
Citation: Jing, X.; Hou, M.; Li, W.;

Chen, C.; Feng, Z.; Wang, M. Task

Parameter Planning Algorithm for

UAV Area Complete Coverage in EO

Sector Scanning Mode. Aerospace

2023, 10, 612. https://doi.org/

10.3390/aerospace10070612

Academic Editor: Gokhan Inalhan

Received: 23 April 2023

Revised: 28 June 2023

Accepted: 29 June 2023

Published: 3 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

aerospace

Article

Task Parameter Planning Algorithm for UAV Area Complete
Coverage in EO Sector Scanning Mode
Xianyong Jing 1,* , Manyi Hou 1, Wei Li 2, Cui Chen 1, Zhishu Feng 1 and Mingwei Wang 1

1 Aviation University of Air Force, Changchun 130022, China; hough_2002@163.com (M.H.);
chencui_2023@163.com (C.C.); zhishu_feng@163.com (Z.F.); 18904407061@189.com (M.W.)

2 The Representative Office of Air Force in Luoyang, Luoyang 471000, China; li_wei_1983@126.com
* Correspondence: xianyong_1983@163.com; Tel.: +86-18143096755

Abstract: When Unmanned Aerial Vehicles (UAVs) are used in search and rescue operations, electro-
optical (EO) devices are usually used as the detection equipment, and area coverage is used as the
main search method. However, the sector scanning mode of EO puts forward higher requirements
for task parameter planning. First, to ensure there is no missing coverage, a method to determine the
full coverage width of EO equipment in sector scanning mode is proposed. Second, the constraint
of no interval missing and the model of the speed-to-high ratio constraint are established, and the
constraints of other factors are addressed in the context of the problem situation. Third, a coverage
efficiency index is proposed for the boustrophedon coverage of a rectangular area, and a comprehen-
sive coverage index is established. Finally, task parameter planning algorithms are designed, based
on Immune Algorithm (IA), Grey Wolf Optimization (GWO) and Variable Neighborhood Search
(VNS), respectively. The simulation results showed that the designed algorithms, based on IA, GWO
and VNS, can effectively solve task planning problems. In general, IA is more suitable for offline
occasions, VNS is suitable for online real-time planning, and GWO has characteristics between the
two. The coverage process, based on optimized parameters, meets all constraints, has higher search
efficiency and does not miss areas, proving the correctness of these models and the effectiveness of
the planning algorithm. The research presented in this paper provides a technical basis for efficient
and fully automated target search and rescue.

Keywords: unmanned aerial vehicle (UAV); electro-optical (EO) equipment; task parameter planning
algorithm; sector scanning mode; complete coverage

1. Introduction

The search and rescue problem has always existed along with the development of
society, and it is also a long-term challenge. Traditional search and rescues are mainly
implemented with the utilization of manned aircraft, helicopters, ships, etc. In recent
years, with the increasing maturity of Unmanned Aerial Vehicles (UAVs) and photoelectric
sensors, search and rescue operations based on UAV have proven feasible and have been
successfully tested and applied [1–3], showing advantages of large range, strong timeliness,
low risk and low economic cost.

Area complete coverage search is a commonly used search and rescue method for
UAVs [4] and is suitable for maritime rescue [5], disaster rescue [6], and for use in moun-
tainous areas [7]. In addition, area coverage search can also be used for regional in-
vestigation [8], patrol and surveillance [9], infrastructure inspection [10], precision agri-
culture [11,12] and other scenarios. Consequently, it has become an important research
direction for UAV applications. The goal of area coverage is to cover the entire area of
interest, while minimizing the time and distance spent on covering routes [13].

In a UAV area coverage search, electro-optical (EO) equipment is typically used for
detection. EO equipment has advantages of high resolution and long detection distances,
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but the disadvantage is that the fixed field of view is relatively small. Therefore, to improve
search efficiency, operators control the EO device to perform sector scanning relative to the
aircraft body. This usage greatly increases the coverage width of UAV during a single route,
but also puts higher requirements on mission parameter planning, such as balancing the
limitations of the UAV platform, EO device, environmental conditions, and operators to
maximize the execution efficiency of the mission process. This has become a difficult and
valuable issue for users.

At present, many studies on UAV area coverage have focused on route planning
algorithms, mainly focusing on the effective planning of covered routes in complex areas.
For areas with regular shapes, such as rectangles, no decomposition is required. Simple
path planning is sufficient for complete coverage without overlapping. A typical example
is the boustrophedon method, which is a route pattern that simply moves back and forth
along the longest side of a polygon [14,15].

For areas with irregular shapes, most area coverage route planning algorithms de-
compose the target area into subunits. For example, Choset proposed an approximate
cell decomposition method [16], which decomposes the generated grid map into smaller
sub-maps and then generates the navigation trajectory covering the entire area, according
to the density of obstacles in each sub-map. Other similar decomposition methods include
cell-based [17], Morse-based [18], wavefront-based [19], and neural network-based [20].
On the basis of decomposition, further path planning to cover the area can be performed.
For example, ref. [21] proposed a new method based on ant colony optimization (ACO)
to determine the trajectory of a UAV that can strike a balance between the calculation
requirements and the quality of the trajectory plan. A new coverage flight path plan-
ning algorithm, based on the ACO algorithm, was also designed in [22], which can find
collision-free, minimum-length flight paths for UAV in a three-dimensional (3D) urban
environment with fixed obstacles. Other algorithms used for UAV coverage route planning
include the constrained differential evolution [23], grey wolf optimizer [24], and hybrid
algorithms [25]. A real-time path-planning solution for an area-coverage mission using
multiple cooperative UAVs was proposed in [26]. The experimental results showed that the
probability of achieving a 50% success rate with three UAVs is 2.35 times faster than that
with one UAV. Given the limited capabilities of a single UAV, it is sometimes necessary for
multiple UAVs to collaborate to complete a certain task, which can significantly improve
coverage efficiency and provide better timeliness. Leader–follower [27] is an effective route
planning method for multi-UAV formation flight.

In the aforementioned studies, the coverage width of the search equipment is usually
set as a constant, and route planning is carried out accordingly, without considering the
influence of EO equipment resolution, scan mode, and other factors on coverage width and
route planning.

