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Abstract: This paper proposes a framework for accurately estimating the state-of-charge (SOC)
and current sensor bias, with the aim of integrating it into urban air mobility (UAM) with hybrid
propulsion. Considering the heightened safety concerns in an airborne environment, more reliable
state estimation is required, particularly for the UAM that uses a battery as its primary power source.
To ensure the suitability of the framework for the UAM, a two-pronged approach is taken. First,
realistic test profiles, reflecting actual operational scenarios for the UAM, are used to model the
battery and validate its state estimator. These profiles incorporate variations in battery power flow,
namely, charge-depleting and charge-sustaining modes, during the different phases of the UAM’s
flight, including take-off, cruise, and landing. Moreover, the current sensor bias is estimated and
corrected concurrently with the SOC. An extended Kalman filter-based bias estimator is developed
and experimentally validated using actual current measurements from a Hall sensor, which is prone
to noise. With this correction, a SOC estimation error is consistently maintained at 2% or lower, even
during transitions between operational modes.

Keywords: lithium-ion battery; urban air mobility; charge-sustaining; equivalent circuit model;
extended kalman filter; state-of-charge (SOC); current sensor bias

1. Introduction

Lithium-ion batteries (LIBs) have undergone substantial advancements in recent times.
The average energy density of LIB cells currently falls between 150 and 200 Wh/kg, and
some energy-dense models have even surpassed 250 Wh/kg [1]. The power density of
these cells has risen, now reaching over 1000 W/kg. The cost of these cells has decreased to
a level below 150 $/kWh [2]. Thanks to their enhanced performance metrics and reduced
cost, the use of LIBs has expanded, including into the realm of air vehicles. The Velis
Electro serves as a notable example, receiving the world’s first type of certification for an
electric aircraft from the European Union Aviation Safety Agency in June 2020 [3]. This
aircraft is propelled solely by a 345 V, 24.8 kWh LIB pack. This pack is placed apart in
the airframe and connected in parallel to ensure safety and provide redundancy in case
of any faults (see Figure 1a) [4]. The implementation of a large LIB pack as a main power
supply, especially in air vehicles, requires careful consideration of safety concerns. As
the major safety concerns for LIBs, functional issues, such as partial or complete loss of
capacity and power capabilities, pose the greatest threats, along with thermal issues. The
consequences of a decrease in these capabilities are much more severe in air vehicles,
making the accurate state estimation of LIBs crucial. To address this issue, the Velis Electro
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continuously monitors the health of its LIB pack (see Figure 1b). The type of aircraft under
consideration in this study is urban air mobility (UAM) based on electric vertical take-off
and landing (eVTOL). The UAM will serve as a unique mode of transportation for people
in urban areas, offering increased accessibility, reduced traffic congestion, improved air
quality, increased safety, and enhanced efficiency. To bring this service to life, different
eVTOL designs are being studied, including the vectored thrust, lift + cruise, and wingless
multicopter. Regardless of the design chosen, the UAM is propelled by either all-electric or
hybrid systems, which utilize a combination of LIBs and, in some cases, a gas turbine.
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In light of the heightened safety concerns in an airborne environment, the accurate
state estimation of LIBs is more important to a battery management system (BMS) for
air vehicles such as UAMs. The state-of-charge (SOC) is one of the key states of LIBs,
which refers to the amount of electrical energy remaining in the cell. An accurate SOC
estimation is fundamental for the main functions of BMSs, involving cell balancing, charge-
discharge control, and protection. An incorrect SOC estimation could lead to failure in
power and energy management for electric aviation, with consequences that are far more
severe than a car collision, including the worst-case scenario of a plane crash. Model-based
SOC estimators are commonly used for improved accuracy and are frequently based on a
combination of equivalent circuit models (ECMs) and Kalman filters (KFs).

Most SOC estimators have been developed and validated for pure electric vehicles
that primarily operate in charge-depleting (CD) mode. However, there is an increasing
demand for UAMs based on hybrid propulsion that can handle higher loads and longer
distances, which involves transitions from CD to charge-sustaining (CS) mode. The hybrid
system begins operating in CD mode for take-off and climbing. If the SOC reaches its
lower limit, the mode switches to the CS. During cruising, the SOC is maintained by the
gas turbine. If the SOC can be replenished during cruising, the mode switches back to the
CD for descending and landing. The frequent switching between operational modes can
make SOC estimation more difficult compared to when operating in the CD mode alone.
Therefore, investigating SOC estimation in the CS mode is necessary for improved accuracy.
A few studies have addressed this issue, but their focus is primarily on applications for
ground vehicles, particularly plug-in hybrid electric vehicles (PHEVs) [5–7]. Mansour
et al. [5] compared three adaptive filters, the particle filter (PF), extended Kalman filter
(EKF), and unscented Kalman filter (UKF), to estimate the SOC in the CS mode. These
filters were tuned using the noise covariance matching technique. They found that the
PF provided the most accurate estimation, while both KFs were sufficiently robust to
handle model uncertainty and simple to implement. Zhang et al. [6] developed a battery
degradation model-based method to determine the optimal SOC for the CS mode. They
found that the widely used 55% SOC was suboptimal for a LIB cell (SONY, 18650), and
the corresponding best SOC was 37%, considering the potential estimation error. The
former studies were conducted at the cell level, while the latter study was a system-level
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approach incorporating major power components in a PHEV. Sohn et al. [7] proposed a
power management strategy to maintain the SOC within the most efficient regime. They
determined the target SOC for the CS control to be 52%, mainly considering the charge
and discharge efficiency. The proposed strategy successfully maintained the average SOC
between cells close to the target SOC over two test cycles, the urban dynamometer driving
schedule (UDDS) and worldwide harmonized light-duty test cycle (WLTC) with three load
powers, 300 W, 1 kW, and 2.5 kW.

