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Abstract: To deal with the attitude tracking control problem of a struck or pierced geocentric polar
displaced solar sail (GPDSS), an attitude adaptive control strategy is proposed in this paper under
the complex conditions of unknown inertial parameters, external disturbance and input saturation.
First, on the basis of a flexible solar sail spacecraft attitude dynamics model with damping terms and
vibration initial values, an integrated disturbance term, including inertial parameter uncertainties
and external disturbance, is constructed. Second, a radial basis function neural network is applied
to design a disturbance estimator with an adaptive law to estimate the integrated disturbance in
real time. Then, a sliding-mode controller with fixed-time convergence in the reach phase and
finite-time stability in the sliding phase is designed, and stability analysis is conducted by using
the Lyapunov theory. Finally, comparative simulations with a linear sliding-mode controller and
numerical simulations under various workings are performed. The results show that the designed
adaptive control strategy can effectively achieve the attitude tracking control of the GPDSS.

Keywords: geocentric polar displaced solar sail; neural network; attitude tracking control; fixed-time
convergence; adaptive; finite-time stability

1. Introduction

Polar regions are newly being affected, resulting in the world’s sustainable devel-
opment and human survival, which are both strategic commanding heights for future
competition between interests and influence of major powers [1]. Due to their location,
polar regions are the site of major scientific research in six dimensions. The need for com-
munication, data relay, weather forecasting and other services in polar regions has become
very urgent, so the task of designing polar displaced orbits has begun [2]. Driver [3] was the
first to propose the concept of polar displaced orbit; he studied and analyzed relationships
between the control forces of a polar displaced spacecraft in terms of its time and altitude.

Polar displaced solar sails are always controlled using three-axis stabilization, whereas
a solar sail for triaxial stabilization is generally a square sail with booms [4]. So far, there are
three main ways to obtain torque for attitude control studies of solar sails [5,6]: adjusting the
center of mass (including sliding masses [7–10] and gimbaled masses [11–14]); adjusting the
center of pressure (including sail panel translation/rotation [15–22], control vanes [23,24]
and reflectivity modulation [25–30]); and passive stability design (seeking to stabilize solar
sail geometry in the presence of SRP [31,32]).

The attitude control methods mentioned above have not been effectively verified
except for reflectivity modulation. There are two directions of development of attitude
control methods for solar sails: on the one hand, various existing attitude control methods
can be combined to compensate for each other’s disadvantages; on the other hand, new
attitude control systems can be developed by introducing smart materials or other latest
technologies [4]. Since hybrid propulsion systems have the advantage of no propellant
consumption and are able to overcome the disadvantages of solar sails, which cannot
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provide the propulsive component of the spacecraft pointing towards the Sun, complex
attitude control missions can be performed using hybrid propulsion technology [33].

SpaceX’s latest launch of the Starlink satellite “V2 mini” featured an argon Hall
thruster with a thrust of 170 mN and a mass of only 2.1 kg. This makes it possible to achieve
hybrid attitude control without significantly increasing the mass of the solar sail spacecraft.
Compared with the existing xenon or krypton thrusters, the biggest advantage of argon
electric thrusters is their extremely low cost. High-purity xenon gas used in xenon electric
propulsion costs tens of thousands of CNY for 1 kg, whereas 1 kg of high-purity argon gas
costs only a few CNY [34]. However, to prevent the failure of propellant-free actuators and
avoid adding too much mass to the solar sail spacecraft, we use propellant-free actuators
as the primary means of attitude control, supplemented by argon Hall thrusters.

To study the attitude control system of the solar sail, the structure of the solar sail must
be clearly understood. After all, the structure of the vehicle is the subject of the action of the
control system. Therefore, it is necessary and meaningful work to investigate the design
solutions for a solar sail spacecraft. A fully deployed and orbiting solar sail spacecraft has
the following four characteristics [35,36]:

• Although the mass of a solar sail is not too large, its special type of structure makes
the overall dimensions very large, resulting in a solar sail spacecraft with a large
rotational inertia.

• The flight time of a solar sail in polar displaced orbit would be very long, typically at
least 2 years.

• Solar sails have the characteristics of high flexibility and low frequency and are prone
to system vibration due to slight disturbances in the space environment.

• During ultra-long flight periods, there will be a huge disturbance torque, which is
mainly caused by installation errors during the final assembly process of a large-sized
solar sail spacecraft, deformation of the sail surface after orbiting and unfolding, and
so on [37–39].

In addition, the environment of a polar displaced orbit is relatively harsh; for example,
a large sail surface can result in the possibility of the sail surface being struck or pierced by
star dust. For a 100 m × 100 m solar sail spacecraft with an SRP of 0.09 N and a pressure
center offset of ±0.1 m, the in-flight SRP disturbance moment is ±0.009 Nm. According
to the experimental data, if a 10,000 m2 solar sail undergoes a 6-year interstellar voyage,
the solar sail will be pierced by interstellar dust amounting to about 2 million small holes,
the area of which is about 1.5% of the entire sail surface [40]. This has little impact on the
flight of the solar sail, but for the geocentric polar displaced solar sail (GPDSS), the attitude
control stability will be significantly reduced, which in turn will affect the orbit. Therefore,
it is not suitable for simulation analysis with the perturbation values used in the literature
such as in [41,42].

