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Abstract: Aviation noise remains a key barrier to the sustainable growth of commercial aviation. The
advent of emerging technologies, such as urban air mobility, and the renewed interest in commercial
supersonic transport aircraft, has only further raised concerns over the resultant community noise
exposure. The foundation of any noise mitigation effort is the ability to accurately model noise metrics
over a wide range of scenarios. Aviation noise is influenced by a wide variety of factors, including
aircraft type, payload weight, thrust settings, airport elevation, ambient weather, and flight trajectory.
Traditional noise modeling paradigms rely on physics-based and empirical calculations, which are
computationally expensive. Attempts at speeding up the computations with alternate models could
deliver on speed or accuracy, but not both. Recent research has indicated that model order reduction
techniques hold promise for transforming and greatly reducing the number of quantities that need
to be modeled. Paired with surrogate modeling techniques, a rapid and accurate noise model can
be generated. The research presented in this manuscript expands on the model order reduction
method and develops a rapid noise surrogate model, which can account for the piloting actions,
the ambient temperature, and airport elevation. The presented results indicate that the method
works well with minimal error for most modeling scenarios. The results also outline avenues for
improvement, such as using a different class of surrogate models or modeling additional training
cases. The model developed in this research has numerous applications for multi-query applications,
such as parametric trade-off analyses and optimization studies. With the inclusion of airport and
aircraft parameters, the model enables the development of frameworks that optimize piloting actions
for noise mitigation on the ground.

Keywords: aviation noise modeling; aviation noise mitigation; community noise exposure;
departure modeling; sustainable aviation; model order reduction; principal component analysis;
surrogate modeling

1. Introduction

According to the U.S. Federal Aviation Administration (FAA), commercial aviation
has historically been tied to economic activity, and a return of passenger numbers to pre-
pandemic operation levels will be expected towards the middle of the decade [1]. As aircraft
operations are expected to recover and continue to grow, issues associated with commercial
aviation are likewise expected to grow in scope. An increase in air traffic demand by an
average of 4.0 percent annually is expected by various government and industry stakehold-
ers [1–3]. As this trend continues, the severity of associated environmental impacts will also
increase. One of these impacts is community exposure to aviation noise, which has posed
a significant obstacle for the aviation industry. Noise is extremely difficult to model and
mitigate due to the complexity of its behavior, in relation to both aircraft performance [4]
and propagation through the atmosphere [5].

There are many concerns surrounding aviation noise impact, ranging from public
annoyance to potential long-term health effects [6]. The mitigation of aviation noise is,
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therefore, desirable, due to the scale and significance of the problem [7]. For that reason, re-
search into noise abatement and mitigation has seen significant investments from academia,
manufacturers, and regulatory agencies. Much of the existing research is based on aircraft
design, specifically focusing on new technologies built into new designs or mounted as
retrofits to existing aircraft. Another key area of research involves improvements in opera-
tional efficiencies. Design methodologies and tools that can better model the noise output
of an aircraft in a wide variety of scenarios are also topics of research in the field.

During aircraft operation, the intensity of noise emitted from an aircraft varies based
on the aircraft’s takeoff and landing procedures [8]. In particular, the noise impact from a
departure is characterized by high levels of engine usage whereas arrival noise is character-
ized by lower thrust levels, and a longer exposure duration. For departure operations, there
is higher variability in the aircraft trajectory and performance characteristics compared to
arrivals, where the final approach must be maintained at a 3◦ glide slope. These additional
degrees of freedom from the aircraft trajectory also add the potential for additional opti-
mization constraints, such as fuel burn or minimization of emissions. A methodology that
would improve the computational efficiency of existing processes of determining noise
outputs based on aircraft operational parameters is highly desirable. A noise metric output
could quickly be obtained with such a methodology, given a set of aircraft operational
parameters. Thus, such a methodology would enable multi-query applications, such as
parametric trade-off analyses and optimization studies. The potential use of such a method-
ology would be the development of optimal noise abatement profiles, given the constraints
of operating conditions and aircraft capabilities.

The objective of the research presented in this manuscript is the development of a
new aircraft noise model to help improve noise abatement research and operations at
airports. This manuscript provides details about the development of such a model, how the
model performs when compared to traditional noise models, and the errors associated with
the model. This research also builds upon the relatively scarce available literature on the
application of model order reduction techniques to the aviation noise quantification process.

2. Background and Literature Review

This section presents the necessary background and summarizes the available relevant
literature pertinent to aviation noise estimation.

2.1. Aviation Noise—Influencing Factors

Aviation noise is influenced by a number of factors, which are categorized into two
separate groups within the context of this research. The first group includes factors that
can be controlled, to some extent, by the pilot or operator of an aircraft, which are hereby
referred to as internal parameters for a departure operation.

