shown in Table 2, which contains two working conditions, and the length of
each sample is still 4096.

Table 2. Labeled DPS gear dataset.

Damaged
Element

Rotation
Speed (Hz) Load (Nm) Training

Samples
Testing

Samples Label

Healthy 60 1.2 5 50 0
Healthy 40 0.6 5 50 1

Wear 60 1.2 5 50 2
Wear 40 0.6 5 50 3

Broken teeth 60 1.2 5 50 4
Broken teeth 40 0.6 5 50 5
Missing teeth 60 1.2 5 50 6
Missing teeth 40 0.6 5 50 7

Root crack 60 1.2 5 50 8
Root crack 40 0.6 5 50 9
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To demonstrate the performance of the feature extractors learned on the unlabeled
pre-training dataset, this paper uses the pre-trained feature extractors to perform feature
extraction on the DPS testing set without any training and visualizes the results using T-
SNE as shown in Figure 10. The features extracted by SBYOL without any adaptation of the
target diagnostic object can be segmented between different classes and aggregated of the
same class, far surpassing other self-supervised methods, and even Labeled Pre-Training.
SMoCo also adopts the way of extracting features from the time and frequency domains
simultaneously, and its feature extraction effect on the testing set data is relatively good,
but it lacks unique SCC, and compared to SBYOL, labels 4, 8, and 9 are too close, so it is
more prone to errors with very few training data.
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To fully demonstrate the superiority of our method in the target diagnosis task, we also
added MixMatch [40], ResNet-18, and FFT + SVM as comparisons for the target diagnostic
dataset. Among them, MixMatch is a powerful semi-supervised method that uses both
an unlabeled pre-training dataset and labeled target diagnostic training set for training.
ResNet-18 uses only the targeted diagnostic training set for supervised learning and does
not use the unlabeled pre-training dataset as the baseline model. FFT + SVM is a classical
and effective method for fault diagnosis under limited data. The method first performs
FFT transformation on the original signal and then classifies the FFT transformed features
using SVM. The diagnostic accuracy of each method is shown in Table 3 and Figure 11. In
addition, to ensure the fairness of the experiments, other self-supervised learning methods
also use fixed weights for feature extraction, and then SVM is used as the classifier. For
Labeled Pre-Training, the training is performed in the standard pre-training plus fine-tuning
manner, i.e., a linear projection is trained, and fine-tuning of the convolutional layers with
a small learning rate is performed. The accuracy scores are averaged and calculated ten
times to eliminate computational errors, and the corresponding standard deviation (STD)
is calculated to verify their robustness.
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Table 3. Comparison results on DPS gear dataset.

Method Accuracy (%) Time (s)

SBYOL 97.14 ± 1.60 2.43
BYOL 91.82 ± 2.33 2.39

SimSiam 90.94 ± 4.00 2.41
SimCLR 78.98 ± 2.41 2.41
MoCo 90.08 ± 3.30 2.46

SMoCo 92.80 ± 3.19 2.37
MixMatch 90.32 ± 2.18 1177.21

Labeled Pre-Training 86.11 ± 3.14 27.42
FFT + SVM 88.48 ± 1.82 0.10
ResNet18 71.84 ± 3.92 25.86
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As can be seen from Table 3 and Figure 11, SBYOL achieves the best results reaching an
accuracy of 97.14% in the face of a complex planetary gearbox, which greatly surpasses other
methods. This is also consistent with the feature visualization performance in Figure 10,
where SBYOL’s feature extractor can distinguish well between classes without training with
the target diagnostic object. Consequently, only a small number of samples are required
to construct a highly accurate classification boundary. Furthermore, the volatility of the
feature extractor is relatively low, with a standard deviation of only 1.60. In addition,
since SBYOL only acts as a fixed-weight feature extractor, its application to downstream
diagnostic tasks is also very efficient, requiring only 2.43 s. For Labeled Pre-Training,
although its diagnostic accuracy is improved compared to the baseline ResNet-18, its
performance is far inferior to SBYOL for cross-device diagnostic problems under limited
data because of its feature extractor obtained by supervised learning on the pre-training
dataset. Other self-supervised learning methods perform poorly compared to SBYOL due
to the lack of our unique TFST and gaps in the structure. For FFT + SVM, its performance
is better than that of ResNet-18 in the case of limited data, which utilizes only time-domain
features, but its diagnostic accuracy is not high in the face of complex diagnostic problems.
MixMatch is trained with both target diagnostic data and unlabeled pre-training data, so
it can adapt the pre-training data to the target diagnostic data to achieve good diagnostic
accuracy. However, the accuracy of MixMatch is lower than SBYOL, and since it uses a
large amount of unlabeled data for training at the same time, it is much slower than our
method to apply it to the target diagnostic task.
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This paper further explores the performance of SBYOL in the case of extremely limited
target training samples and uses the other two best-performing methods, BYOL and SMoCo,
as a comparison. A total of five sets of experiments are conducted with training data sizes
between 1 and 5 for each class, and the results are shown in Table 4 and Figure 12. In all
cases, SBYOL achieved the best results, even with only two samples per class to achieve the
best performance of other methods with five samples per class. In the extreme case of one
sample per class, the accuracy decreases more due to the deviation from the classification
plane, but even so, the best performance is achieved. As can be seen in Figure 12b, the
stability of each method increases as the number of data increases, while SBYOL achieves
the smallest STD in almost all cases. The results show that SBYOL has strong diagnostic
performance and robustness against limited data conditions.