Zhang et al. discovered a new type of graphene material in 2015 [43], which has the
potential to increase the thrust of solar sails.

At present, the attitude control methods for polar displaced solar sails mainly include
feedback control [44], PID control, adaptive control, sliding mode control [30], fuzzy con-
trol [45] and linear quadratic regulator control [19]. Bassetto et al. proposed a variable
structure state feedback sliding mode control [30]. Chen et al. introduced neural net-
work modeling and an automatic design method to solve the problems of lack of a priori
knowledge and high manual workload in the design of fuzzy logical controller [45].

This article studies the attitude tracking control problem of a GPDSS after being
struck or pierced under complex perturbations from multiple sources, such as unknown
inertial parameters, external disturbances and input saturation. One nominal attitude of
the polesitter satellite is applied to study the problem and nothing else is involved. The
main contents include the following: the inertial uncertainty is separated from the nominal
parameters as a disturbance term, and then its composition with external disturbance is
used to construct the integrated disturbance term; a radial basis function (RBF) neural
network is applied to design a disturbance estimator, which is used to estimate (based on
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an online adaptive law) and compensate for the constructed integrated disturbances in
real time; a sliding-mode controller with fixed-time convergence and finite-time stability
is designed; and the effectiveness of the proposed attitude control strategy is verified by
a comparative simulation with a linear sliding-mode controller and simulations under
different working conditions.

2. Attitude Dynamics Model of a GPDSS

The Earth’s orbit around the Sun is an ellipse with low eccentricity. When the displaced
orbit deviates from the Sun–Earth line, as shown in Figure 1, the condition for generating
the displaced orbit is that the normal direction n of the solar sail must be consistent with
the Z direction.

Aerospace 2023, 10, x FOR PEER REVIEW 3 of 25 
 

 

is used to construct the integrated disturbance term; a radial basis function (RBF) neural 

network is applied to design a disturbance estimator, which is used to estimate (based on 

an online adaptive law) and compensate for the constructed integrated disturbances in 

real time; a sliding-mode controller with fixed-time convergence and finite-time stability 

is designed; and the effectiveness of the proposed attitude control strategy is verified by a 

comparative simulation with a linear sliding-mode controller and simulations under dif-

ferent working conditions. 

2. Attitude Dynamics Model of a GPDSS 

The Earth’s orbit around the Sun is an ellipse with low eccentricity. When the dis-

placed orbit deviates from the Sun–Earth line, as shown in Figure 1, the condition for gen-

erating the displaced orbit is that the normal direction n  of the solar sail must be con-

sistent with the Z direction. 

î

ĵ

k̂

Os Oe

ˆ
s k

Ecliptic plane

Sun

Earth

n
Solar Sail

1- μ

1r

r
2r

Z



 

Figure 1. Schematic diagram of Sun–Earth solar sail CR3BP. 

A schematic diagram of the polar displaced orbit of a solar sail in the Earth coordinate 

system is shown in Figure 2. This is a non-Keplerian orbit in the form of a spiral. 

 

Figure 2. Schematic diagram of the polar displaced orbit of a solar sail in the Earth coordinate sys-

tem. 

Figure 1. Schematic diagram of Sun–Earth solar sail CR3BP.

A schematic diagram of the polar displaced orbit of a solar sail in the Earth coordinate
system is shown in Figure 2. This is a non-Keplerian orbit in the form of a spiral.
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Figure 3 shows the ontological coordinate system of the solar sail. The origin Os
is located at the center of mass of the solar sail spacecraft. The OsXs-axis is parallel to
the normal direction of the sail surface and deviates from the direction of the Sun. The
OsYs-axis points towards the direction of the boom connected to end point 1 on the sail



Aerospace 2023, 10, 606 4 of 24

surface. The OsZs-axis and the other two axes together form a right-handed right-angle
coordinate system. The OsXs-axis is defined as the roll axis of the GPDSS, and the OsYs-axis
and OsZs-axis are defined as the pitch and yaw axes, respectively.
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Attitude kinematics equation of the GPDSS:

ω(t) = R(Θ)
.

Θ(t) (1)

where Θ = [φ θ ψ]
T denotes the attitude angle of the solar sail obtained from the

ontological coordinate system with respect to the inertial coordinate system. The rotational
velocity of the attitude relative to the reference coordinate system can be expressed in the
ontological coordinate system as: ω(t) =

[
ωx ωy ωz

]
.