The altitude of thrust cutback, for example, is one of these internal parameters, which
significantly affects noise metrics [9]. Another internal parameter would be the altitude
of acceleration initiation, i.e., the altitude at which the aircraft pitches over and starts
accelerating, while maintaining a positive climb rate. In this state, the aircraft gains
airspeed and retracts flaps based on its flap schedule. The reduction of takeoff and/or
climb thrust is another pilot-controllable parameter with a major influence on aircraft
trajectory and engine source noise. Thrust reduction is another controllable parameter
that significantly affects departure performance and noise. Operators have the option to
utilize reduced thrust during takeoff and climb to prolong engine life and reduce noise
impact. The amount of thrust reduction also affects the climb performance and distance
covered during the take-off ground roll. Combinations of different parameter values lead
to different noise abatement departure procedure definitions [10,11].

The aircraft performance can be modeled by the sum of the aircraft’s potential and
kinetic energy [12]. Parameters such as speed and climb rate can be condensed into
their corresponding kinetic and potential energy representations. Since excess power is
needed to either accelerate or climb, an accurate representation of a climbing aircraft’s
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performance can be quantified based on how much excess power is being dedicated for
either purpose, called the energy share percentage. The relation between the energy share
percent, acceleration, and climb is described in Equation (1), where G is the climb gradient,
Gm represents the maximum available acceleration as a fraction of the standard acceleration
due to gravity, and Ap is the energy share percent value.

G = Gm

(
1−

Ap

100

)
(1)

The other important parameters that need to be accounted for are external to the flight
and cannot be controlled by the pilot. The takeoff gross weight of the aircraft is one of these
external parameters. Weight has a significant effect on the thrust and lift characteristics
of the aircraft, as more thrust is needed to maintain similar levels of performance with a
heavier aircraft, which has cascading effects on noise metrics.

The takeoff gross weight is determined by three quantities: the operating empty
weight, payload weight, and fuel weight. Although the operating empty weight is the only
“fixed” quantity, there is typically no room for flexibility on fuel weight, which depends on
the mission to be flown and reserve requirements. It is also uneconomical to reduce the
payload of a commercial aircraft for a noise mitigation effect. Additionally, both aircraft
performance [13] and the propagation of sound [14] through the atmosphere can be affected
by factors such as ambient temperature, humidity, and air density. Most noise models
account for these factors by defining the airport of operation through its elevation above
mean sea level and a weather profile. Accounting for the weather and elevation is important
in aviation noise modeling and optimization [15]. The ambient temperature, for example,
is one of the most dominant factors when modeling aviation noise [16,17].

2.2. Current Noise Modeling Paradigms

Aviation noise modeling is typically done with the use of physics-based equations and
semi-empirical models, often programmed into software packages. One such commonly
used tool is the Aviation Environmental Design Tool (AEDT) developed by the FAA [18,19].
AEDT is a comprehensive tool used for environmental analysis, which includes an air-
craft performance model and environmental models to compute noise, emissions, fuel
consumption, and air quality metric results.

In order to model the environmental impacts, various trajectory and performance
characteristics of the flight are required. If real-world data are available, each flight can
be modeled uniquely with fixed-point profile definitions. Each fixed-point profile is a
sequence of points specifying the aircraft’s ground track distance, altitude, speed, and thrust.
Alternatively, a procedural profile definition, in conjunction with an aircraft performance
model may be used. These profiles are defined as a series of steps that describes the state
of the aircraft during a departure or arrival operation. For a departure operation, steps
would include a take-off ground roll, followed by various constant speed or accelerated
climbs. Parameters for such a procedural profile definition would include takeoff thrust
levels, climb rates, target altitudes, target speeds, and energy share percentages.

Once a flight, or a set of flights, has been modeled, metrics such as fuel consumption,
emissions, and noise can be computed from the resultant trajectories and performance. To
compute aviation noise impacts, a user-defined receptor grid is created and geographically
placed around the airport and the departure ground track. The selected noise metric is then
computed at each point in the receptor grid. A sufficiently large number of points with
adequate density is needed to perform noise contour analysis.

AEDT and other similarly structured noise tools can account for variations in the
aircraft type, ground track, weather, airport elevation, and vertical profile. However, in
order to be accurate over a wide variety of conditions, these tools have to rely on physics-
based and semi-empirical models. The comprehensiveness of these tools also makes it
difficult for fast and efficient computations of noise metrics. This issue of computational
complexity has been a limitation with previous studies, where clustering of operations to
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reduce the amount of modeling effort [20] or the evaluation of a handful of alternatives as
opposed to a true comprehensive optimization effort [15] have been observed.

2.3. Attempts at Rapid Noise Estimation

In order to create a rapid noise estimation model, a few different methods have been
proposed, which are briefly described here.