Table 4. Comparison results on DPS gear dataset under different volumes of training data.

Methods
Number of Samples per Class

1 2 3 4 5

SBYOL 89.40 ± 3.64 92.70 ± 3.33 94.20 ± 3.06 95.34 ± 2.92 97.14 ± 1.60
BYOL 85.36 ± 4.21 88.09 ± 4.22 89.16 ± 4.10 90.86 ± 3.56 91.82 ± 2.33

SMoCo 85.58 ± 4.66 89.40 ± 3.03 90.94 ± 3.62 92.20 ± 3.12 92.80 ± 3.19
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In addition, the noise interference immunity of SBYOL is further validated to demon-
strate its robustness and effectiveness under different signal-to-noise ratio (SNR) conditions.
The two best-performing methods BYOL and SMoCo are also selected for comparison. A
total of six sets of experiments with an SNR from 0 to 10 are conducted for each method
using the full training set, i.e., five samples per class, and the results are shown in Table 5
and Figure 13. Compared with the two methods, SBYOL achieves the best results; even
in the case of strong noise at 0 dB, it can achieve approximately 94% accuracy, proving its
robustness to noise. In addition, as shown in Figure 13b, the overall standard deviation of
SBYOL decreases as the noise diminishes, and is lower than the other two methods, which
proves that SBYOL has good robustness to noise.

Table 5. Comparison results on DPS gear dataset under different SNRs.

Methods
SNR

0 dB 2 dB 4 dB 6 dB 8 dB 10 dB

SBYOL 93.90 ± 3.07 94.20 ± 2.92 94.62 ± 2.76 95.22 ± 2.68 95.94 ± 2.29 96.52 ± 1.59
BYOL 88.18 ± 3.94 88.70 ± 3.53 88.96 ± 3.21 90.04 ± 3.79 90.90 ± 2.94 91.48 ± 2.70

SMoCo 90.04 ± 3.50 90.58 ± 3.32 90.90 ± 3.15 91.26 ± 2.72 91.84 ± 2.93 92.40 ± 2.49
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in terms of extracted features without using any target diagnostic object for training, 
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4.3. Verification on the Public Planetary Gearbox Dataset

To verify that the SBYOL pre-trained on parallel gearboxes can well solve the fault
diagnosis of planetary gearboxes, the public SEU dataset is selected for further validation
in this paper. The SEU dataset [34] provided by Southeast University was obtained on
the drivetrain dynamic simulator (DDS), which contains two operating conditions with
the rotating speed system load set to 20 Hz—0 V and 30 Hz—2 V, respectively. The test
rig is shown in Figure 14. In each file, there are eight rows of vibration signals; in this
paper, we use the second row of vibration signals, which means the x-axis vibration signal,
and the length of each sample is still 4096. In addition, only 5 samples per class are used
in the training set, and 50 samples per class are used in the testing set, and the specific
information of the SEU dataset is shown in Table 6.
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Table 6. Labeled SEU gear dataset.