R(Θ) =

1 0 − sin θ
0 cos φ sin φ cos θ
0 − sin φ cos φ cos θ


Decoupling the attitude orbit coupling dynamics equation, the attitude dynamics

equation of the GPDSS is obtained as:{
Js

.
ω(t) + ω(t)× Jsω(t) + 2Ceω(t) + Cr

..
η(t) + h

( .
η
)
= u(t) + d(t)

CT
r

.
ω(t) + M f

..
η(t) + ξK f

.
η(t) + K f η(t)−Qr = 0

(2)

where Js = J + ∆J; J ∈ R3×3 is the rotational inertia when the solar sail is considered to be
a rigid body; ∆J ∈ R3×3 is the change in rotational inertia caused by the vibration of the
sail surface; u ∈ R3×1 is the attitude stabilization control torque; d ∈ R3×1 is the external
disturbance torque of the GPDSS; η ∈ Rn is the vibration mode of the sail surface (n is
the order); Cr ∈ R3×n is the parameter matrix related to η; and the stiffness matrix can be
expressed as K f = diag

[
Ω2

1 Ω2
2 · · · Ω2

n
]
. The specific expressions and data of other

related parameters are shown in Appendix A.
The components and assembly of the adopted propellant-free actuator are shown in

Figure 4. When the propellant-free actuator is operating, the slider sliding on the support
rod will change the center of mass of the spacecraft sail surface, and the pitch and yaw axis
torques will be generated by adjusting the center of mass/pressure deviation. The rotation
of the telescoping rod will rotate the spinnaker and thus change the center of pressure of
the solar sail, and the rolling axis torque will be generated by adjusting the mass/pressure
center deviation. The magnification of the rolling axis torque can be changed by adjusting
the telescoping pole length. Due to the use of a propellant-free actuator, the control torque
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is quite limited. Moreover, in the current research on solar sails, the delay problem of the
actuator is particularly prominent. For example, if the attitude is controlled by reflectivity
modulation, the time delay can reach 20~30 s, whereas the time delay of chemical thrusters
generally does not exceed 0.04 s. The sail surface of a GPDSS is a huge sail surface of tens
of thousands of square meters. A small disturbance can bring about a chain of adverse
reactions if it cannot be controlled in time.
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Therefore, to ensure the rapid and stable attitude control of the GPDSS, a hybrid
control strategy of propellant-free actuators and electric thrusters is suitable for engineering
purposes. For example, fixing a thruster with a maximum thrust of 100 mN at the end
point of the boom, which is 100 m long, can produce a maximum torque of 10 N ·m. And
according to Equation (32), it can be deduced that a 5 kg slider can only produce less than
1 N ·m torque. Even so, the control torque available is still limited but more effective than
a single propellant-free actuator. Here, assuming there is an upper limit for the control
torque, its input saturation is:

u =

{
u u < umax

umax u ≥ umax
(3)

Transforming Equation (2), we obtain:(
Js − CrCT

r

) .
ω(t) = u(t) + d(t)−ω(t)× Jsω(t)− 2Ceω(t)− h

( .
η
)
+

Cr

(
K f η(t) + ξK f

.
η(t)−Qr

) (4)

When substituting Js = J + ∆J into the above equation, the attitude kinematics and
dynamics model are organized as follows:

.
Θ(t) = R−1(Θ)ω(t)
.

ω(t) =
(

J− CrCT
r

)−1
[

f
(
ω, η,

.
η
)
+ u(t) +

¯
d(t)

]
(5)

where
¯
d(t) = d(t)−∆J

.
ω(t)−ω(t)×∆Jω(t) is the integrated disturbance term constructed

from the external disturbance and the change in rotational inertia caused by the sail surface
vibration.

f
(
ω, η,

.
η
)
= −ω(t)× Jsω(t)− 2Ceω(t)− h

( .
η
)
+ Cr

(
K f η(t) + ξK f

.
η(t)−Qr

)
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3. Attitude Tracking Controller Design

If the desired angular velocity and attitude angle of the geocentric polar displaced
solar sail are recorded as ωd and Θd, respectively, the attitude tracking error is:

eΘ = Θ−Θd =
[
eΘ1 eΘ2 eΘ3

]T (6)

By deriving the above equation and substituting it into the kinematic model (5),
we obtain:

.
eΘ =

.
Θ−

.
Θd = R−1(Θ)ω(t)−

.
Θd (7)

Similarly, the angular velocity error and its first-order derivative are:{
eω = ω−ωd.
eω =

.
ω− .

ωd
(8)

Defining X =
[
Θ ω η

.
η
]T , Equation (5) can be rewritten as:

.
X = g(X) + uc + dc (9)

where g(X) is a nonlinear function; uc is a control input; and dc is the disturbance.
The designed sliding surface is [30]:

s = λ1eω + λ2(eΘ + kem
Θ) (10)

where s =
[
s1 s2 s3

]T ∈ R3; λ1, λ2 and k denote adjustable slip surface coefficients,

λ1 > 0, λ2 > 0; and em
Θ =

[
em

φ em
θ em

ψ

]T
.