Bernardo [21] proposed the creation of a pre-computed library consisting of aircraft-
level SEL dB noise grids. These grids are then rotated and aligned with different runway
configurations and superimposed to generate airport-level noise grid results. The core
improvement came from the pre-computed library, which negated the need for evaluating
the aircraft performance, noise–power–distance look-ups and interpolation, and noise
propagation models. This method, called the airport noise grid interpolation method
(ANGIM), was made feasible with several simplifying assumptions, i.e., straight tracks,
sea-level airports, standard day weather, etc. However, these simplifying assumptions
have also led to lower model accuracy conditions in conditions outside of the assumptions.

To improve the accuracy of this model, calibration models were proposed, which
applied correction factors to the noise metrics predicted by the ANGIM method. Calibra-
tion models were proposed for averaged generic vehicle definitions [22], curved ground
tracks [23], and atmospheric conditions [24]. These calibration models were based on
regression models, such as response surface equations (RSEs), Kriging interpolation, and
artificial neural networks. A common theme amongst these studies was the trade-off
between the model’s accuracy and speed. For example, a second-order RSE proved to be
fast but inaccurate, whereas higher-order RSEs would be accurate but too expensive to
train and evaluate.

Therefore, although several attempts have been made in the literature to create rapid
noise models, the ability to accurately and rapidly evaluate aviation noise metrics in a wide
range of modeling scenarios has remained elusive.

2.4. Model Order Reduction Techniques

In order to speed up the aviation noise computation process, a transformation of
the problem is needed. Fundamentally, a reduction in the complexity of the computation
would make the process faster and more efficient. In the literature, the collection of methods
used for this purpose is referred to as model order reduction (MOR) techniques. These
techniques reduce the amount of data to be predicted by transforming the problem into a
lower-dimensional representation. In doing so, the original data are approximated with
some loss of information. Various MOR techniques vary in how they define and minimize
the error associated with this transformation.

Although the concept of model order reduction is quite mature, its application to
aviation noise modeling remains limited. In other aerospace disciplines, MOR has found
use in design space exploration [25], design optimization [26], evaluation of aerodynamic
loads [27], solid mechanics and structural assessment [28], and aeroelasticity [29].

In the context of aviation noise, the limited application of the principal component anal-
ysis (PCA) has shown significant promise. Previous studies have shown that the use of the
PCA method on a large set of aviation noise grid results can successfully reduce the dimen-
sionality of the problem and enable real-time aviation noise result computations [16,30,31].
These previous studies have mostly focused on creating models, which include the control-
lable parameters discussed in Section 2.1, while excluding uncontrollable factors such as
ambient temperature conditions or airport elevation. As these uncontrollable factors play a
significant role in the magnitude of noise metrics, a MOR-based methodology, which can
include these factors, is desirable.

3. Methodology

This section outlines the steps of the developed methodology. A complete flowchart
of the process is shown in Figure 1. The process can broadly be split into four parts. The
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first part involves the collection of data used to build the model, the second is the use
of model order reduction to reduce model complexity, the third part is the creation of a
surrogate model to perform rapid evaluations of the reduced model, and the fourth part is
the validation of the methodology, with an analysis of the introduced errors.

Process
Input
Flight 

Operations

Actual 
Noise Grid

Compute 
Relative 

Information 
Content (RIC)

Principal 
Component 

Analysis 
(PCA)

Reduced 
 Components

Fit 
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Predicted 
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Projection 
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Prediction 
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Error

Model Order Reduction 
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Surrogate Model Development

Data Collection Validation

Predicted 
Noise Grid

Tasks Full-Order Data

Reduced DataErrors

Figure 1. Outline of the overall methodology with model reduction and surrogate modeling.

3.1. Data Collection

The first step of the process is the collection of noise grid data obtained from any
noise tool or noise measurements. Typically, a large number of solutions are required,
and these solutions should correspond to cases with a good variety across the influencing
parameters. A requirement of this step is that all solutions be computed on the same noise
grid definition, i.e., the number of receptors in the grid, and their locations must stay the
same across all modeling cases.

Once the noise grid results are obtained, they are represented as vectors, with each
component of the vector representing a particular receptor within the grid. These vectors
are hereby referred to as snapshots, represented by wi, where w is the vector representation
of a noise grid and i is an index for the modeling case. A typical noise contour analysis
requires grid definitions comprising tens or hundreds of thousands of receptors. The length
of the corresponding snapshot representation is the same as the number of receptors in the
grid definition.

The complete set of snapshots is assembled into a snapshot matrix W whose columns
are individual snapshots wi minus the mean snapshot w̄. This subtraction of the mean
snapshot is conducted to move the origin of the high-dimensional space to the mean
snapshot and, thus, center the high-dimensional snapshot data.

3.2. Model Order Reduction

Principal component analysis (PCA) is utilized here for model order reduction (MOR)
by selecting a subset of principal axes that serve as the bases for representing noise grid
results. The high-dimensional noise grid data are then reoriented along these chosen
principal axes. The principal axes ensure that much of the information encoded in the
dataset is captured along a few axes, while a vast majority of axes can be dropped from
consideration [32]. This results in a projection of the original high-dimensional vector
snapshot to a vector with much fewer components.