Fault Mode Rotating Speed System Load Training
Samples

Testing
Samples Label

Health Gear 20 Hz—0 V 5 50 0
Health Gear 30 Hz—2 V 5 50 1

Chipped Tooth 20 Hz—0 V 5 50 2
Chipped Tooth 30 Hz—2 V 5 50 3
Missing Tooth 20 Hz—0 V 5 50 4
Missing Tooth 30 Hz—2 V 5 50 5

Root Fault 20 Hz—0 V 5 50 6
Root Fault 30 Hz—2 V 5 50 7

Surface Fault 20 Hz—0 V 5 50 8
Surface Fault 30 Hz—2 V 5 50 9

Similarly, feature extraction was performed on the SEU testing set using the feature
extractors obtained by pre-training on the UoC dataset with fixed weights and visualized
using T-SNE, and the results are shown in Figure 15. SBYOL can achieve excellent results
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in terms of extracted features without using any target diagnostic object for training, which
is far better than other methods. SMoCo also achieves relatively good feature extraction
results, but compared with SBYOL, the same category such as labels 5, 6, 7, 8, and 9 are not
aggregated enough, and the two categories of labels 7 and 9 are too close to each other and
are more prone to errors when there are limited training data.
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The same methods were used for fault diagnosis on the SEU dataset, and the results
are shown in Table 7 and Figure 16. The SBYOL method achieves the best diagnostic results
in the face of a different device of the planetary gearbox, reaching an accuracy of 99.50%,
which greatly exceeds other methods, and the STD of SBYOL is also only 0.47 because of its
excellent feature extraction. Although SMoCo and MixMatch also achieve good diagnostic
accuracy, they are still far inferior to SBYOL. In addition, since MixMatch needs to be
retrained for each new diagnostic task, it is much slower than our method to apply it to the
target diagnostic task.

Table 7. Comparison results on SEU gear dataset.

Method Accuracy (%) Time (s)

SBYOL 99.50 ± 0.47 2.35
BYOL 95.82 ± 1.29 2.25

SimSiam 90.27 ± 2.26 2.61
SimCLR 86.52 ± 1.94 2.55
MoCo 93.28 ± 1.03 2.56

SMoCo 97.36 ± 1.62 2.56
MixMatch 97.00 ± 1.19 1182.17

Labeled Pre-Training 87.25 ± 3.26 30.56
FFT + SVM 88.19 ± 5.03 0.11
ResNet18 72.48 ± 6.67 28.86
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Figure 16. Comparison results on SEU gear dataset. (a) Accuracy; (b) standard deviation.

This paper also further explores the performance of SBYOL in the case of extremely
limited training samples and selects the two best-performing methods, SMoCo and Mix-
Match, for comparison, and the results are shown in Table 8 and Figure 17. The best results
are obtained for SBYOL with different training sample sizes, even with an accuracy of
98.24% for three samples per class. MixMatch’s performance is greatly degraded under
extremely limited labeled datasets due to the lack of our unique data augmentation method.
As can be seen in Figure 17b, the stability of each method increases as the number of data
increases, while SBYOL achieves the smallest STD in all cases.

Table 8. Comparison results on SEU gear dataset under different volumes of training data.

Methods
Number of Samples per Class

1 2 3 4 5

SBYOL 92.38 ± 2.24 96.46 ± 2.35 98.24 ± 0.89 99.14 ± 0.61 99.50 ± 0.47
SMoCo 82.84 ± 2.36 91.04 ± 2.91 95.12 ± 2.08 96.80 ±1.24 97.36 ± 1.62

MixMatch 74.12 ± 6.09 83.57 ± 4.08 85.60 ± 3.85 94.57 ± 3.98 97.00 ± 1.19
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In addition, this paper further verifies the ability of SBYOL to resist noise interfer-
ence. Since MixMatch does not have the unique data augmentation possessed by the
self-supervised learning methods, its noise immunity is poor; two methods with good
performance and stability, BYOL and SMoCo, are selected for comparison, and the results
are shown in Table 9 and Figure 18. Compared to these two methods, SBYOL achieves
the best results, even at 4 dB, to reach the performance of the best-performing SMoCo at
10 dB, and its volatility is also the best in most cases. Excessive noise has a greater impact
on diagnostic accuracy, but even so, it can achieve an accuracy of about 92% in the case of
strong noise at 0 dB.
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Table 9. Comparison results on SEU gear dataset under different SNRs.

Methods
SNR

0 dB 2 dB 4 dB 6 dB 8 dB 10 dB

SBYOL 91.96 ± 1.89 94.72 ± 1.30 96.30 ± 1.00 97.44 ± 0.71 98.32 ± 0.58 98.70 ± 0.92
BYOL 86.30 ± 1.30 89.26 ± 1.66 92.06 ± 1.92 94.16 ± 1.03 94.26 ± 1.36 94.96 ± 1.02

SMoCo 89.62 ± 1.83 93.00 ± 2.47 95.04 ± 1.24 95.62 ± 1.98 96.14 ± 2.08 96.82 ± 1.58
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4.4. Verification on the Bearing Dataset

From the above experiments, the feature extractor obtained by SBYOL pre-training
on the parallel gearbox well solves the fault diagnosis problem of planetary gearboxes.
Therefore, to further validate that the pre-trained SBYOL learns a universal feature extractor,
this section uses the PU bearing data and the PUT aero-engine high-speed bearing data as
target diagnostic objects, respectively. The bearing data used have the characteristics of
completely different types of equipment from the pre-training gear data.