Deriving for s, we have:

.
s = λ1

.
eω + λ2(

.
eΘ + kmem−1

Θ

.
eΘ) (11)

where em−1
Θ

.
eΘ =

[
em−1

φ

.
eφ em−1

θ

.
eθ em−1

ψ

.
eψ

]
.

Substituting Equations (5) and (8) into Equation (11), we obtain:

.
s = λ1

{(
J− CrCT

r

)−1
[

f
(
ω, η,

.
η
)
+ u(t) +

¯
d(t)

]
− .

ωd

}
+ λ2

.
eΘ + λ2kmem−1

Θ

.
eΘ (12)

3.1. RBF Neural Network Disturbance Estimator Design

A disturbance estimator is designed by the RBF neural network to approximate
¯
d(t).

As shown in Figure 5, there are three layers of an RBF neural network. If the hidden
layer includes enough neurons, the RBF can approximate any continuous function with an
arbitrary accuracy and is a neural network with good local nonlinear approximation [46].

The activation function of neurons in the hidden layer consists of radial basis func-
tions [47]. There is a central vector c for each hidden layer node, whose dimension is equal
to that of the input parameter vector X. High-precision attitude angle and angular velocity
information can be directly measured by measurement elements such as the star sensor and
gyroscope, respectively, even if there are measurement errors.

∥∥X(t)− cj(t)
∥∥, j = 1, · · · , f ,

is considered to be the Euclidean distance between them, and f is the number of nodes in
the hidden layer.
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The disturbance estimation error is obtained from Equations (14) and (15): 

( ) ( ) ( ) ( ) ( ) ( )ˆ ˆT T Tt t t  = − = − + = − +
d

e d d W W h X W h X  (16) 

where 
ˆ= −W W W . 

  

Figure 5. Block diagram of the RBF network.

The hidden layer’s output consists of the nonlinear activation function hj(X):

hj(X) = exp

(
−
∥∥X(t)− cj(t)

∥∥2

2σ2
j

)
(13)

where σj represents that the width of the Gaussian basis function, which is a positive scalar.

The integrated disturbance
¯
d(t) is approximated by the RBF neural network.

¯
d(t) = WTh(X) + ν (14)

where W represents the ideal RBF network weight and ν denotes the approximation error,
which is a very small real vector satisfying ‖ν‖ ≤ ν. ν is the error upper bound.

The actual output of the disturbance estimator is:

ˆ̄
d(t) = ŴTh(X) (15)

Those marked with “ˆ” indicate estimated values. To ensure the convergence of the
errors and the real-time estimation, a reasonable adaptive law based on Lyapunov’s stability
theory will be designed for Ŵ in Section 3.3.

The disturbance estimation error is obtained from Equations (14) and (15):

e¯
d
(t) =

¯
d(t)−

ˆ̄
d(t) =

(
WT − ŴT

)
h(X) + ν = −W̃

T
h(X) + ν (16)

where W̃ = Ŵ−W.
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3.2. Control Law Design

The convergence law is chosen as follows:

.
s = −k1sig(s)p − k2sig(s)q (17)

where sig(s)p,q =

|s1|p,qsign(s1)
|s2|p,qsign(s2)
|s3|p,qsign(s3)

; k1 > 0; k2 > 0; p > 1; 0 < q < 1. k1, k2, p and q are the

adjustable parameters.
From Equations (12) and (17), the control law is obtained as follows:

u =
(

J− CrCT
r

)[ 1
λ1

(
−k1sig(s)p − k2sig(s)q − λ2

.
eΘ − λ2kmem−1

Θ

.
eΘ

)
+

.
ωd

]
− f−

ˆ̄
d (18)

The closed-loop attitude tracking control system of GPDSS designed in this paper is
shown in Figure 6.
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3.3. Stability Analysis

Assumption 1. Assume that the rotational inertia of the solar sail is J when it is considered as a
rigid body, and the change in the rotational inertia of the solar sail due to the vibration of the sail
surface is ∆J. ∆J is a small amount compared to J.

Assumption 2. The movement of the actuator does not have a direct effect on the vibration of the
sail surface.

Assumption 3. J− CrCT
r is an invertible matrix.

Assumption 4. Assuming that under normal attitude control, the attitude angular velocity of the
solar sail is a small amount.