Using singular value decomposition (SVD), the snapshot matrix W assembled previ-
ously can be represented as a product of three matrices, as described in Equation (2). Σ is
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a rectangular diagonal matrix of singular values of W . U and V are orthogonal matrices
with columns and rows that are related to the size of W .

Wm×n = Um×mΣm×nV T
n×n (2)

The non-zero singular values σ of Σ are arranged in descending order to obtain a
unique SVD. These singular values are always non-negative and their magnitude correlates
to the importance of the corresponding rows of U and columns of V T in terms of their
information content, w.r.t. W .

To formally quantify this importance and information content, the relative information
content (RIC) is defined in Equation (3). This RIC metric can be used to determine how
many principal components need to be considered in order to retain the required amount
of information. The RICi measures the proportion of information contained by the first i
principal components relative to all columns of the U.

RICi =
∑i

j=1 σ2
j

∑n
j=1 σ2

j
(3)

The value of RICi ranges from 0 to 1. In practice, the value of RIC very quickly
approaches 1, typically with the first handful of principal directions, before becoming
asymptotic, as more principal directions are considered. Given a threshold of the de-
sired RIC value, the number of principal directions q needed to reach that threshold can
be obtained.

With the value of q determined, the model order reduction is performed by recre-
ating the original snapshot matrix W using the first q principal directions, as shown in
Equation (4).

Wm×n ≈ Um×qΣq×qV T
q×n = W proj (4)

The first q columns of U are also hereby referred to as the basis vectors of projection. In
practice, it is common to multiply matrices Σ and V T into matrix S, as shown in Equation (5).
The matrix S is hereby referred to as the component matrix. With this multiplication, the
final representation of the projected snapshot matrix in the reduced order space is given by
Equation (6).

Sqxn = Σq×qV T
q×n (5)

W proj,m×n = Um×qSqxn (6)

With this representation, it is easy to see how the columns of W proj are linear combina-
tions of the columns of U. In other words, the projected snapshots can all be represented
as linear combinations of the first q columns of U. Thus, after projection, each projected
snapshot wproj,i can be represented with only the ith column of S, i.e., si as shown in
Equation (7).

wproj,i = Usi = u1s1,i + u2s2,i + . . . + uqsq,i (7)

The dimensions of wproj are identical to those of the original unprojected snapshots w.
By adding the mean snapshot w̄ back to the projected snapshot, the reduced order noise
grid representation can be recovered. Before projection, the complete original data were
represented by m× n quantities. After projection, the projected data are represented by q
columns of U, the matrix S, and the mean snapshot w̄. This amounts to m× q + q× n + m
quantities. Given typically high values of m, n, and a much smaller value for q, the number
of total quantities required for representation is greatly reduced.

With this reduction in quantities, the complexity of computation is also reduced which
enables the fitting of surrogate models for rapid snapshot (noise grid) estimation.
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3.3. Surrogate Model Development

At the completion of the MOR step, each noise grid result could be represented by a
set of q coordinates or components along q principal directions. The next step is to create
a mapping between the input parameters, which goes into the noise computation model,
which results in the noise grid result and these q components. Although a surrogate model
could have been created for the input parameters directly to the actual noise grid without
any model order reduction, the size and scale of the data to be modeled would have made
this computationally infeasible.

By using the MOR, less data need to be output by the surrogate model, greatly
improving its speed. Furthermore, MOR can be calibrated in order to retain the desired
breadth or significance of information from the full model. A complete predicted noise
grid can then be computed from the projected results of MOR rather than the full model
using the surrogate model. This surrogate model is capable of retaining the desired levels
of speed and accuracy specified during the process due to the usage of MOR.

There is no shortage of surrogate models to choose from for this step, such as response
surface equations, Kriging models, and artificial neural networks. In general, any model
that provides a good fit with low error should be considered. Generally, one model per
principal component is required. With the fitting of the surrogate models, a mapping
from input parameters to an aviation noise grid is created, with an intermediate step of
computing the components along the principal directions. This mapping is shown in
Equation (8), where ŝi is the predicted ith column of S based on the surrogate model, and
wpred,i is the predicted snapshot for the input parameters corresponding to case i.

wpred,i = U ŝi = u1 ŝ1,i + u2 ŝ2,i + . . . + uq ŝq,i (8)

3.4. Error Quantification

There are two distinct error sources introduced in this methodology, i.e., at the projec-
tion step and at the prediction step. The projection error of a particular snapshot consists of
information that was lost due to most of the lower contributing principal components being
discarded. In geometric terminology, all components that are normal to the hyperplane
spanned by the chosen principal directions become the error of the projection.