A brief model of EO coverage width was established in some studies, wherein the
influence of factors, such as flight height, on coverage width was initially considered, and
a comprehensive study was conducted by combining a route planning algorithm. For
example, in [28–30], the geometric relationship between the static detection width of the
UAV detector and flight height, pitch angle, and search azimuth angle was preliminarily
studied. Avellar [31] calculated the coverage width of the camera according to the width
of the field of view of the image sensor, focal length of the camera lens, and distance H
(flight height) between the camera and ground. Di Franco [32] calculated the optimal
motion trajectory and maximum height according to the distance of ground samples (image
resolution) and proposed an energy-saving round-trip complete coverage algorithm to
minimize the number of turns and, thus, improve task efficiency. However, these models
of coverage width do not consider limitations and influencing factors, such as target
recognition, velocity-to-height ratio, scan omission, and field-of-view distortion. Generally,
they differ significantly from the actual situation, and cannot reflect the actual situation
in practice.
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Some scholars have promoted the application of computer vision in search tasks to
reduce the workload of mission personnel and have even promoted the development of
fully autonomous UAVs for search missions [33,34]. Experiments have begun on UAVs
equipped with perception components based on deep neural networks (DNN). In [35],
DNN models that were pre-trained in different fields were proposed for UAVs, one for
detecting human joints, and the other for measuring the similarities in appearance between
two images in pedestrian tracking to solve the tracking problem. In [36], the limitation of
time for search and rescue missions was emphasized, and the embedded system, which is
based on deep learning technology, can detect swimmers in open waters, thus enhancing the
combat ability of emergency personnel. Combined with global navigation satellite system
(GNSS) technology, it can be used for accurate human detection and rescue equipment
release. In [37], a camera-based UAV system for automatic target positioning was developed.
By setting reasonable pigment thresholds, the automatic recognition of red and blue targets
in aerial images was realized, providing useful insights for exploration in automatic target
recognition. It should be pointed out that fully autonomous UAVs for search missions
undoubtedly represent the trend of the future. However, although this progress improves
identification efficiency, it also has higher requirements for no-omission coverage.

According to the literature searched, research on parameter planning of complete area
coverage tasks in the EO sector scanning mode is still lacking.

Furthermore, task parameter planning for sector scanning involves many factors and
needs to consider requirements and constraints from the perspective of many aspects,
which is a typical multi-objective optimization problem. Many effective algorithms have
been developed for different multi-objective optimization problems. Exhaustive search
techniques can solve discrete optimization problems, but the computational cost is high
when the variable space is large [38]. Scenario-based robust optimization can ensure better
optimization robustness under the premise of achieving optimization objectives, such
performance being crucial for uncertain environments [39]. Heuristic search algorithms
have high efficiency but can only obtain suboptimal solutions [40]. Some new bionic
heuristic algorithms, such as Gray Wolf Optimization (GWO) [41,42] and Particle Swarm
Optimization (PSO) [43], have similar characteristics. The Genetic Algorithm (GA) [44] is
suitable for almost all optimization problems, but requires a large amount of computation
and is generally used in offline situations. The Immune Algorithm (IA) [45] retains the
evolutionary mechanism of GA, and at the same time has a unique concentration inhibi-
tion mechanism, which better overcomes the problem of local optimization, but has the
disadvantage of high computational cost. The Variable Neighborhood Search (VNS) [46]
and Multistage Neighborhood Search (MNS) [47] algorithms overcome the local search
limitation of Neighborhood Search (NS) and can search the solution space in multiple
different neighborhoods, so they have good global search ability. The implementation
of the algorithm is relatively simple. However, its convergence accuracy depends on the
design of neighborhood operators and the setting of the algorithm parameters, which
requires users to have a certain amount of professional experience. Therefore, it is necessary
to develop an efficient and high-precision optimization algorithm for this problem. In the
study here presented, the representative IA, GWO, and VNS algorithms were used to solve
the task planning problem, and the convergence performance and computing efficiency
of different optimization algorithms compared, providing a useful reference for solving
the problem.

In general, there are several problems in the current research, as follow:

1. Most research on UAV coverage focuses on route planning algorithms, and the pro-
cessing of EO equipment factors is too simple, or is even ignored, which does not
reflect the actual situation.

2. There is a lack of research on area-coverage task planning in the sector scanning mode
of UAV EO equipment. There is not only a lack of descriptive model research for the
problem but also a lack of task planning research combining the problem model and
optimization algorithm.
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In view of this, the objectives of this paper follow:

1. A no-omission coverage width model was established for the sector scanning of UAV
EO equipment that considers the influence of target recognition.

2. Description models of the constraints were established that, combined with the sector
scanning method, consider the influence of various constraints on parameter planning
of the area coverage task. Such as target recognition, speed-to-height ratio, and missed
scanning, etc.

3. A parameter planning algorithm to address the area coverage task in the sector
scanning mode was designed to ensure an efficient search, based on the representative
IA, GWO, and VNS algorithms, and combined with constraints.

4. The three designed task planning algorithms were simulated and verified, and
the main performances of these algorithms in solving the problems in this study
were compared.

2. Coverage Width Modeling
2.1. Scanning Mode of the UAV EO Equipment

There are a variety of scanning modes for the UAV EO equipment, such as side scan,
cone scan, and sector scan. In this study, the most common and complex sector scanning
mode was investigated, and the other modes regarded as a special case of the sector
scanning mode.

As shown in Figure 1, it was assumed that the UAV maintains horizontal flight.
In sector scanning mode, the pitch angle µ′ of the EO equipment view field remains
unchanged, and the azimuth angle θ of the field of view scans back and forth at a constant
speed within an angular range [−θ,θ].
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Figure 1. Schematic diagram of the sector scanning mode of the UAV EO equipment.

2.2. Model of Static View Field of EO Equipment

In the sector scanning mode, there are two types of view fields of the EO equipment:
scanning view field and static view field. The static view field is the inherent angle of view
of EO equipment, and the scanning view field is the detectable range of the static view
field during scanning mode, which is related to the static view field and the scan azimuth
angle θ.

As shown in Figure 2, O1 represents the position of the EO equipment, its projection
on the ground is O, and its flying height is h. A coordinate system is established with O
as the origin, the OX axis is the projection direction of the central axis of the view field on
the ground, and the OY axis is the vertical upward direction. The OZ axis is determined
according to the right-hand rule.
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As shown in Figure 2, if ε is used to represent the static view field angle of the EO
equipment, then µ1 and µ2 are the pitch angles of the inner and outer edges of the view
field, respectively.

µ2 = µ1 + ε (1)

Generally, to find a target in a certain area, we need to ensure two points [48]: first,
that the target area is completely scanned without missing data, ensuring that when the
field of view scans the target, the target can be identified and found. The problem of target
recognition is related to many factors, including the ability of the searcher, environmental
factors, and the characteristics of the target itself [49]. Therefore, it needs to be studied by
combining theory and practice, and is not addressed in this study. However, to reflect the
impact of the target recognition problem on task planning, a target recognition distance
threshold dShB was set in this study. When the target distance is less than dShB, the target
can be recognized; otherwise, it is missed. The distance dShB comprehensively represents
the influence of weather visibility, target characteristics, and EO resolution on the target
recognition problem, which limits task parameter planning during coverage search tasks.

As shown in Figure 2, the larger the pitch Angle u is, the larger the area covered by the
static view field is, but this also brings adverse effects, including image resolution reduction,
graphic distortion aggravation, and so on, affecting the target recognition. Therefore, the
pitch Angle µ2 must be limited. In the region ABCD covered by the static view field, point
B is the furthest position away from the EO device. When the target is located at point B,
it is the most difficult to identify. Therefore, when the flight altitude is constant, it can be
considered that, when the length of OB is equal to dShB, it is the maximum allowable pitch
Angle of EO for target recognition. Therefore, the following equation must be satisfied:

O1 A = O1B ≤ dShB (2)

Threshold dShB needs to be determined in advance according to weather conditions,
target characteristics, and EO equipment recognition pixels, combined with the experience
of task operators.

The region formed by the four points of A, B, C and D is the coverage area of the
static view field of the EO equipment. It can be seen that the area is not a rectangle,
but a trapezoid. For subsequent optimization calculations, each side of the region must
be determined.