Lemma 1 ([48]). For any given real number xi (i = 1, · · · , n1) and constant r > 0, there is the
following conclusion.

n1

∑
i=1
|xi|1+r ≥

(
n1

∑
i=1
|xi|2

)(1+r)/2

if 0 < r < 1



Aerospace 2023, 10, 606 9 of 24

n1

∑
i=1
|xi|1+r ≥ n(1−r)/2

1

(
n1

∑
i=1
|xi|2

)(1+r)/2

if r > 1

Lemma 2 ([49]). For a nonlinear system
.
x = f(x(t)), assuming the existence of a positive definite

function Vr(x) ∈ R, this satisfies:

.
Vr(x) ≤ −αVc1(x)− βVc2(x) + ∆ (19)

where α, β ∈ R; c1 > 1; 0 < c2 < 1; and ∆ ∈ R is the normal number and the nonlinear system
.
x = f(x(t)) is fixed-time convergence. The state x(t) converges at a fixed time to the set of residuals.

D ≤
{

x

∣∣∣∣∣V(x) ≤ min

{(
∆

α(1− τ)

)1/c1

,
(

∆
β(1− τ)

)1/c2
}}

, 0 < τ < 1 (20)

The bound on the convergence time Tmax which is required to reach into D is:

Tmax ≤
1

α(c1 − 1)
+

1
β(1− c2)

(21)

Lemma 3 ([50]). For a nonlinear system
.
x = f(x(t)), assuming the existence of a positive definite

function Vs(x) ∈ R, this satisfies:

.
Vs(x) ≤ −κ1Vs(x)− κ2Vs

γ(x)

where κ1 > 0; κ2 > 0; γ ∈ (0, 1); and V0 = Vs(x(0)) and the nonlinear system
.
x = f(x(t)) is

finite-time stable.
The settling time can be given by:

ts ≤
1

κ1(1− γ)
ln

κ1V1−γ
0 + κ2

κ2
(22)

Theorem 1. For the attitude dynamics system (5) of a GPDSS, if its control law is designed
as Equation (18), and if the values of the parameters, such as k, k1, k2, λ1, λ2, p, q and m,
are appropriate, the closed-loop system can converge to the sliding-mode surface in a fixed-time
and stabilize to a small neighborhood near zero in finite-time, achieving the tracking of reference
instructions.

Proof of Theorem 1. The proof process will be divided into two steps. Step 1 proves
that the system state converges to the sliding-mode surface at a fixed-time, and Step 2
proves that after reaching the sliding-mode surface, eΘ is stable in finite-time in a small
neighborhood near zero.

Step 1. The Lyapunov function is chosen as follows:

V1 =
1
2

sTs− 1
2χ

eT
d ed (23)

Deriving Equation (23) and substituting Equations (12) and (16) into it, we obtain:
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.
V1 = sT

(
λ1

.
eω + λ2

( .
eΘ + kmem−1

Θ

.
eΘ

))
− 1

χ

(
−

.
W̃

T
h(X)

)T

ed

= sT

 λ1

{(
J− CrCT

r

)−1[
f
(
ω, η,

.
η
)
+ u(t) + d(t)

]
− .

ωd

}
+

λ2
.
eΘ + λ2kmem−1

Θ

.
eΘ

− 1
χ

(
−

.
Ŵ

T
h(X)

)T

ed

= sT


λ1


(

J− CrCT
r

)−1
f
(
ω, η,

.
η
)
+[

1
λ1

(
−k1sig(s)p − k2sig(s)q − λ2

.
eΘ − λ2kmem−1

Θ

.
eΘ

)
+

.
ωd

]
−(

J− CrCT
r

)−1(
f + d̂− d(t)

)
− .

ωd

+

λ2
.
eΘ + λ2kmem−1

Θ

.
eΘ


−

1
χ

(
−

.
Ŵ

T
h(X)

)T

ed

= sT
(
−k1sig(s)p − k2sig(s)q − λ1

(
J− CrCT

r

)−1(
d̂− d(t)

))
− 1

χ

(
−

.
Ŵ

T
h(X)

)T

ed

= sT(−k1sig(s)p − k2sig(s)q)+ λ1sT
(

J− CrCT
r

)−1
ed(t)−

1
χ

(
−

.
Ŵ

T
h(X)

)T

ed

= sT(−k1sig(s)p − k2sig(s)q)+ [λ1sT
(

J− CrCT
r

)−1
− 1

χ

( .
Ŵ

T
h(X)

)T
]

ed

(24)

The adaptive law can be designed as follows:

.
Ŵ = λ1χ

(
hT(X)

)∗
sT
(

J− CrCT
r

)−1
(25)

where ( )∗ represents the pseudo-converse operation.
From Equation (23), it follows that 2V1 ≤ s2.
Substituting Equation (25) into Equation (24), and then from Lemma 1, we obtain:

.
V1 = sT(−k1sig(s)p − k2sig(s)q)

= −k1|s|p+1 − k2|s|q+1

= −k1
3
∑

i=1
|si|p+1 − k2

3
∑

i=1
|si|q+1

≤ −3(1−p)/2k1
(
sTs
)(p+1)/2 − k2

(
sTs
)(q+1)/2

≤ −3(1−p)/2k1(2V1)
(p+1)/2 − k2(2V1)