The bearing dataset of Paderborn University (PU) was presented by Christian Less-
meier et al. [35] in 2016, and the experimental test rig is shown in Figure 19. In this dataset,
there are multiple bearings divided into three main groups: 6 healthy bearings, 12 artificially
damaged bearings, and 14 bearings with natural operation generating faults. The vibration
signals were obtained at a sampling rate of 64 kHz and included four working conditions.
It is a very difficult dataset in common datasets, which can reflect the difficulty of real fault
diagnosis [37]. Ten types of real damaged bearings in the PU bearing dataset were selected
as the target diagnostic dataset to better represent the actual problem, including one type
of healthy bearings and two types of mixed faulty bearings. The operating condition is
N15_M07_F04; specifically, the rotating speed is 1500 rpm, the loading torque is 0.7 NM,
and the radial force is 400 N. The specific information is shown in Table 10. To reflect the
limited data problem faced in the actual diagnosis task, 5 samples are used for each class in
the training set, and 50 samples are used for each class in the testing set.
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Similarly, the pre-trained feature extractors are used to extract features from the PU
bearing testing set with fixed weights and visualize them using T-SNE, and the results are
shown in Figure 20. The SBYOL proposed in this paper achieves amazing feature extraction
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results for completely different types of bearing devices without using any data of the
target diagnostic object for training, which greatly surpasses other methods.

Table 10. Labeled PU bearing dataset.

Bearing Code Damaged Element Fault Mode Damage Form Arrangement Damaged Extent

K001 Health state / / / /
KA04 Outer ring Fatigue: pitting Single damage No repetition Level 1
KA15 Outer ring Plastic deform: Indentations Single damage No repetition Level 1
KA16 Outer ring Fatigue: pitting Repetitive damage Random Level 2
KB23 Outer ring and inner ring Fatigue: pitting Multiple damage Random Level 2
KB24 Outer ring and inner ring Fatigue: pitting Multiple damage No repetition Level 3
KI14 Outer ring Fatigue: pitting Multiple damage No repetition Level 1
KI16 Outer ring Fatigue: pitting Single damage No repetition Level 3
KI17 Inner ring Fatigue: pitting Repetitive damage Random Level 1
KI18 Inner ring Fatigue: pitting Single damage No repetition Level 2
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Next, fault diagnosis was performed on the PU dataset, and the results are shown in
Table 11 and Figure 21. When faced with a diagnostic problem for a completely different
type of product, SBYOL achieves a diagnostic accuracy of 99.54%, which greatly exceeds
other methods. SBYOL is approximately 12 times faster than Labeled Pre-Training and
ResNet18, which require training neural networks, and approximately 500 times faster than
MixMatch, which uses both a pre-training dataset and a target diagnostic dataset, when
applied to diagnostic tasks. While Labeled Pre-Training can still improve accuracy, it is far
less effective than SBYOL when faced with a diagnostic problem on a completely different
device and without sufficient data for fine-tuning. In addition, since SBYOL achieves very
good feature extraction without further training, its std is small, as shown in Figure 21b,
proving its excellent stability even in the face of different types of bearing devices.
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Table 11. Comparison results on PU bearing dataset.

Method Accuracy (%) Time (s)

SBYOL 99.54 ± 0.38 2.38
BYOL 89.28 ± 2.48 2.39

SimSiam 95.64 ± 0.94 2.37
SimCLR 93.94 ± 1.52 2.35
MoCo 97.22 ± 0.99 2.37

SMoCo 98.06 ± 1.49 2.39
MixMatch 94.68 ± 1.08 1186.80

Labeled Pre-Training 87.64 ± 3.26 31.35
FFT + SVM 79.62 ± 4.85 0.10
ResNet18 71.52 ± 5.74 29.04
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In this paper, the robustness of SBYOL is likewise verified for extremely limited
data volumes and under different noises, and two other best-performing methods, MoCo
and SMoCo, are selected for comparison; the results are shown in Tables 12 and 13 and
Figures 22 and 23. SBYOL can achieve very high diagnostic accuracy even when facing the
diagnostic problem of a completely different type of product such as a bearing, and it can
achieve excellent accuracy in the case of extremely limited data and strong noise, greatly
exceeding other methods. SBYOL can achieve a diagnostic accuracy of 94.52% with just one
sample per class, and with only three samples per class, it can outperform other methods
with five training samples per class. Although SBYOL can achieve good performance with
one sample per class, it is prone to deviation from the classification plane in this case, and
only two to three samples per class are needed to greatly improve the diagnostic accuracy
of SBYOL. In addition, at 0 dB of strong noise, SBYOL even achieves the performance
of other best-performing methods at 10 dB, greatly exceeding the performance of other
methods. As shown in Figures 22b and 23b, the overall stability of all methods continues to
improve as the difficulty of diagnosis decreases, i.e., more training data and less noise.