When O1 A = O1B = dShB, the maximum static coverage region can be obtained, and
the reliable recognition of the target guaranteed, which is beneficial in improving the search
efficiency; thus, O1 A = O1B = dShB can be set.

The four sides are represented as lAB, lBC, lCD, lAD, and lBC = lAD. In triangle O1 AE1, it
can be deduced that:

lAB = 2 · dShB · sin
ε

2
(3)

Similarly, in triangle O1OA, using the trigonometric function, it can be deduced that:

lOA =

√
(dShB)

2 − h2 (4)
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µ2 = arccos(h/dShB) (5)

Using Equations (1) and (5), µ1 can be obtained. In the triangle O1OD, it can be
deduced that:

lOD = h · tan µ1 (6)

lO1D = h/cos µ1 (7)

lCD and lAD are obtained as:

lCD = 2 · lO1D · sin
ε

2
(8)

lAD = lOA − lOD (9)

2.3. Complete Coverage Width Modeling

Complete coverage of the target area is a prerequisite for target identification. There-
fore, a reasonable determination of the EO coverage width is of great significance to ensure
an effective search success rate and to improve search efficiency.

2.3.1. Problem Description

As shown in Figure 2, lOA and lOD are defined as the outer radius R2 and inner radius
R1 of the static coverage region, respectively.

R2 =

√(
dShB

max
)2 − h2 (10)

R1 = h · tan(arctan(R2/h)− ε) (11)

As shown in Figure 3, V is defined as the flight speed, and it is assumed that the
rotational angular velocity of the optical axis of the EO equipment in the horizontal plane
is ω. When the EO equipment rotates and scans in the horizontal plane, the pitch angle µ
of the optical axis of the field of view remains unchanged.
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We define a process in which the static coverage region moves from the leftmost end
(position “A1B1C1D1”) to the rightmost end (position “A2B2C2D2”), and then back to the
leftmost end (position “A3B3C3D3”) as a scanning cycle. The scanning cycle time is denoted
by T.

T = 4(θ1 − ε/2)/ω (12)

θ1 is the scan azimuth.
In a scanning cycle, the UAV flies from O1 to O3, The distance between O1 and O3 is

represented by lO1O3 , then:
lO1O3 = V · T (13)

In a scanning cycle, the EO completes the scanning of two circular arc areas; the area
scanned clockwise is indicated by the red line, and the area scanned counterclockwise is
indicated by the blue line.

The reachable search width is represented by d.

d = 2R2 sin θ1 (14)

However, because the UAV is in continuous flight, there is a “missing area” between
the two scan areas in the direction of the maximum value of the dynamic search azimuth,
as shown in Figure 3.

Therefore, the search width must be appropriately reduced to exclude the “missing
area” to ensure that there are no missing searches. If the innermost point of the “missing
area” is represented by P1, a parallel line parallel to the flight direction through P1 is
drawn, and the parallel line is the maximum range that can be guaranteed to search
without omission.

Let d1 represent the coverage width of the complete search, related to factors such as
UAV flying speed V, photoelectric equipment scanning angular velocity ω, static field of
view ε, search azimuth θ1, inner/outer radius of the static coverage region R1 and R2, etc.
It is necessary to comprehensively consider many factors to determine d1.

First, a two-dimensional ground-level coordinate system is established with O1 as the
origin, the flying direction as the Y axis, the X axis perpendicular to the Y axis, and the

right direction as positive. The intersection of trajectory
_

B1B2 and straight-line LO3B3 is
the position of point P1. In the coordinate system O1XY, the point P1 can be expressed as
(xP1, yP1). Then:

d1 = 2|xP1| (15)

To solve point P1, it is necessary to establish a mathematical equation of trajectory
_

B1B2 and straight-line LO3B3 .

2.3.2. Equation of Trajectory
_

B1B2

The time was set to 0 when the UAV was at O1, and B1 was set as the starting point of
the trajectory. In the coordinate system O1XY, since the static coverage region moves in a
uniform circular motion in the horizontal plane on the one hand, and flies in a straight line

with the carrier aircraft on the other hand, the functional expression of the trajectory
_

B1B2
can be described as: {

xB1(t) = R2 · sin(ω · t− θ1)
yB1(t) = R2 · cos(ω · t− θ1) + V · t (16)

In Formula (16), t is the time variable, t ∈ [0, T/2]. xB1(t) and yB1(t) are the abscissa
and ordinate, respectively, of a point on the trajectory at time t.

Transform the expression of xB1(t) as:

t = (arcsin(xB1/R2) + θ1)/ω (17)
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The value range of xB1 was [−R2 sin θ1, R2 sin(θ1 − ε)]. Substituting Equation (17) into
the expression for yB1(t), we obtain:

yB1 = R2 · cos(arcsin(xB1/R2)) + V · (arcsin(xB1/R2) + θ1)/ω (18)

2.3.3. Equation of Trajectory
_

C3C2

The same method was used to model the trajectory
_

C3C2. However, for convenience
of calculation, consider C3 as the starting point and C2 as the end of the trajectory; that is,
when the trajectory is at point C3, t = 0. Although this setting is opposite to that of the actual

process, it maintains synchronization with the trajectory
_

B1B2 in time, which is convenient
for the subsequent comparison of the two trajectories. The functional expression of the

trajectory
_

C3C2 is described as{
xC2(t) = R1 · sin(ω · t− θ1)
yC2(t) = R1 · cos(ω · t− θ1) + V · (T − t)

(19)

t is the time variable, t ∈ [0, T/2]. xC2(t) and yC2(t) are the abscissa and ordinate,
respectively, of a point on the trajectory at time t.

Similarly, Equation (19) is transformed to eliminate the time variable t, and we obtain:

yC2 = R1 · cos(arcsin(xC2/R1)) + V · (T − (arcsin(xC2/R1) + θ1)/ω) (20)

The value range of xC2 was [−R1 sin θ1, R1 sin(θ1 − ε)]. Compared with the value
range of xB1, since R2 > R1, the value range of xB1 includes the value interval of xC2.

2.3.4. Equation of Straight Line LO3B3

The function expression of the straight line LO3B3 is:

yO3B3 = − tan(θ1) · xO3B3 + V · T (21)

The value range of xO3B3 is [−R2 sin θ1, 0]. Combining the equation of trajectory
_

B1B2
and the equation of LO3B3 , we obtain the following equation system:{

y1 = − tan(θ1) · x1 + V · T
y1 = R2 · cos(arcsin(x1/R2)) + V · (arcsin(x1/R2) + θ1)/ω

(22)

The solution of Equation (22) described as (xP1, yP1) is the coordinate of P1, and
d1 = 2|xP1|.

3. Constraints Modeling

There is still a lack of corresponding research on the limitations of the speed-to-height
ratio and the no interval missing in the sector scanning mode. In this section, we focus
on the limitations of the speed-to-height ratio and the no interval missing constraint on
the task planning problem and establish corresponding mathematical models. In addition,
various constraint conditions are provided in the form of a threshold or value range.