(q+1)/2

(26)

where 0.5 < (q + 1)/2 < 1; (p + 1)/2 > 1.
From Lemma 2, the closed-loop system converges to the sliding-mode surface at a

fixed time. Additionally, the convergence time satisfies:

t1 ≤
1

2(p+1)/23(1−p)/2k1[(p− 1)/2]
+

1
2(q+1)/2k2[(q− 1)/2]

(27)

Step 2. The system reaches the sliding surface, s = 0.
The Lyapunov function is chosen as follows:

V2 =
1
2

eT
ΘeΘ (28)

Deriving Equation (28) yields:

.
V2 = eT

Θ
.
eΘ = eT

Θ

(
R−1(Θ)ω−

.
Θd

)
(29)
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Since the attitude angle θ varies around θ0 and φ varies around 0◦, R(Θ) is a positive
definite. Then, R−1(Θ) is also a positive definite and bounded.

.
V2 = eT

ΘR−1(Θ)eω + eT
Θ

(
R−1(Θ)ωd −

.
Θd

)
= − λ2

λ1
eT

ΘR−1(Θ)eΘ − λ2
λ1

keT
ΘR−1(Θ)em

Θ

≤ − λ2
λ1

λmin
(
R−1(Θ)

)
eT

ΘeΘ − λ2
λ1

kλmin
(
R−1(Θ)

)
em+1

Θ

= − 2λ2
λ1

λmin
(
R−1(Θ)

)
V2 − 2(m+1)/2 λ2

λ1
kλmin

(
R−1(Θ)

)
V(m+1)/2

2

(30)

From Lemma 3, eΘ is stabilized in a small neighborhood near zero in finite-time, and
the stabilization time is:

T2 ≤
1

κ1(1− γ)
ln

κ1V1−γ
2 (eΘ(0)) + κ2

κ2
(31)

where γ = m+1
2 ; κ1 = 2λ2

λ1
λmin

(
R−1(Θ)

)
; and κ2 = 2(m+1)/2 λ2

λ1
kλmin

(
R−1(Θ)

)
.

This completes the Proof of Theorem 1. �

3.4. Control Variable Conversion

When the solar electric thruster is not operating, the actuator provides the required
attitude control torque to the controller through slider motion and spinnaker rotation.
The displacement of the slider and the angle of rotation of the spinnaker are the actuator
variables. Record the attitude controller output as u = [u1, u2, u3]

T .
For the pitch and yaw axes, the structural design limits the range of motion of each

slider due to the use of rigid light beam. The displacement of the slider can be obtained
from the following equation [44]:

Ly = u3(M+4m)
2mPA(cos2 α+e)

Lz =
−u2(M+4m)

2mPA(cos2 α+e)

(32)

where P is the pressure of sunlight; m is the mass of each slider; M is the total mass of
the solar sail spacecraft; A is the area of the solar sail surface; α is the angle between
the solar radiation pressure vector and the normal vector of the sail surface; e is a small
positive number.

Fixing the length of the telescopic boom, the turning angle of the spinnaker is:

ξ =
−u1

8PAs(cos2 α + e)ls
(33)

where ls is the length of the telescopic boom; As is the area of the spinnaker.
The basic thinking of controlling allocation: the maximum torque that can be generated

by the propellant-free actuator is used as the threshold value. If the required control
torque for solar sail spacecraft attitude control is less than the threshold, attitude control
is performed by the propellant-free actuator. If it is greater than the threshold, attitude
control is performed with thrusters only.

4. Simulation Results and Discussion
4.1. Simulation Conditions

In this section, numerical simulations are performed using the designed controller,
based on the attitude dynamics of the GPDSS, to verify the effectiveness of the proposed
method. The solar sail spacecraft is located in a levitating orbit 160,000 km from the
geocentric with a large solar pressure acceleration of 15.8 mm/s2.

The number of vibration mode order is three.
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Due to the large sail surface, the response time interval between the argon Hall thruster
and propellant-free actuator is large, so the actuator is selected by setting a control threshold
in each channel. The upper limit of the control torque (ULCT) of the argon Hall thruster is
set to 10 N ·m; the ULCT of the slider is set to 2 N ·m; and the ULCT of the vanes is set to
1 N ·m. The threshold value of the control torque of the rolling axis is set to 1 N ·m, and
the control torque threshold values of the pitch and yaw axes are set to 2 N ·m. When the
threshold value is exceeded, switch to an argon Hall thruster.

The relevant parameters of the sliding surface and controller are as follows:

k = 2, k1 = 0.03, k2 = 0.01, λ1 = 1, λ2 = 0.01, p = 1.5, q = 0.9, m = 2 and α = 0.2.

The relevant characteristic parameters are outlined in Table 1.

Table 1. Graphene-solar-sail-related characteristics parameters.