Table 12. Comparison results on PU bearing dataset under different volumes of training data.

Methods
Number of Samples per Class

1 2 3 4 5

SBYOL 94.52 ± 2.24 97.66 ± 1.21 98.50 ± 0.90 99.14 ± 0.91 99.54 ± 0.38
SMoCo 85.64 ± 4.01 92.92 ± 2.59 95.28 ± 1.76 96.56 ± 1.23 97.22 ± 0.99

MixMatch 81.48 ± 4.17 89.16 ± 3.98 95.32 ± 1.60 96.52 ± 2.12 98.06 ± 1.49
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Table 13. Comparison results on PU bearing dataset under different SNRs.

Methods
SNR

0 dB 2 dB 4 dB 6 dB 8 dB 10 dB

SBYOL 97.08 ± 1.37 98.20 ± 0.58 98.68 ± 0.82 98.84 ± 0.48 99.14 ± 0.39 99.36 ± 0.31
BYOL 94.94 ± 1.07 95.42 ± 1.08 95.94 ± 1.04 96.32 ± 1.13 96.90 ± 1.08 97.22 ± 1.02

SMoCo 94.54 ± 2.68 95.38 ± 2.16 95.54 ± 1.62 95.82 ± 1.22 96.10 ± 2.19 97.60 ± 1.00
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Since SBYOL can achieve extremely high accuracy in the case of strong noise even in
the face of completely different types of bearing devices, we further explored the cases of
0 dB, 4 dB, and 8 dB noise, whose corresponding feature extraction results are shown in
Figure 24. With the enhancement of noise, the distance between categories keeps decreasing,
and there is a gradual overlap between category KI16 and category KI18, so its diagnostic
performance keeps decreasing. However, even with the strong noise of 0 dB, the categories
are still well distinguished from each other, and the samples of the same category are
aggregated, so it can achieve excellent and stable diagnostic accuracy.

Aerospace 2023, 10, x FOR PEER REVIEW 24 of 31 
 

 

   
(a) (b) (c) 

Figure 24. Visualization of SBYOL on noisy PU bearing datasets. (a) 0 dB; (b) 4 dB; (c) 8 dB. 

To verify the effectiveness of SBYOL more fully for completely different types of 

equipment, this paper uses the aero-engine high-speed bearing dataset from the Depart-

ment of Mechanical and Aeronautical Engineering of the Polytechnic University of Turin 

(PUT), whose test rig is shown in Figure 25. For this dataset, we used the vibration accel-

eration data of aero-engine bearings at different speeds and different damage levels, with 

a sample length of 4096, and used the y-direction channel data at A1. To reflect the ex-

tremely limited data situation in the actual diagnosis process, only 3 samples per class 

were used in the training set, and 50 samples per class were used in the testing set. The 

specific dataset information is shown in Table 14. 

 

Figure 25. Test rig of the aero-engine bearing dataset from the Polytechnic University of Turin [36]. 

Table 14. Labeled PUT aero-engine bearing dataset. 

Damaged Element Diameter (μm) Rotation Speed (r/min) Load (N) Training Samples Testing Samples Label 

Healthy / 24,000 1400 3 50 0 

Inner ring 450 24,000 1400 3 50 1 

Inner ring 250 24,000 1400 3 50 2 

Inner ring 150 24,000 1400 3 50 3 

Roller 450 24,000 1400 3 50 4 

Roller 250 24,000 1400 3 50 5 

Roller 150 24,000 1400 3 50 6 

Inner ring 450 18,000 1400 3 50 7 

Inner ring 250 18,000 1400 3 50 8 

Inner ring 150 18,000 1400 3 50 9 

Roller 450 18,000 1400 3 50 10 

Roller 250 18,000 1400 3 50 11 

Roller 150 18,000 1400 3 50 12 

Figure 24. Visualization of SBYOL on noisy PU bearing datasets. (a) 0 dB; (b) 4 dB; (c) 8 dB.