3.1. Speed-to-Height Ratio Constraint Modeling

To ensure stable imaging of the target, photoelectric imaging equipment generally has
the limitation of a speed-to-height ratio. As shown in Figure 4, assuming that the speed
of the UAV is V, the flying height is h. The point P2 is a point in the detection area, and
its pitch angle, relative to the location of the EO equipment O1, is µ′, so, µ1 ≤ µ′ ≤ µ2.
The azimuth angle is represented by θ′. The distance between P2 and O1 is represented as
R′, then:

R′ = h/ cos µ′ (23)
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Assume that the partial velocity of V in the direction perpendicular to O′P1 is rep-
resented by V′. Using velocity decomposition and trigonometric functions, V′ can be
obtained as:

V′ =
√
(V · cos θ′ · cos µ′)2 + (V · sin θ′)2 (24)

The rotational angular velocity of P2 relative to O1 is represented by ω1, then

ω1 = V′ cos µ′/h =

√
(V · cos θ′ · cos µ′)2 + (V · sin θ′)2 cos µ′/h (25)

Assuming that the maximum speed-to-height ratio is γ, according to the principle of
the speed-to-height ratio, then

V ·
√
(cos θ′ · cos µ′)2 + (sin θ′)2 · cos µ′/h ≤ γ (26)

As a result of µ1 ≤ µ′ ≤ µ2, the following formula holds:√
(cos θ′ · cos µ′)2 + (sin θ′)2 · cos µ′ ≤

√
(cos θ′ · cos µ1)

2 + (sin θ′)2 · cos µ1 (27)

So, Equation (26) can be replaced by:

V ·
√
(cos θ′ · cos µ1)

2 + (sin θ′)2 · cos µ1/h ≤ γ (28)

Further transforming the left side of Equation (28), we derive:

V ·
√

1− (cos θ′ · sin µ1)
2 · cos µ1/h ≤ γ (29)

As a result of θ′ ≤ θ1, we obtain:

V ·
√

1− (cos θ′ · sin µ1)
2 · cos µ1/h ≤ V ·

√
1− (cos θ1 · sin µ1)

2 · cos µ1/h ≤ γ (30)

Equation (30) is the constraint due to the speed-to-height ratio.

3.2. No Interval Missing Constraint Modeling

When the flight speed is too fast, the static coverage region is too small, and there is a
missing coverage area between the two sector scan areas, as shown in Figure 5.
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To avoid this situation, we suggest that trajectory
_

C3C2 never exceeds trajectory
_

B1B2.
That is, for any x in the range [−R1 sin θ1, R1 sin(θ1 − ε)] that is applicable to trajectory
Formulae (18) and (20), the following equation holds.

yc2(x) ≤ yB1(x) (31)

Equation (31) is an important constraint in coverage task planning.

3.3. The Other Constraints

Many factors affect the coverage width. Commonly used constraints are described in
the following sections.

3.3.1. Constraint on Pitch Angle

Due to equipment performance limitations, generally the pitch angle of the field of
view is not lower than a threshold, as otherwise, it is difficult for the equipment to track
the target stably. Suppose the threshold is µmin, then,

µmin ≤ µ1 < µ2 (32)

3.3.2. Constraint on Rotation Angular Velocity

Owing to the requirements of visual recognition and visual fatigue of the task staff,
the value of ω should not be too large. If ωmax is used to represent its maximum value of
ω, then

ω ≤ ωmax (33)

3.3.3. Constraint on Search Azimuth θ1

When the axis of the centerline of the static field of view coincides with the direction of
the flight speed on the ground, the value of θ1 is the smallest, which is ε/2. The maximum
value of θ1 is π/2, and the search width reaches its maximum. So that

ε/2 ≤ θ1 ≤ π/2 (34)

3.3.4. Constraint on Flying Height h

For the sake of flight safety, the flying altitude is generally not allowed to be lower
than a certain altitude hs, and hs is usually set according to the performance of the aircraft
and different weather conditions. In a mission, hs is typically given as a threshold.

h ≥ hs (35)

Owing to the requirement of recognition distance, the distance between the outer edge
of the static coverage region and the UAV position O1 should not be greater than dShB, that
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is, lO1 A ≤ dShB. This limits the flying height of UAVs. From Equations (1) and (32), we
know that

µ2 ≥ µmin + ε (36)

While flight altitude

h = lO1 A · cos(µ2) ≤ dShB
max cos(µ2) ≤ dShB

max cos(µmin + ε) (37)

3.3.5. Constraint on Flying Speed V

At present, most UAVs that have been used practically have had low cruise speeds.
Assuming that the selectable range of cruising speed is [V1,V2], then

V2 ≥ V ≥ V1 (38)

4. Design of Task Parameter Planning Algorithm
4.1. Comprehensive Task Planning Objective Model

For global optimization problems, a certain parameter cannot simply be used as an
optimization objective. For example, in this study, maximizing the coverage width without
omissions is not sufficient, and the task objective must be the final planning objective.

For the coverage search, the larger the coverage search area per unit time, the better.
Based on this, an evaluation index is defined as coverage efficiency η:

η = S/t = (V · t · d1)/t = V · d1 (39)

where S is the search area within t time. If the maximum coverage in a cycle time is required,
the index function, based on search efficiency, is

max(d1 ·V) (40)

From the perspective of identification, the smaller the ω value, the better. Therefore,
another index function can be obtained

min(ω) (41)

Set h0 and V0 to be the best cruise speed and cruise altitude, respectively, under
current weather conditions. Then, h0 and V0 are more conducive to maintaining a longer
task range. However, in general, the optimal speed at different altitudes is also different,
but their corresponding relationship i not expanded in this study; therefore, h0 and V0 are
both constants.

The deviations |∆h0| and |∆V0| are the deviations between the current altitude h, speed
V and the best value, respectively. The smaller the deviation from the ideal value, the better.
Therefore, two index functions can be obtained as:

min(|∆V0|) = min(|V −V0|) (42)

min(|∆h0|) = min(|h− h0|) (43)

Equations (40)–(43) constitute the objective function system of coverage task planning.
This is a typical multi-objective optimization problem. For multi-objective optimization
problems, a common approach to establish a comprehensive objective function is the weight
coefficient method [50,51], which consists of the following steps:

1. First, the values of each objective function are normalized for comparison at the
same scale.
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max(d1 ·V)/(dShB ·V2)
min(|∆V0|)/V2
min(|∆h0|)/hmax
min(ω)/ωmax

(44)

2. Second, according to the importance of the indices, different weight coefficients are
assigned. For a complete coverage search task, the primary goal is to complete the
coverage area in the shortest time, the secondary goal is to ensure search efficiency
and high recognition probability, and the third goal is to ensure economy. Therefore,
for the four index functions to be optimized the following is important:

max(d1 ·V)Prior.to.min(ω)Prior.to.min(|∆V0|)Equal.to.min(|∆h0|)

If the weight coefficients of the four index functions are represented by Kη , Kω, KV0 ,
and Kh0 , the following should be ensured:

Kη > Kω > KV0= Kh0

3. Finally, the weighted sum of each optimization index function can be used to obtain a
comprehensive task planning objective function J:

{
max(J)
J = Kη · (d1 ·V)/

(
dShB

max ·V2

)
− Kω ·ω/ωmax − KV0 · |∆V0|/V2 − Kh0 · |∆h0|/hmax

(45)

4.2. Design of Task Planning Algorithm

The task planning problem is a typical multi-objective problem with complex models,
numerous constraints, and nonlinear mutations, which are difficult to handle with tradi-
tional analytical methods. Based on evolutionary algorithms, this type of problem can be
solved effectively [52].