Parameters Value

Length of the boom/m 150
Slider mass/kg 5

Moveable range of slider/m ±100
Maximum area of a single vane/m2 800

Extendable range of a single vane/m ±50
Density of SRP/(N/m2) 9.12× 10−6

Rotational inertia of x-axis/kg ·m2 382,549.8
Rotational inertia of y-axis or z-axis/kg ·m2 192,201.1

The parameters associated with the RBF neural network estimator are σj = 6,

c1 = 1
3 [−3 −2 −1 0 1 2 3], c2 = 2

3 [−2 −1 0 1 2 3 4]
c3 = 1

3 [−2 −1.5 −1 −0.5 0 0.5 1], c4 = 2
3 [−1 −0.5 0 0.5 1 1.5 2]

c = [c1; c2; c3; c4; c3; c2; c1; c4; c2; c1; c3; c4].

We set the time-varying disturbance d(t) according to the disturbance magnitude as:

d(t) =

 0.001 sin(0.0011t)− 0.03
0.005(sin(0.0011t) + cos(0.0011t)) + 0.03

0.001 cos(0.0011t)− 0.03

 N ·m

Vibration modes:
(1) Desired vibration modes: η1 = η2 = η3 = 0,

.
η1 =

.
η2 =

.
η3 = 0;

(2) Initial state: η =
[
4 0.1 0.1

]T ,
.
η =

[
−0.1 −0.001 −0.001

]T . This corresponds
to a lateral deformation of −0.2720 m.

4.2. Simulation Results and Analysis

Since being pierced or struck happens in a very short space of time, its persistence is
not considered here.

Case 1: there are small initial state errors.

The initial angular velocity and attitude angle of the GPDSS are as follows:

ω =
[
2e− 7 0 0

]T , Θ =
[
0◦ 23.5◦ 0◦

]T

The rotational inertia uncertainty due to sail surface vibration is set to:

∆J = 0.1(cos(0.0011t) + 1)J

The simulation results of Case 1 are shown in Figures 7–13.
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Figures 7 and 8, respectively, describe the error tracking characteristics of the attitude
angle and attitude angular velocity of a GPDSS for Case 1. The attitude angle error
converges to a smaller range within 400 s, and the attitude angular velocity error converges
to a small neighborhood near 0 within approximately 360 s. When the solar sail stabilizes,
the tracking accuracy of the attitude angle is less than 0.003◦, and the tracking accuracy of
attitude angular velocity is less than 5× 10−7 rad/s.
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Figure 8. Simulation results for the angular velocity error (Case 1).

Figure 9 describes the variation curve of the sliding surface. The sliding surface
converges to a small neighborhood near 0 within about 300 s. Figure 10 describes the
variation curve of the displacement of the slider and the angle of rotation of the spinnaker.
During the convergence phase, the spinnaker angle oscillates between −0.75◦ and −0.65◦,
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whereas the slider displacement oscillates between 5.3 m and 5.7 m. This is due to the
presence of external disturbances.
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Figure 10. Simulation results for the displacements of the slider and the angle of rotation of the
spinnaker (Case 1).

Figure 11 describes the observation error curve of the disturbance estimator. The
observation error gradually decreases until it converges to near zero, and the disturbance
estimate approximates the true value, indicating the effect of the designed estimator with a
sound perturbation estimation.

Figures 12 and 13, respectively, describe the variation characteristics of the vibration
mode and modal velocity of the GPDSS. When the initial value of the vibration is known,
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the vibration modes and modal velocities can converge to a smaller range within about
3 h and show fluctuations. The third-order vibration mode has a faster convergence speed,
requiring about 0.12 h to converge, whereas the first- and second-order modes converge
more slowly, and the convergence process undergoes large oscillation. In the stable state,
the stabilization accuracy of the first- and second-order modes is less than 3× 10−3, the
stabilization accuracy of the third-order mode is less than 2× 10−6 and the modal velocity
is less than 1× 10−4.
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Case 2: there are large initial state errors.

The initial angular velocity and attitude angle of the GPDSS are as follows:

ω =
[
−0.01 0.01 0.015

]T , Θ =
[
17.189◦ 12.041◦ 11.041◦

]T

The rotational inertia uncertainty due to sail surface vibration is set to:

∆J = 0.1(cos(0.0011t) + 1)J

The simulation results of Case 2 are shown in Figures 14–19.
Figures 14 and 15, respectively, describe the error tracking characteristics of the attitude

angle and attitude angular velocity for Case 2. The attitude angle error converges to a
smaller range within 400 s, and the attitude angular velocity error converges to a small
neighborhood near 0 within 400 s. This is different from the convergence time of the angular
velocity error in Case 1 mainly because of the poor initial state of the angular velocity and
attitude angle in Case 2. When the solar sail stabilizes, the tracking accuracy of the attitude
angle is less than 0.005◦, and the tracking accuracy of the attitude angular velocity is less
than 1× 10−6 rad/s, which is the same as the accuracy in Case 1.