Aerospace 2023, 10, 681 24 of 31

To verify the effectiveness of SBYOL more fully for completely different types of equip-
ment, this paper uses the aero-engine high-speed bearing dataset from the Department of
Mechanical and Aeronautical Engineering of the Polytechnic University of Turin (PUT),
whose test rig is shown in Figure 25. For this dataset, we used the vibration acceleration
data of aero-engine bearings at different speeds and different damage levels, with a sample
length of 4096, and used the y-direction channel data at A1. To reflect the extremely limited
data situation in the actual diagnosis process, only 3 samples per class were used in the
training set, and 50 samples per class were used in the testing set. The specific dataset
information is shown in Table 14.
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Figure 25. Test rig of the aero-engine bearing dataset from the Polytechnic University of Turin [36].

Table 14. Labeled PUT aero-engine bearing dataset.

Damaged
Element

Diameter
(µm)

Rotation
Speed (r/min) Load (N) Training

Samples
Testing

Samples Label

Healthy / 24,000 1400 3 50 0
Inner ring 450 24,000 1400 3 50 1
Inner ring 250 24,000 1400 3 50 2
Inner ring 150 24,000 1400 3 50 3

Roller 450 24,000 1400 3 50 4
Roller 250 24,000 1400 3 50 5
Roller 150 24,000 1400 3 50 6

Inner ring 450 18,000 1400 3 50 7
Inner ring 250 18,000 1400 3 50 8
Inner ring 150 18,000 1400 3 50 9

Roller 450 18,000 1400 3 50 10
Roller 250 18,000 1400 3 50 11
Roller 150 18,000 1400 3 50 12

The pre-trained feature extractors are used to extract features from the PUT aero-
engine high-speed bearing testing set and are visualized using T-SNE, and the results are
shown in Figure 26. The SBYOL method proposed in this paper can achieve such extremely
high feature extraction results for the aero-engine high-speed bearing data without using
any data of the target diagnostic object for training, which greatly surpasses other methods
with large segmentation intervals between categories and the aggregation of data within
classes. SMoCo has also achieved good performance, but it is less aggregated than SBYOL
for the category labeled 9, and its two categories labeled 7 and 9 are too close together.
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Similarly, the fault diagnosis is performed on the PUT aero-engine bearing dataset, and the
results are shown in Table 15 and Figure 27. The robustness of SBYOL to the size of the training
data and different levels of noise is further validated and compared with the two best-performing
methods, and the results are shown in Tables 16 and 17 and Figures 28 and 29. SBYOL achieves
the highest diagnostic accuracy and the smallest STD compared to other methods, even
requiring only two samples per class to exceed the performance of SMoCo, which is the
best performance among other methods. SBYOL also achieves the best performance in
terms of noise immunity, with a diagnostic accuracy of 99.20% at 6 dB, which is comparable
to the performance of SimSiam and SMoCo at 10 dB, proving that SBYOL is still robust to
noise in the face of completely different devices. In addition, the STD of each method also
shows a decreasing trend with the increase in data volume and the decrease in noise.

Table 15. Comparison results on PUT aero-engine bearing dataset.

Method Accuracy (%) Time (s)

SBYOL 99.91 ± 0.12 2.59
BYOL 98.52 ± 1.03 2.59

SimSiam 99.12 ± 1.06 2.56
SimCLR 85.08 ± 2.83 2.63
MoCo 97.94 ± 1.00 2.62

SMoCo 99.60 ± 0.54 2.60
MixMatch 98.18 ± 0.84 794.63

Labeled Pre-Training 94.06 ± 2.09 34.12
FFT + SVM 94.86 ± 3.52 0.11
ResNet18 82.83 ± 2.88 30.18
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Table 16. Comparison results on PUT aero-engine bearing dataset under different volumes of
training data.

Methods
Number of Samples per Class

1 2 3

SBYOL 98.86 ± 0.21 99.82 ± 0.15 99.91 ± 0.12
SimSiam 95.82 ± 2.48 98.37 ± 1.35 99.12 ± 1.06
SMoCo 97.28 ± 1.88 98.85 ±1.23 99.60 ± 0.54
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Table 17. Comparison results on PUT aero-engine bearing dataset under different SNRs.