In basic terms, the error vector between a noise grid result wi, and an estimation of the
noise grid result w′i is given by Equation (9). This error vector consists of the error at each
receptor in the noise grid. To aggregate the error into a single value for each modeling case,
a relative error metric is defined in Equation (10) using vector norms.

ei = w′i − wi (9)

erel,i =
‖w′i − wi‖
‖wi‖

(10)

In the context of this methodology, this basic error definition can be adapted to define
the projection, prediction, and total errors. The projection error computation is shown
in Equations (11) and (12). This projection error is the error representing the difference
between the projected noise grid vector from the model order reduction process and the
actual noise grid vector from the full model. The source of this error is the MOR process,
where there is some difference due to the removal of rows and columns in the three
component matrices corresponding to the small nonzero values of Σ.

eproj,i = wproj,i − wi (11)

erel,proj,i =
‖wproj,i − wi‖
‖wi‖

(12)
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The prediction error is the difference between a noise grid predicted using the surro-
gate models of the component matrix and the projected noise grid snapshot. This prediction
error computation is shown in Equations (13) and (14).

epred,i = wpred,i − wproj,i (13)

erel,pred,i =
‖wpred,i − wproj,i‖
‖wproj,i‖

(14)

Finally, the total error is defined as the difference between the predicted noise grid
and the original noise grid snapshot. This error is also the vector sum of the projection and
prediction errors, respectively, as shown in Figure 2. The formula for this error is shown in
Equations (15) and (16).

etotal,i = epred,i + eproj,i = wpred,i − wi (15)

erel,total,i =
‖wpred,i − wi‖
‖wi‖

(16)

Figure 2. Visualization of the projected and predicted noise grid snapshots, and their associated errors.

4. Implementation and Results

This section provides details on how the methodology was implemented for a set of
noise modeling scenarios and the results that were obtained. This section also presents
analyses of the obtained errors from the methodology. Finally, noise grid and contour
comparisons are shown for a sample case with median error values.

4.1. Obtaining AEDT Snapshots

The first step of the methodology is to obtain a large set of results, which serve as
the input for the methodology. Input variables were selected and categorized as either
controllable or external variables. These variables were then used to create a full-factorial
design of experiments (DoE), with their levels chosen appropriately to ensure coverage
of a typical range of expected variations. These inputs were then used to modify the
parameters of the standard 737–800 departure profile in AEDT to simulate departure
flights. This resulted in a total of 3600 cases that were representative of the overall space
for 737–800 departure operations. In addition, the 3600 cases were grouped according to
their input parameters. For instance, the first 900 cases were representative of an airport
elevation of 0 ft, cases 901–1800 were representative of an airport elevation of 2000 ft,
1801–2700 were representative of an elevation of 4000 ft, and the rest were representative of
an airport elevation of 6000 ft. Table 1 summarizes the DoE setup.
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Table 1. Number of cases and the design of the experiment setup.

DoE Variables Levels Number of Levels

Altitude of Acceleration (ft AGL) 800, 1000, 1200, 1400, 1600 5

Thrust Reduction 0%, 5%, 10%, 15% 4

Energy Share Percentage 35%, 50%, 65% 3

Aircraft Weight (lbs) 133,000, 152,800, 172,300 3

Airport Elevation (ft MSL) 0, 2000, 4000, 6000 4

Temperature Difference from
Standard Atmosphere 0, ±10%, ±20% 5

Total Number of Cases 3600

From the 3600 input cases, 180 corresponding procedural profiles and 20 corresponding
airport conditions were created in AEDT. Each profile was then used to model an eastbound
departure flight from a fictional airport matching one of the 20 airport conditions. A receptor
grid was created around the fictional airport on which noise metrics were calculated.
Receptors were set up in a 251 × 61 rectangular grid, with a spacing of 0.1 nautical miles in
each direction. The receptor grid definition was also offset so that the southwestern corner
of the grid was 3 nautical miles to the south and 3 nautical miles to the west of the departing
runway end. This resulted in a 25 × 6 nautical mile grid. After modeling each departure
procedure at each airport condition, the sound exposure level (SEL) was evaluated across
this receptor grid definition and saved as the noise grid snapshot of that noise modeling
case. Terrain elevation effects were not included in this noise metric evaluation, and the
results presented here are only applicable to airport surroundings without significant height
changes, i.e., a mostly flat terrain.

The 251 × 61 noise receptor grid (when represented as a vector and put together)
resulted in a 15,311 × 3600 snapshot matrix, representing 3600 snapshots in column format
and 15,311 noise grid points per snapshot arranged as rows.

4.2. Implementing Model Order Reduction

Following Equation (2), the resulting values of m and n are 15,311 for m and 3600 for
n. First, the snapshot matrix is centered in order to reduce the complexity of error analysis.
The mean noise grid from the 3600 cases w̄ is subtracted from each of the computed noise
grids to produce a centered snapshot matrix W . The mean vector w̄ can be added back to
the result of model order reduction to produce the projected noise grid. Then, during the
implementation of MOR, the data that make up the 15,311 × 3600 actual noise grid are
decomposed into three matrices, as described in Equation (2).