Figure 16 describes the variation curve of the sliding surface. The sliding-mode surface
converges to a small neighborhood near 0 within 300 s. Approximating the convergence
time of the sliding surface in Case 1, it is indirectly verified that the controller is fixed-time
convergent and finite-time stable.

Figure 17 describes the variation curve of the displacement of the slider and the angle
of rotation of the spinnaker. After the control torque of the three axes exceeds the threshold
of the propellant-free actuator, the argon Hall thruster is used.

Figure 18 describes the observation error curve of the disturbance estimator for Case 2.
The observation error also decreases until it converges to a small range. However, it can
be seen from the figure that there are obvious vibrations in the convergence section. This
is due to the rapid change in the angular velocity of the solar sail, which results in the
sustained high-frequency small-amplitude vibrations of the flexible structure.
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Figure 19 describes the variation in the lateral deformation at endpoint 1 of the GPDSS
for Case 2. With known initial lateral deformation, it can converge to a smaller range
after about 4 h. The stability accuracy of the lateral deformation at endpoint 1 is less than
3× 10−4 m. The lateral deformation at endpoint 1 in Case 1 stabilizes significantly faster
compared to Case 2 due to its smaller angular velocity because if the attitude adjustment
process of the sail surface is gentle, it is relatively unlikely to excite the vibration of the
flexible components.
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Case 3: Comparison simulation with a controller designed from a linear sliding surface.

Remark 1. ASMC: adaptive sliding-mode controller (proposed in this paper). LSMC: linear sliding-
mode controller (designed by the linear sliding-mode surface). NSMC: nonlinear sliding-mode
controller (proposed in the literature [45]). IFLC: intelligent fuzzy logical controller (proposed in
the literature [30]).

To further verify the performance of the ASMC, a comparison simulation was per-
formed. The simulation results are shown in Figures 20–22.
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Figure 20 describes the comparative simulation variation curve of the attitude angle
error. From the simulation results, it can be found that the attitude angle error convergence
variation curve of ASMC is smoother, with a faster convergence compared with other
controllers. Figure 21 describes the comparative simulation variation curve of the attitude
angular velocity error. As we found, the angular velocity errors of LSMC, NSMC and IFLC
converge to a small value and then converge slowly, which is one of the main reasons for
the slow convergence of the attitude angular error.

Figure 22 describes the comparative simulation variation curve for the lateral deforma-
tions at the endpoint 1. As we found, the convergence time of ASMC is basically the same
as the convergence time of other controllers. During the convergence process, the vibration
is more obvious under the action of LSMC, NSMC and IFLC, respectively. Compared with
IFLC, NSMC and LSMC, which relies on its own robustness against disturbances, ASMC
can use the designed disturbance estimator to achieve real-time control compensation, so
the ASMC has higher stability accuracy.
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In this paper, we studied the attitude tracking control problem of a struck GPDSS
under multi-source complex perturbations such as unknown inertial parameters, external
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Appendix A

The expressions for the relevant parameters and the data of the simulation parameters
in the coupled attitude–vibration model are as follows [41]:

M f =
∫

V
ΦTΦdmi = In (A1)

Cr =

ηT(Dzy −Dyz
)

Uz
−Uy

 (A2)

h
( .
η
)
=

 .
η

T(Dzy −Dyz
) .
η

0
0

 (A3)

Ce =


−ηT(Dyy + Dzz

) .
η −Uy

.
η −Uz

.
η

0 ηT
(

M f −Dzz

) .
η ηTDyz

.
η

0 ηTDzy
.
η ηT

(
M f −Dyy

) .
η

 (A4)

Qr = ω2
2

(
M f −Dzz

)
η+ ω2

3

(
M f −Dyy

)
η+ ω2ω3

(
Dyz + Dzy

)
η−

ω2
1
(
Dyy + Dzz

)
η−ω1

(
ω2Uy + ω3Uz

)T (A5)

K f = diag
{

Ω2
1, Ω2

2, · · · , Ω2
n

}
= diag

{
0.0034 0.0048 0.0049

}
Uy =

∫
V

ysΦdmi =
[
−0.0907 −257.6728 314.1062

]
Uz =

∫
V

zsΦdmi =
[
0.0736 −314.0727 −257.7220

]

Dyz =
∫

V
ysHzdmi =

 0.0020 −0.0001 −0.0009
−0.0001 0.1145 −0.0206
−0.0009 −0.0206 −0.1080



Dzy =
∫

V
zsHydmi =

−0.0027 −0.0001 −0.0005
−0.0001 0.1066 −0.0203
−0.0005 −0.0203 −0.1151



Dyy =
∫

V
ysHydmi =

 0.3296 0.0004 −0.0001
0.0004 0.3646 −0.3950
−0.0001 −0.3950 −0.5440



Dzz =
∫

V
ysHzdmi =

 0.3299 −0.0002 0.0006
−0.0002 0.5439 −0.3955
0.0006 −0.3955 0.3660


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