Methods
SNR

0 dB 2 dB 4 dB 6 dB 8 dB 10 dB

SBYOL 96.09 ± 0.71 97.83 ± 1.05 98.97 ± 0.55 99.20 ± 0.79 99.58 ± 0.26 99.78 ± 0.28
SimSiam 92.65 ± 1.31 95.98 ± 1.28 96.86 ± 1.55 98.09 ± 0.81 98.67 ± 0.51 98.91 ± 0.69
SMoCo 96.08 ± 1.26 97.71 ± 0.86 98.46 ± 0.77 98.74 ± 0.71 99.26 ± 0.61 99.46 ± 0.45



Aerospace 2023, 10, 681 27 of 31

Aerospace 2023, 10, x FOR PEER REVIEW 27 of 31 
 

 

Table 17. Comparison results on PUT aero-engine bearing dataset under different SNRs. 

Methods 
SNR 

0 dB 2 dB 4 dB 6 dB 8 dB 10 dB 

SBYOL 96.09 ± 0.71 97.83 ± 1.05 98.97 ± 0.55 99.20 ± 0.79 99.58 ± 0.26 99.78 ± 0.28 

SimSiam 92.65 ± 1.31 95.98 ± 1.28 96.86 ± 1.55 98.09 ± 0.81 98.67 ± 0.51 98.91 ± 0.69 

SMoCo 96.08 ± 1.26 97.71 ± 0.86 98.46 ± 0.77 98.74 ± 0.71 99.26 ± 0.61 99.46 ± 0.45 

 

  
(a) (b) 

Figure 29. Comparison results on PUT aero-engine bearing dataset under different SNRs. (a) Accu-

racy; (b) standard deviation. 

4.5. Robustness to Sampling Time and Data Size of the Pre-Training Dataset 

To further explore the requirements of SBYOL for pre-training datasets, in addition to 

the pre-training dataset size, the sampling time is also an influencing factor due to the unique 

data augmentation method TFST used by SBYOL. Therefore, this section further explores the 

robustness of SBYOL to the sampling time and data size of the pre-training dataset. Eight sets 

of experiments are conducted in this paper including SBYOL-9.43s-350, SBYOL-0.42s-350, 

SBYOL-9.43s-175, SBYOL-0.42s-175, SBYOL-3.86s-70, SBYOL-0.42s-70, SBYOL-2.01s-35, and 

SBYOL-0.42s-35. Taking SBYOL-9.43s-350 as an example, 9.43s represents the single sampling 

time, and 350 represents the number of samples per class in the pre-training dataset. These 

eight sets of experiments are self-supervised learning on the corresponding UoC pre-training 

datasets, and the learned feature extractors are then transferred to the DPS dataset, SEU da-

taset, PU dataset, and PUT dataset, respectively, where the training sets in the DPS dataset, 

SEU dataset, and PU dataset are still five samples per class, and the training sets in the PUT 

dataset are three samples per class. In addition, we also used the best-performing SMoCo and 

MixMatch as a comparison, which used all unlabeled pre-training datasets, i.e., 350 samples 

per class, and the results are shown in Table 18 and Figure 30. 

 

Figure 30. Comparison results of different sampling times and pre-training dataset sizes. 

Figure 29. Comparison results on PUT aero-engine bearing dataset under different SNRs. (a) Accuracy;
(b) standard deviation.

4.5. Robustness to Sampling Time and Data Size of the Pre-Training Dataset

To further explore the requirements of SBYOL for pre-training datasets, in addition
to the pre-training dataset size, the sampling time is also an influencing factor due to the
unique data augmentation method TFST used by SBYOL. Therefore, this section further
explores the robustness of SBYOL to the sampling time and data size of the pre-training
dataset. Eight sets of experiments are conducted in this paper including SBYOL-9.43s-
350, SBYOL-0.42s-350, SBYOL-9.43s-175, SBYOL-0.42s-175, SBYOL-3.86s-70, SBYOL-0.42s-
70, SBYOL-2.01s-35, and SBYOL-0.42s-35. Taking SBYOL-9.43s-350 as an example, 9.43s
represents the single sampling time, and 350 represents the number of samples per class in
the pre-training dataset. These eight sets of experiments are self-supervised learning on
the corresponding UoC pre-training datasets, and the learned feature extractors are then
transferred to the DPS dataset, SEU dataset, PU dataset, and PUT dataset, respectively,
where the training sets in the DPS dataset, SEU dataset, and PU dataset are still five samples
per class, and the training sets in the PUT dataset are three samples per class. In addition,
we also used the best-performing SMoCo and MixMatch as a comparison, which used all
unlabeled pre-training datasets, i.e., 350 samples per class, and the results are shown in
Table 18 and Figure 30.

Table 18. Comparison results of different sampling times and pre-training dataset sizes.