The value of q was determined according to Equation (3). It was determined that a
RIC of 99.9%, or 0.999, would capture a sufficient level of information from the actual noise
grid of the 3600 cases. Based on this determination, it was found that a value of 13 for q
would meet these needs, as shown in Figure 3.

A primary benefit of MOR is a reduction in the data sizes that need to be modeled. Both
the original and projected noise grids, with all 3600 cases, were set up as 15,311× 3600 matrices,
which resulted in 55,119,600 float variables that needed to be stored as data. However,
the decomposition of the predicted, projected, and actual noise grids using PCA could
alternatively store information as a 15,311 × 13 matrix U, a 13 × 3600 matrix S, and a
15,311 × 1 matrix w̄. This added up to a total of only 261,154 floats that needed to be saved
per noise grid, a compression ratio of 0.4738%, representing significant modeling savings
(Table 2).
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Table 2. Data requirements and compression from MOR.

Matrix Size Number of Floats

W 15,311 × 3600 55,119,600

U 15,311 × 13 199,053

S 13 × 3600 46,800

w̄ 15,311 × 1 15,311

U + S + w̄ 261,154

There is some amount of projection error that occurs as a result of the MOR. The
projected noise grid has slight differences from the actual noise grid. To compute the
projection error, the resulting projected noise grid must be directly compared to the actual
noise grid. The error of each of the 3600 noise grids was evaluated and aggregated into a
relative error value across the grid for each column of Wproj and W using Equation (12).

The distribution of the relative projection error for each of the 3600 cases can be seen
in Figure 4. An error distribution centered around a value of 0.25%, with a range between
0.1% and 0.5%, was observed. As the value of the error was quite low, the projected noise
grid was determined to perform quite well at describing the original noise grid for all
of the different operating conditions in all of the cases, despite being reduced to only
13 components.
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Figure 4. Distribution of the relative error due to the projection for each case.

Furthermore, the error was analyzed with respect to each of the input variables to
determine if there were any trends, i.e., whether the parameter values for certain input
variables were causing a high projection error. Figures 5 and 6 depict error distributions
clustered by the values of the internal and external input parameters, respectively. For the
majority of the input variables, the error distribution is determined to be quite randomized
without any noticeable trends. Some trends did appear in the error plots with respect to the
weight and energy share. Some correlation was observed between higher levels of both the
weight and energy share and increased error. However, the differences between the mean
of the errors were minimal. Hence, it was determined that these trends were not significant.
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Figure 5. Distribution of projection error with respect to the internal inputs.
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Figure 6. Distribution of projection error with respect to the external inputs.

4.3. Implementing the Surrogate Model

To create the surrogate model, the 13 components that were created as part of the MOR
process were collected into a 13 × 3600 matrix S, with each of the 3600 cases represented
by its corresponding set of 13 components. A training set and validation set were created
by randomly assigning half of the cases to each category, with 1800 cases in each. Various
types and classes of surrogate models were tried. It was determined that a step-wise linear
regression could be used to fit each of the 13 components as a function of the 6 input
variables in Table 1, resulting in the creation of 13 surrogate models that could map each of
the components to the inputs.

When components are predicted using the surrogate model, Equation (8) can be used
to generate the predicted noise grid using the predicted components S′ instead of S. The
same basis vectors U and mean value w̄ obtained during the MOR step are used.

To ensure that the selected model is appropriate for the task, the model fitting process
was repeated 1000 times, using random allocations for training and validation in each
iteration. Each iteration of the model was evaluated to generate the corresponding predicted
noise grid, which was then compared to the projected noise grid to determine model
prediction error. The model fitting process, conducted over 1000 repetitions, took a total of
6 h. This results in an average of approximately 21.6 s per repetition.

The error within the surrogate modeling process was further sub-categorized as either
a training error or a validation error. The training error was the error resulting from the
1800 cases that were used to train the model. The validation error was the error that
was computed by deploying the model on input cases that were not used to train the
model. This was done to check the applicability of the surrogate model to previously
unseen data. The corresponding prediction errors for the training and validation data
were then aggregated for analysis. The mean and median errors of each iteration were
retained and are plotted below in Figures 7 and 8. The prediction error distributions are
centered around a fairly low error value of roughly 2% for both the mean and median,
with ranges between 1.7% and 2.3%. This is a fairly low and reasonable value. In addition,
both errors resemble a normal distribution, which indicates minimal bias introduced by
the sampling of training and validation cases. The results indicate that the model building
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process produced accurate models, and the accuracy of the model was not dependent on a
specific choice of the split between training or validation data.

(a) Training Error (b) Validation error.

Figure 7. Mean prediction errors.

(a) Training Error (b) Validation Error

Figure 8. Median prediction errors.