4.2.1. Task Planning Algorithm Based on IA

The Immune Algorithm (IA) was first used to design the task planning algorithm.
In sector scanning mode, the main task parameters include speed V, altitude h, scan-
ning azimuth θ1 and scanning angular velocity ω, forming a set. Each set of parameters,
(V, h, θ1, ω) is used as an antibody in the IA population, and the population size set to 50.
It is important to note that the initialization of these parameter sets was limited by the
corresponding threshold range.

According to a set of task parameters, the pseudocode to calculate the complete
coverage width d1 is shown in Algorithm 1.

Algorithm 1: Pseudocode to calculate the complete coverage width d1

1: Set EO static view field ε, set dShB
max according to the target characteristics, weather condition and

EO resolution;
2: Calculate R1, R2 according to Formulae (10) and (11), respectively;
3: Calculate the time of a scanning cycle T;
4: For xB1 = −R2 sin θ1 to 0 do
5: Calculate yB1 according to Formula (18);
6: Set xO3B3 = xB1, calculate yO3B3 according to Formula (21);
7: If yO3B3 = yB1
8: Save d1 = 2|xB1|;
9: Break out of the loop;
10: End if
11: End for
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For any set (V, h, θ1, ω) in the IA population, with a complete coverage width d1, the J
index can be generated based on Equation (45), which can be used as the fitness of the set.

It is also necessary to judge whether the set conforms to the speed-to-height constraint
and the no-interval missing constraint. If not, the J index of the set is 0. The pseudocode is
presented in Algorithm 2.

Algorithm 2: Pseudocode to judge whether a parameter set conforms to the speed-to-height
constraint and the no interval missing constraint

1: Set speed to height ratio γ;
2: Calculate µ1, µ2 according to Formulae (1) and (5);

3: Calculate the value of formula V ·
√

1− (cos θ1 · sin µ1)
2 · cos µ1/h;

4: If V ·
√

1− (cos θ1 · sin µ1)
2 · cos µ1/h>γ

5: Set J = 0;
6: End if
7: Calculate R1, R2 according to Formulae (10) and (11) respectively;
8: For xC2=−R1 sin θ1 to R1 sin(θ1 − ε) do
9: Calculate yC2 according to Formula (20);
10: Calculate yB1 according to Formula (18);
11: If yc2 > yB1
12: Set J = 0;
12: Break out of the loop;
10: End if
11: End for

After calculating the J index of all the parameter sets in the population, various
evolutionary operations can be performed according to their fitness. The pseudocode of
the main task planning algorithm based on IA is shown in Algorithm 3.

Algorithm 3: Pseudocode of the main program of the task planning algorithm

1: Initial parameters of IA, including mutation probability Pm, crossover probability Pc, update
probability Pu, population number N, the maximum evolutionary number Era. Set static view
field ε, the minimum pitch angle µmin, the maximum scanning angular velocity ωmax, the
minimum flight altitude hs, the minimum speed V1, the maximum speed V2, the best cruise speed
V0, the best cruise altitude h0. Set the weight coefficients Kη , Kω , KV0 and Kh0 .
2: Initial coordinates of the area to be searched;
3: According to the parameter threshold ranges expressed by Equations (32)–(38), 50 task
parameter sets are randomly generated to form the initial IA antibody population. Each set
contains 4 parameters [V, h, θ1, ω];
4: For i = 1 to Era do
5: Calculate the J index of every set as their fitness based on Algorithm 1 and Formula (45);
6: Check whether every set meet the speed to height constraint and the no interval missing
constraint according to Algorithm 2.
7: The vector distance concentration of each antibody in the population are calculated based

on their fitness, ρi = 1/
49
∑

j=1

∣∣∣ fi − f j

∣∣∣, and the selection probability of each antibody are calculated

based on the vector distance concentration, Pi = ρi/
n
∑

j=1
ρj;

8: Antibody selection is implemented based on the concentration regulation mechanism of IA,
and clonal expansion is implemented based on clonal selection probability Ps = 0.4;
9: Each antibody in the clonal amplified population is mutated, the mutation probability
Pm = 0.8, and each parameter of the antibody obtained by mutation should conform to their
threshold range limitation.
10: Determine whether the number of antibodies in the current population reaches 50. If not,
randomly produce antibodies to supplement the population to 50.
11: End for
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4.2.2. Task Planning Algorithm Based on GWO

GWO achieves optimization by simulating the collaborative mechanism during the
hunting process of wolf packs. It has the advantages of simple structure, few adjustment
parameters, and easy implementation. Owing to the existence of the adaptive adjustment
convergence factor and information feedback mechanism in the GWO algorithm, it can
achieve a balance between local optimization and global search and has good performance
in solving the problem accurately and in rate of convergence. The pseudocode of the main
task planning algorithm based on GWO is shown in Algorithm 4.

Algorithm 4: Pseudocode of the main program of the task planning algorithm based on GWO

1: Initialize the grey wolf population Xi (i = 1, 2, . . . , 50). According to the parameter threshold
ranges expressed by Equations (32)–(38), 50 task parameter sets are randomly generated to form
the initial grey wolf population, each grey wolf contains 4 parameters [V, h, θ1, ω];
2: Initialize a, A, C, t = 0; initialize max number of iterations Imax;
3: Calculate the J index of each grey wolf as their fitness based on Algorithm 1 and Formula (45);
set Xα = the best grey wolf, Xβ = the second-best grey wolf, Xδ = the third-best grey wolf.
4: While (t < Imax) do
5: Calculate a = 2− t · (2/Imax);
6: For i = 1 to 50 do
7: Calculate the J index of the ith grey wolf Xi as its fitness fi based on Algorithm 1 and
Formula (45);
Update Xα, Xβ, Xδ based on fi, fa, fβ, fδ;
8: End for
9: For i = 1 to 50 do
10: Randomly generated r1, r2, update A and C, A = 2 · a · r1 − a, C = 2 · r2;
11: Update Dα = |C · Xα − Xi|, calculate XDα = Xα − A · Da;

12: Update Dβ =
∣∣∣C · Xβ − Xi

∣∣∣, calculate XDβ = Xβ − A · Dβ;

13: Update Dδ = |C · Xδ − Xi|, calculate XDδ = Xδ − A · Dδ;

14: Calculate Xi =
(

XDα + XDβ + XDδ

)
/3;

15: End for
16: t = t + 1;
17: End while
18: Return Xα;

4.2.3. Task Planning Algorithm Based on VNS

The basic neighborhood search algorithm is based on the idea of “greedy acquisition.”
The algorithm starts from an initial solution, uses the neighborhood structure, and con-
tinuously searches for a better solution in the neighborhood. If a better solution can be
obtained, the current solution is updated until the termination condition is satisfied. The
neighborhood structure of the VNS algorithm is not a single invariant, but there are multi-
ple neighborhood structures, and in the case of the same initial solution, there is a wider
and deeper search space. Owing to the different neighborhood structures for alternating
search and real-time adjustment of neighborhood structures, a good balance is achieved
between centrality and dispersity, the local optimal solution can better leap out, and the
approximate optimal solution can be obtained at a faster speed. The variable neighborhood
search algorithm mainly consists of two parts: variable neighborhood descent (VND) search
and shaking process. The pseudocode of the task planning algorithm based on VNS is
shown in Algorithm 5.
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Algorithm 5: Pseudocode of the main program of the task planning algorithm based on VNS