Method Intercepted Sample Size Data Size DPS SEU PU PUT Average

SBYOL-9.43s-350 175 350 × 9 97.14 99.50 99.54 99.91 99.02
SBYOL-0.42s-350 5 350 × 9 97.28 99.61 99.42 99.58 98.97
SBYOL-9.43s-175 175 175 × 9 96.68 98.69 99.49 99.76 98.66
SBYOL-0.42s-175 5 175 × 9 95.90 97.70 99.53 99.80 98.23
SBYOL-3.86s-70 70 70 × 9 93.78 97.59 99.22 99.85 97.61
SBYOL-0.42s-70 5 70 × 9 93.60 97.08 99.52 99.82 97.51
SBYOL-2.01s-35 35 35 × 9 93.47 97.68 98.88 99.97 97.50
SBYOL-0.42s-35 5 35 × 9 93.57 98.37 98.33 99.69 97.49

SMoCo / 350 × 9 92.80 97.36 98.06 99.60 96.96
MixMatch / 350 × 9 90.32 97.00 94.68 98.18 95.05

SBYOL still achieves good performance with a smaller sampling time and pre-training
dataset size, and the average diagnostic accuracy of SBYOL-0.42s-175 even reaches 98.23%
on the four datasets. In addition, SBYOL-0.42s-35 achieves an average diagnostic accuracy
of 97.49%, surpassing SMoCo and MixMatch, the best performers among other methods,
while only using 10% of the dataset size compared to SMoCo and MixMatch. From
comparing SBYOL-9.43s-350 with SBYOL-0.42s-350, SBYOL-9.43s-175 with SBYOL-0.42s-
175, SBYOL-3.86s-70 with SBYOL-0.42s-70, and SBYOL-2.01s-35 with SBYOL-0.42s-35, with
the same amount of data, a longer sampling signal allows SBYOL to perform better on
average over the four datasets. From the comparison of SBYOL-0.42s-350 with SBYOL-9.43s-
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175, SBYOL-0.42s-175 with SBYOL-3.86s-70, and SBYOL-0.42s-70 with SBYOL-2.01s-35,
SBYOL can perform better with a larger amount of data even with shorter sampling time.
The performance is closer in the case of 70 and 35 samples per class compared to the
difference between 350, 175, and 70 samples per class, proving that it still requires a larger
variation in data volume for a larger improvement in performance.
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Therefore, from the above results, SBYOL is extremely robust to the pre-training
dataset, longer sampling time and larger datasets can achieve better performance, and
dataset size improves performance more than sampling time when there is a large difference
in dataset size.

5. Conclusions

The problem of limited data and strong noise in the rotating machinery fault diagnosis
tasks under real conditions seriously affects the performance of intelligent diagnosis meth-
ods. In this paper, we innovatively propose SBYOL for the automatic feature extraction
of unlabeled rotating machinery vibration signals, which incorporates the novel data aug-
mentation method TFST proposed in this paper to retain both time domain and frequency
domain information of the signal at the same time. SBYOL first performs self-supervised
learning on easily available unlabeled data and then uses the trained feature extractor for
downstream diagnostic tasks under limited data. In this paper, a powerful and robust
universal feature extractor was constructed by self-supervised pre-training on the unla-
beled UoC parallel gearbox dataset and then applied to a private DPS planetary gearbox
dataset under limited data, achieving an accuracy of 97.14%. It was further validated
on the SEU planetary gearbox dataset and achieved an accuracy of 99.50%. To further
demonstrate that SBYOL learned a universal feature extractor, two public bearing datasets,
the PU and PUT bearing datasets, with completely different types of devices compared to
the pre-training dataset, were used as target diagnostic objects, both achieving diagnostic
accuracy of over 99.54%. Further experiments show that SBYOL also has excellent perfor-
mance for the target diagnostic object under extremely limited data and strong noise and
is robust to the unlabeled pre-training dataset with a shorter sampling time and smaller
data size, demonstrating its great potential and superiority for rotating machinery fault
diagnosis problems.

Although SBYOL achieved excellent results, there are still some works that deserve
further exploration. In the self-supervised signal representation learning stage, SBYOL
takes a relatively long time to learn a good representation of the signal, and future research
can be conducted on how to improve the training efficiency, such as using mixed precision
training. For the structure of the encoder, future work can also try to use a transformer
network that currently performs well in various fields. Finally, although SBYOL showed
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promising results under steady-state operating conditions, there is a lack of exploration
regarding fault diagnosis under varying operating conditions. Therefore, future research
can further investigate and explore more data transformation methods that are suitable for
handling varying operating conditions [41,42].
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