4.4. Total Error and Noise Grid Comparisons

The final model was evaluated not only in terms of its relative prediction errors
but also by comparing across the entire noise grid to determine the effectiveness of the
methodology at each grid point individually. For the methodology to be effective, the noise
result of the predicted grid must resemble the actual grid across all receptors in the grid.

First, the difference between the predicted noise grid from the final model and the
projected noise grid is determined at each receptor in the noise grid. This is the difference
between the predicted and projected noise grid at each point, rather than a single relative
error value representing the divergence across the entire grid. From the histogram of the
relative difference shown in Figure 9, the majority of the points for the predicted noise
have a difference of around 1%. While some locations have differences of up to 4.5%, these
locations represent only a small fraction of the total number of points in the grid.

These differences are also determined between the predicted and original unprojected
noise grids. The resulting differences, as shown in Figure 10, are found to be very similar
to the differences from the projected noise grids, with similar distribution. This result is
expected as the magnitude of the projection error was much lower than the magnitude of
the prediction error. As a result, the major source of the actual error and, thus, the actual
differences at each point, is from the surrogate model prediction.

To visualize the capability of the methodology in making predictions across the noise
grid, Figures 11–13 illustrate a comparison between the noise grid for the case with median
total relative error. This case has the median total error from among the 3600 cases generated
from the surrogate model. In all three comparisons, a heatmap of the SEL dB difference at
each point in the noise grid is shown. The axes are centered in such a way that the origin is
on the runway end where the start of the takeoff ground roll occurs. The departure track
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is along the positive X direction. Areas in red indicate regions of over-prediction by the
methodology whereas areas in blue indicate regions of under-prediction. The predicted
and original noise contours are overlaid in green and black, respectively.

Figure 9. Relative differences at points in the noise grid between the predicted and projected
noise grids.

Figure 10. Relative differences at points in the noise grid between the predicted and actual noise grids.
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Figure 11. Sample differences between a set of projected and actual noise grids. ∆ SEL = projected
(green) − Actual (black).

0 5 10 15 20
X, nmi

−2

0

2

Y,
nm

i

Predicted - Projected Noise Distribution

70
758085

70
75

80

85

−5
−3
−1
1
3
5

Δ 
SE

L 
(d
B)

Figure 12. Sample differences between a set of predicted and projected noise grids. ∆ SEL = predicted
(green) − projected (black).
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Figure 13. Sample differences between a set of predicted and actual noise grids. ∆ SEL = predicted
(green) − actual (black).

Figure 11 showcases the difference between the projected and original noise grids
for the specific case. Previously, it was found that there was little difference between
the projected and actual noise grids during the MOR process, and the heatmap reflects
this result, as there is essentially zero difference across the vast majority of the noise grid.
Figure 12 depicts the difference between the predicted and projected noise grids, which
indicates the error due to the creation of the surrogate model. It can be seen here that there
is a larger difference than what is seen in Figure 11, with the surrogate model predicting
slightly higher noise in the area between X = 5 and X = 10 nautical miles. In addition,
the area between 15 and 20 nmi in the horizontal axis is underestimated to a small degree
by the surrogate model. Notably, there is a more significant area of overestimation by the
surrogate model at the very edge of the noise grid. This indicates that at faraway locations,
the surrogate model struggles to make accurate predictions. However, it is important to
note that the vast majority of the noise grid, including all areas close to the airport, shows
little difference between the prediction and projection. In addition, the noise levels of 80 dB
SEL and above were accurately recreated by the surrogate models.

Figure 13, showcasing the difference between the predicted and original noise grids,
shows similar trends as Figure 12, albeit with minor differences in the shape of the heatmap.
This was to be expected due to the previous finding that the magnitude of projection error
compared to the magnitude of prediction error was much lower.
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The prediction results from the 3600 input cases depicted in Table 1 are used to
compute absolute errors relative to the original noise grid of the corresponding cases. The
error values at each point are then aggregated across the 3600 cases into the mean absolute
errors from projection and prediction, as shown in Figure 14. The mean errors are found to
be within ±0.05 SEL dB across the grid. The result indicates that the methodology is able
to accurately generate noise grids across the ranges of input parameters. However, a mean
under-prediction of up to −0.05 SEL dB is observed from 15–18 nmi along the X direction
of the noise grid.
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Figure 14. Mean actual error across the noise grid. ∆ SEL = predicted − actual.

To further explore the model’s accuracy in predicting the various SEL dB levels at
different receptors in the grid, Figures 15 and 16 illustrate the predicted vs. original plots,
comparing the results of the final model to the corresponding original model. The predicted
and original SEL dB values from each individual receptor are plotted for the 3600 cases.
The results are subdivided into intervals based on the X distance from the start of takeoff.

Figure 15. Predicted v. actual plots, up to 10 nautical miles from the start of takeoff.