1: Set the maximum number of iterations of the outer loop Imaxgen = 100; Initialize a set of
neighborhood structures Nk, k = 1, 2, 3, set the number of cycles for VND M = 50;
2: According to the parameter threshold ranges expressed by Equations (32)–(38), initial solution
S is generated, S contains 4 parameters [V, h, θ1, ω]; calculate the J index of S based on Algorithm.
1 and Formula (45) as its fitness f ;
3: Initialize the best solution Sbest = S, initialize the fitness of Sbest as fbest = f ;
4: While (t < Imaxgen) do
5: For i = 1 to 3 do /* Shaking */
6: generate a random solution S′ from the kth neighborhood Nk(S) of S;
7: End for
8: Calculate the fitness f ′ of S′;
9: For i = 1 to 3 do /* local search by VND */
10: Set S′′best = [], f ′′best = 0;
11: For j = 1 to M do
12: Generate a solution S′′ (j) according to S′ and the rules of the ith neighborhood Ni;
13: Calculate the fitness f ′′j of S′′ (j);
14: If f ′′j > f ′′best
15: Update S′′best and f ′′best;
16: End if
17: End for
18: If f ′′best> f ′

19: Update S′ = S′′best and f ′= f ′′best;
20: End if
21: If f ′′best > fbest
22: i = 1, continue to search within Ni; update Sbest = S′′best and fbest = f ′′best;
23: Else
24: i = i + 1;
25: End if
26: End for
27: End while
28: Return Sbest;

5. Simulation and Discussion

In this section we describe the simulation performed to comprehensively evaluate the
effectiveness of the models and algorithm.

First, we set the parameter threshold and value range. The maximum recognition
distance ε = 20◦; maximum recognition distance dShB = 10 km; minimum pitch angle
µmin = 15◦; maximum scanning angular velocity ωmax = 8◦/s; minimum flight alti-
tude hs = 200 m; and maximum flying altitude can be obtained by Equation (37) as
hmax = 8191.5 m; minimum speed V1 = 100 km/h; maximum speed V2 = 300 km/h; and
speed-to-height ratio threshold γ = 0.08 rad/s. Best cruise speed V0 = 220 km/h and best
cruise altitude h0 = 2800 m.

5.1. Search Range and Full Coverage Width Simulation

First, six sets of task parameters were set based on experience, and simulations were
performed based on the coverage area model established above. The results are shown in
Figure 6 and Table 1.

The static view field, based on the first set of parameters, is shown as A1B1C1D1 in
Figure 6a. It moves around the position of the aircraft and uses the flight direction as the
symmetrical axis to create a uniform sector-scanning motion. If the task parameters do not
change, then the area remains the same during the search process. Trajectory B1B2 is the
motion trajectory of the point B1 in half a period, and the other trajectories are the same.
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Table 1. Six sets of task parameters and their corresponding coverage width and coverage efficiency.

Serial
Number V (m/s) h (m) θ1 (◦) ω (◦/s) d1 (m) η (m2/s)

(a) 80 3500 75 2 5822.3 465,784
(b) 70 2500 60 3 11,968.2 837,774
(c) 60 2000 80 3 14,979.7 898,782
(d) 83 3000 80 4 14,161.5 1,175,406
(e) 83 1500 85 2.5 9877.3 819,816
(f) 83 5000 85 2.5 7105.5 589,757

The maximum coverage width that could be obtained, based on the third set of
parameters, was 14,979.7 m. The simulation results are shown in Figure 6c, but the search
efficiency was not high. Although the coverage width of the fourth set of parameters was
not the maximum, the maximum coverage efficiency obtained was 1175, 405 m2/s, as shown
in Figure 6d. From Figure 6a,f, it can be seen that the first and sixth sets of parameters
did not meet the limit conditions of complete coverage, and there was a missing area
between the two round-trip scans. Therefore, relying on experience to set task parameters
is not satisfactory, as there may be missing areas, and it is also difficult to obtain high
coverage efficiency.

5.2. Analysis of the Changes of J

In the actual task process, not only is high search efficiency required, but many other
factors must also be considered. The task planning simulation was performed according
to the comprehensive optimization index J established by Equation (45). Set Kη = 100,
Kω = 10, KV0 = Kh0 = 1.

Next, when the other parameters were fixed, we observed the changes in the compre-
hensive optimization index J with two different parameters.

As shown in Figure 7, with search azimuth θ1 = 85◦ and scanning search angular
velocity ω = 3◦/s, J changed with V and h. It can be observed that the corresponding
relationship was a curved surface. When V was large and h was high, there was a large
restricted area and the parameters in this area did not meet the condition of complete
coverage. When V was large and h was low, there was a small restricted area.
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As shown in Figure 8, when V = 80 m/s and h = 3500 m, J changed with θ1 and ω. It
can be seen that the corresponding relationship was also a curved surface. When ω was
small and θ1 was large, there was a larger restricted area, and the parameters in this area
did not satisfy the conditions of a complete coverage search.
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When V and ω were unchanged, J changed with h and θ1, shown in Figure 9. When h
and ω remained unchanged, the changes in J with V and θ1 are shown in Figure 10. In both
cases, it can be seen that there were restricted areas and non-linear mutations.
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Figure 9. When V = 80 m/s, ω = 3◦/s, the change of J along with h and θ1.
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From Figures 7–10, it can be observed that there was no specific proportional relation-
ship between J and a certain group of task parameters. Owing to many constraints, there
was a non-linear mutation relationship, so it was difficult to solve such problems based on
traditional analytical methods. Task parameter optimization was performed, based on IA,
GWO, and VNS.

5.3. Task Planning Simulation Based on IA, GWO and VNS

The IA evolutionary algebra Era = 100 was set, and 10 rounds of task parameter
planning were conducted. The results are presented in Table 2.

Table 2. Ten rounds of planning results based on the IA.

Serial Number V (m/s) h (m) θ1 (◦) ω (◦/s) d1 (m) η (m2/s) J TIA (s)

1 83.30 432.85 89.68 7.26 19.36 1.61 183.84 47.66
2 83.33 398.33 89.99 7.29 18.77 1.56 178.03 57.31
3 83.32 418.92 89.98 7.07 18.71 1.56 177.72 51.14
4 83.33 418.06 89.99 7.26 18.76 1.56 177.96 53.22
5 83.33 409.00 89.98 7.85 18.95 1.58 179.12 60.77
6 83.33 442.65 90.00 7.56 18.87 1.57 178.67 47.48
7 83.21 400.91 89.94 7.70 18.97 1.58 179.23 54.05
8 83.29 429.07 89.99 8.00 19.01 1.58 179.41 45.22
9 83.33 396.68 89.99 8.00 19.01 1.58 179.52 44.14

10 83.33 407.84 89.99 7.48 18.83 1.57 178.37 42.70

The maximum iterations of GWO were set as Imax = 400, and the running time of
the GWO algorithm was similar to the 100 generations evolution time of the IA. Similarly,
we set the maximum number of iterations of the VNS to I′max = 500. Tenrounds of task
parameter planning were conducted, based on the GWO and VNS algorithms. The results
are presented in Tables 3 and 4, respectively.

The change curves of fitness of 10 rounds of IA optimization are shown in Figure 11,
the change curves of fitness of 10 rounds of GWO optimization are shown in Figure 12 and
the curves of VNS are shown in Figure 13.
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Table 3. Ten rounds of planning results based on the GWO.

Serial
Number V (m/s) h (m) θ1 (◦) ω (◦/s) d1 (m) η (m2/s) J TIA (s)

1 83.22 974.90 87.59 7.86 19.27 1.60 182.07 58.06
2 83.32 630.72 89.83 7.98 18.94 1.58 178.81 45.86
3 83.33 709.02 89.98 7.88 18.90 1.58 178.65 53.97
4 83.33 1017.45 89.97 7.97 18.87 1.57 178.22 68.81
5 83.29 535.72 89.28 7.92 18.96 1.58 179.02 46.38
6 83.32 507.00 90.00 7.97 18.95 1.58 178.99 45.12
7 83.32 675.99 89.97 7.93 18.92 1.58 178.72 44.57
8 83.33 455.82 89.84 7.98 18.95 1.58 178.95 38.47
9 83.32 744.37 89.99 7.90 18.90 1.58 178.62 61.12

10 83.33 487.38 89.97 7.98 18.95 1.58 179.02 37.62

Table 4. Ten rounds of planning results based on the VNS.

Serial
Number V (m/s) h (m) θ1 (◦) ω (◦/s) d1 (m) η (m2/s) J TIA (s)

1 83.01 575.38 89.37 7.50 18.77 1.56 177.07 42.07
2 83.31 1654.54 89.35 7.96 18.63 1.55 175.93 46.29
3 83.21 400.86 89.50 7.48 18.79 1.56 177.71 38.82
4 82.64 474.15 89.03 7.22 18.67 1.54 175.62 40.13
5 83.28 1437.23 89.99 7.61 18.66 1.55 176.58 37.40
6 83.23 582.76 87.29 7.72 18.64 1.55 175.98 37.24
7 83.23 589.85 89.66 7.92 18.90 1.57 178.37 42.71
8 83.20 463.49 89.99 7.53 18.84 1.57 178.15 40.09
9 82.63 1041.88 88.47 7.91 18.74 1.55 175.41 37.88

10 83.26 1331.90 89.06 7.80 18.67 1.55 176.35 41.46
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Figure 11. The change curves of fitness of 10 rounds of IA optimization.
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Figure 12. The change curves of fitness of 10 rounds of GWO optimization.
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It can be seen from the simulation results that IA, GWO, and VNS obtained excellent
task parameter sets, had high search efficiencies and comprehensive indices, and met the
no-interval missing scan and speed-to-height ratio constraints. However, there were some
differences in the results. Next, the differences in the parameter planning results of the
three algorithms were compared and analyzed.

As shown in Figure 14, the optimal J index, average J index, and average time cost of
the three algorithms were compared.
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Figure 14. Comparison of the optimal J index, the average J index and the average time cost of the
three algorithms.

As shown in Figure 14, the planning results obtained by the three algorithms exhibited
little difference in index J. However, in comparison, the results obtained based on IA were
slightly better than those of the other two algorithms in terms of J. The optimal J index in
the 10 rounds based on IA was 183.84, and the optimal J index in regard to GWO and VNS
were 182.07 and 178.37, respectively. From the average J, the average J based on IA was
179.19, the average J based on GWO was 179.11, which was almost the same as that for IA,
and the average J based on VNS was 176.72, which was significantly worse than those for
IA and GWO. This showed that IA had a higher convergence accuracy when solving such
problems, GWO was second, and VNS convergence accuracy was the lowest.

The J index change curves are shown in order to compare the convergence speeds of
the three algorithms, and are given in Figure 15. At the same time, to make the image easy
to observe and not too crowded, only the J index change curve of the optimal round of each
algorithm was selected. The selected results were as follows: 1th round of IA, 1th round
of GWO and 7th round of VNS. In addition, because IA had 100 evolution times, GWO
400 cycles, and VNS 500 cycles, the quantities of data are different, so the curves of IA and
GWO are “stretched” to facilitate comparison.
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As can be seen from Figure 16, in IA, the fitness of the optimal solution increased
steadily, the change curve was relatively gentle, and there was “step” improvement during
the operation, which indicated that the IA jumped out of the local optimal and converged in
a position of relatively high precision. At the early stage of GWO, the fitness of the optimal
solution (α-wolf) increased rapidly, surpassing that of IA. In the subsequent process, the
phenomenon of “step” improvement was constantly produced, which indicated that the
GWO constantly jumped out of the local solution and converged to a relatively optimal
position (slightly worse than IA). At the early stage of VNS, the fitness of the optimal
solution increased the fastest, surpassing that of the IA and GWO algorithms. However,
the optimization process then stagnated. This showed that VNS had the best optimization
efficiency in the early stage, but the global optimization ability was relatively weak, and it
was suitable for questions with high real-time requirements.
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Figure 16. Comparison of the J index change curves of the optimal rounds.

The optimization results were further analyzed. To facilitate the observation, the ten
groups of planning results obtained by the three algorithms are presented in the form of
bar charts in Figures 15, 17 and 18. It can be seen from the bar chart comparisons that the
results obtained by the three algorithms tended to be consistent in each round for speed
V and sector scanning Angle θ. In terms of flight height h, the results based on VNS were
the most different, followed by GWO and IA. However, even the planning results of IA
showed the largest difference in flight altitude h compared to other mission parameters,
such as flight speed V. With respect to sector scanning angular velocity ω, the difference in
planning results based on GWO was the smallest, and the difference between IA and VNS
was relatively large. Overall, IA had the most stable planning results, followed by GWO
and VNS.
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Furthermore, the changing process of the task parameters under a typical optimization
process was compared. Similarly, to make the image less crowded, only the change curves
of typical processes were selected for observation and comparison. The selection principle
was that the J index was the best or the J index was the closest to the average. The selection
results of IA were as follows: the 1th round and the 3th round; GWO selection results
were: the 1th round and the 4th round; VNS selection results were: the 7th round and the
9th round.

The speed change curves of the typical rounds are shown in Figure 19. It can be seen
that among the three optimization algorithms, the overall trend of speed was increasing,
which reflected the positive significance of increasing speed for improving J index. The
optimization efficiency of VNS was the highest, followed by GWO, with IA the slowest.
Both GWO and IA exhibited oscillations in the early stage of operation, which reflected the
complexity of the problem.