Figure 16. Predicted v. actual plots beyond 10 nautical miles from the start of takeoff.
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Across all the cases, the model performs extremely well for noise close to the airport, as
shown in Figure 15. The predicted and actual comparisons were found to be quite accurate
within the first 10 nmi of the X distance. The results between 0 nmi and 5 nmi indicate
highly accurate predictions below 90 SEL dB and slight variations in accuracy for noise
levels between 90 SEL dB and 130 SEL dB. However, noise above 90 SEL dB is typically
only seen at the start of takeoff and the contour containing 90+ SEL dB is generally limited
to the airport boundary. Lower accuracy is seen further away from the start of the ground
roll, specifically beyond 10 nmi, as shown in Figure 16. A tendency to over-predict is seen
for noise below 70 SEL dB at distances between 10 nmi to 15 nmi.

Further decrease in accuracy is observed beyond 15 nmi. This result correlates with
the error distributions seen in Figure 14. At these distances, the parameter input variations
result in large variations in aircraft performance and noise propagation as compared to
regions closer to the start of takeoff. To improve the model’s accuracy in these locations,
additional combinations of thrust, acceleration altitude, energy share percentage, and
weight can potentially be modeled, which would result in a more dense distribution of
height AGL at 15 nmi ground track distance and beyond. In particular, raising the terminal
altitude of these procedural profiles beyond 10,000 ft may also help with the accuracy in
this region of the noise grid. The error in dB across the entire noise grid of 15,311 receptor
points, and across all 3600 cases, is summarized in Table 3. The minimum and maximum
differences have high magnitudes due to being outlier values. Regardless, the methodology
is able to predict noise behavior relatively well across the entire grid and range of noise
levels. Incorporating additional input cases that capture variability further away could
potentially improve the model’s accuracy.

Table 3. Summary of statistics for SEL dB differences across all cases.

Count 15, 311× 3600 = 55, 119, 600

Mean Difference −0.01 SEL dB

Standard Deviation 1.71 SEL dB

Minimum Difference −16.33 SEL dB

5% −2.67 SEL dB

25% −0.42 SEL dB

50% 0.00 SEL dB

75% 0.43 SEL dB

95% 2.63 SEL dB

Maximum Difference 13.33 SEL dB

5. Summary and Conclusions

A methodology for creating a rapid aviation noise model that maps relevant depar-
ture operation parameters to the SEL noise metric was created in this research. A set of
six parameters were used as the inputs, consisting of the internal and controllable vari-
ables of altitude of acceleration, thrust reduction level, and energy share percentage, as
well as the external and uncontrollable variables of aircraft weight, airport elevation, and
temperature. The Aviation Environment Design Tool (AEDT) was used as the baseline
model to obtain noise results for 3600 flight cases. Model order reduction was used to
reduce the dimensionality of the noise results from 15,311 SEL values per noise grid to
13 components along 13 principal axes. This dimensionality reduction was performed using
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the principal component analysis and greatly reduced the number of variables needed to
describe different noise grids. A surrogate model for each of the components was generated
using step-wise regression, mapping the components to the input parameters.

The accuracy of the process was confirmed through analysis of the error introduced
at each step of the process. It was found that the projection error was quite small, less
than half a percent across the breadth of the cases, while the prediction error was larger,
averaging at around 2%. The predicted noise grids were found to also be fairly accurate
compared to the actual noise grids. The accuracy was observed to reduce further away
from the airport, where regions of lower noise levels were observed in departure operations.
The prediction step using surrogate models was found to be the main source of error within
the process and could be improved with future work by including additional cases that
capture variations in aircraft performance and noise propagation further from the airport.

This methodology can be deployed at any airport by characterizing its elevation and
temperature conditions. However, it should be noted that the method cannot account for
terrain effects, so a pre-requisite of using this model at any airport is that there should not
be significant terrain height changes in the surroundings of the airport.

The methodology developed in this research lays the foundation for multi-query
applications, such as parametric trade-off analyses and optimization studies. The developed
rapid noise model can be used as a basis for future work in the optimization of noise
abatement departure procedures. With the inclusion of airport and aircraft parameters,
this model enables the development of frameworks, which optimize piloting actions for
noise mitigation on the ground while also accounting for airport conditions, such as
temperature and airport elevation. The addition of curved ground tracks in the model
development would add an additional degree of freedom in minimizing noise impacts at
desired locations.
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MOR model order reduction
MSL mean sea level
NPD noise–power–distance
PCA principal component analysis
RIC relative information content
ROM reduced-order modeling
SEL sound exposure level
SVD singular value decomposition



Aerospace 2023, 10, 627 19 of 20

Appendix A. Surrogate Model Files

The developed surrogate model files can be found on GitHub, at https://github.
gatech.edu/abehere6/MDPI_aerospace_2430018 (accessed on 16 May 2023). The .mat files
can be loaded into MATLAB by the user to evaluate the surrogate model across different
values of the six input variables.
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