The change curves of h, θ, and ω are shown in Figures 20–22. It can be seen that the
change trend of height h in all three algorithms was downward overall, and the change
trends of θ and ω were both increasing.
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Figure 19. Comparison of the speed change curves of typical rounds.
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Figure 20. Comparison of the flight height h curves of typical rounds.
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However, the optimization processes of the different algorithms exhibited significant
differences. Basically, the optimization processes of VNS were the fastest, and sub-optimal
solutions soon found, as shown in “7th-VNS” and “9th-VNS” in Figures 19–22, while the
subsequent processes were basically stable and unchanged. The GWO optimization process
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was also fast; however, the subsequent optimization processes entered a state of oscillation,
as shown in “1th-GWO” and “4th-GWO” in Figures 19–22. In the IA process, the variation
curves of the parameters were relatively stable and gentle. This difference reflected the
algorithmic characteristics of the three methods.

The change curves of coverage width d1 are shown in Figure 23. As d1 was the main
component of J and its weight was much greater than that of the other indices, the trend of
d1 was basically consistent with J.
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5.4. Comparison of Area Coverage under Different Parameter Sets

The scanning trajectory based on typical optimization results are shown in Figure 24.
It can be seen that the optimized coverage widths were generally large and met all
the constraints.

Aerospace 2023, 10, x FOR PEER REVIEW 26 of 31 
 

 

To demonstrate the advantages of the optimized task parameters, a coverage search 
was implemented based on different parameter sets. It was supposed that there was an 
area of 160 km × 80 km that had to be covered. 

Test (a): Test (a) referred to the optimized task parameters using IA, and the 1th round 
planning results selected as an exampl. 

Test (b): Test (b) referred to the optimized task parameters using GWO, and the 1th 
round planning results selected as an example. 

Test (c): Test (c) referred to the optimized task parameters using VNS, and the 7th 
round planning results selected as an example. 

Test (d): Test (d) referred to the parameters selected by experience, and the 4th group 
of parameters in Table 1 was selected as an example. 

Test (e): The other task parameters were the same as in test (d), but the coverage width 
was determined according to the traditional method 1 1 1=2 sind R θ⋅ , and the interval miss-
ing was not considered. 

  
Figure 24. The comparison of coverage width under six sets of optimized task parameters. 

A common boustrophedon coverage method was adopted for the search track. The 
turning process, wherein the UAV completed a line scan and turned around, is shown in 
Figure 25. Assuming that the turning overload of the aircraft was 30 m/s2, the starting 
position of each scanning line (e.g., pturn) was 5 km from the edge of the area to be searched. 

5km

d1

`

R

L1

RPturn

Pturn

Flig
ht 

Path

Regional boundary

Area To be 
Coveraged

L2

`

`

 
Figure 25. Schematic diagram of U-turn after completing a scanning line. 

The coverage results of the area are shown in Figure 26a–e. Defining the miss ratio 
missedP   = missedS  / allS  , missedS   as the area missed in the coverage search, and allS   as the 

total area. The time consumption and missedP  of the five tests were calculated, and the re-
sults are presented in Table 5. 

Figure 24. The comparison of coverage width under six sets of optimized task parameters.

To demonstrate the advantages of the optimized task parameters, a coverage search
was implemented based on different parameter sets. It was supposed that there was an
area of 160 km × 80 km that had to be covered.

Test (a): Test (a) referred to the optimized task parameters using IA, and the 1th round
planning results selected as an exampl.

Test (b): Test (b) referred to the optimized task parameters using GWO, and the 1th
round planning results selected as an example.

Test (c): Test (c) referred to the optimized task parameters using VNS, and the 7th
round planning results selected as an example.

Test (d): Test (d) referred to the parameters selected by experience, and the 4th group
of parameters in Table 1 was selected as an example.
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Test (e): The other task parameters were the same as in test (d), but the coverage width
was determined according to the traditional method d1= 2R1 · sin θ1, and the interval
missing was not considered.

A common boustrophedon coverage method was adopted for the search track. The
turning process, wherein the UAV completed a line scan and turned around, is shown in
Figure 25. Assuming that the turning overload of the aircraft was 30 m/s2, the starting
position of each scanning line (e.g., pturn) was 5 km from the edge of the area to be searched.
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The coverage results of the area are shown in Figure 26a–e. Defining the miss ratio
Pmissed = Smissed/Sall , Smissed as the area missed in the coverage search, and Sall as the total
area. The time consumption and Pmissed of the five tests were calculated, and the results are
presented in Table 5.

Table 5. Comparison of main indices of three simulation tests.

Test (a) Test (b) Test (c) Test (d) Test (e)

Coverage width d1 (m) 18,731 18,643 18,904 11,968 19,071
Number of scanning lines 9 9 9 14 9

Time to complete coverage (s) 10,742 10,858 10,761 19,328 11,331
Miss ratio Pmissed 0% 0% 0% 0% 13.96%

Compared with Test (e), the simulation results of Tests (a)–(c) showed that the coverage
width model could achieve complete coverage of the target area without missing data.
However, if the task parameters were simply determined by the traditional method, without
considering miss scanning, the miss ratio Pmissed could be as high as 13.96% (Test (e))
indicated that the model and algorithm in this study are effective and necessary.

By comparing the results of Tests (a) and (d), it can be seen that both sets ensured no
missed coverage. However, the empirical parameters cost 19,328 s to complete coverage,
while the planned parameters had a shorter time consumption of 10,742 s, which was
only 55.58% of the time cost of Test (d). Tests (b) and (c) were similar to test (a) and they
were also significantly better than test (d). Therefore, the planned parameters had better
coverage efficiency, and the algorithm designed in this study is effective and feasible.

By comparing the results of tests (a), (b), and (c), it was observed that the task pa-
rameters planned, based on IA, GWO, and VNS, could achieve an efficient search process
without missing areas. When covering the area set in this study, there were no significant
differences among the three sets of planning parameters. For example, the task completion
times were 10,742 s (IA), 10,858 s (GWO), and 10,761 s (VNS). The planning result of IA was
only slightly superior in terms of completion speed, 116 s faster than GWO and 19 s faster
than VNS. This may not result in a significant difference in an actual mission. Therefore,
all three algorithms are feasible. For offline task planning, IA and GWO could be the
appropriate choices for time-efficient online task planning, while VNS and GWO could be
the appropriate choices for online and real-time task parameter planning.
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faster than VNS. This may not result in a significant difference in an actual mission. There-

fore, all three algorithms are feasible. For offline task planning, IA and GWO could be the 

Figure 26. Area coverage tests based on different sets of parameters.

6. Conclusions

Automated target search and rescue must ensure complete coverage of an area. In this
study, we conducted an in-depth study on task parameter planning when UAVs use EO
equipment to cover areas in the sector scanning mode.

A model for the complete coverage width under sector scanning mode was established,
and a model with no interval missing constraint and speed-to-height ratio constraint was
also established. The test results indicated that the models were effective and reliable.

Although task planning is a serious nonlinear problem, the algorithm designed, based
on IA, GWO, and VNS, can effectively solve task planning problems. The coverage process,
based on optimized parameters, meets all constraints, has a higher search efficiency, and
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does not miss areas. Although all three optimization methods are feasible, they exhibit
some differences. In general, IA is more suitable for offline occasions, VNS is more suitable
for online real-time planning, and GWO has characteristics between the two.

The coverage task planning algorithm in this study can not only realize no-omission
coverage but also consider the problem of target recognition, which provides technical
support for fully automated target search and rescue.
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