Another difficulty arises from the current sensor bias. Model-based SOC estimators
basically rely on Coulomb counting, which calculates the SOC by measuring the current
flowing in or out of the cell, integrating the measurement over time, and dividing the
integral by the total capacity. However, even if the initial SOC is known, this calculation
is susceptible to bias in a current sensor and variations in the total capacity. Therefore, it
is necessary to update the capacity fade and correct the bias to achieve an accurate SOC
estimation. Our subsequent paper will address the issue of capacity estimation. Although
many studies have discussed bias correction, the bias is generated by a hypothetical
value that cannot be validated experimentally using actual readings from the current
sensor [8–13]. Malysz et al. [8] proposed two methods to enhance filter performance,
which involve estimating the deviations of model parameters and compensating for current
bias. While they demonstrated the positive impact of bias correction on SOC estimation
error, the magnitude of the injected bias (1000 mA) was not adequately justified. Zhao
et al. [9] presented a method for estimating the SOC in the presence of sensor biases and
emphasized the importance of observability analysis for selecting appropriate filters. They
discovered that current bias had a lesser impact on filters’ performance compared to voltage
bias. Despite introducing a 100 mA bias in the current measurement, the first-order EKF
achieved a SOC estimation with a root mean square error (RMSE) of 2.8%. They noted
that the KFs were relatively robust against current sensor bias due to their knowledge of
the OCV-SOC ground truth and model parameters, but the magnitude of the bias was
not properly accounted for. Similarly [8], Al-Gabalawy et al. [10] identified two primary
challenges to achieving dependable SOC estimation: varying model parameters and noisy
and biased sensor measurements. To emulate this, they introduced Gaussian noise with a
mean of zero and a standard deviation of 0.1% of the maximum value of the corresponding
signal. The voltage and current bias were set at 20 mV and 12.5 mA, respectively. In a
similar manner, Bhattacharyya et al. [11] added two constant values of current bias, 10 and
20 mA, to the current measurement and observed a reduction in SOC estimation accuracy
with a mean absolute percentage error of 2.57% and 4.65%, respectively. However, it was
not clear if these bias levels were reasonable in reality. He et al. [12] used the 5% bias-added
current (slightly over 100 mA), which is also a hypothetical value with limited supporting
evidence. Nevertheless, the suggested approach effectively mitigated the bias, resulting
in a SOC error of less than 2%. The former studies were performed at the cell level, while
the latter was a pack-level investigation. Nguyen Van et al. [12] employed a LIB pack to
estimate the average SOC and current bias. The pack consists of seven modules connected
in series, and each of the modules consists of nine cells connected in parallel, resulting in
a total of 63 cells. Presumably accounting for the parallel connection between cells, they
determined the magnitude of bias to be 500 mA, which is about five to fifty times higher
than that reported in the cell-level studies. The proposed method estimated the bias with a
maximum error of 0.1 A and a mean error of 4%.

This paper presents the development of our model-based SOC and current sensor
bias estimator designed for use in the hybrid UAM. In order to effectively implement this
estimator, it is crucial to obtain test data that reflects the battery’s operating conditions. For
ground vehicles, the test data can be easily obtained through common load profiles in the
industry, but this approach is not yet applicable to the UAM due to its relatively early stage
of development. To overcome this challenge, the test profiles are sourced from PHEVs
which share similarities with the UAM in terms of their operational mode switching from
CD to CS. When validating the SOC estimates against the test profile, a Hall sensor, the
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most widely used type of current sensor for ground vehicles, is employed to generate the
bias. The bias estimates are experimentally validated against actual readings from the
shunt resistor, which features a higher degree of accuracy compared to the Hall sensor.

2. Prior Studies on Model-Based State Estimation

This section provides an overview of previous studies on model-based state estimation,
with a focus on the battery models, state estimators, and test profiles used to estimate the
SOC and current sensor bias. The SOC is expressed as the ratio of the residual capacity
to the total capacity of the cell. The two underlying methods for estimating the SOC are
based on either the cell voltage or current. The voltage-based method determines the SOC
by measuring the terminal voltage of the cell and referencing a table that relates SOC to
open-circuit voltage (OCV). However, this method can be influenced by the degree of
polarization, which is the deviation of the terminal voltage from OCV with the passage of
current. The current-based method calculates the SOC by measuring the current flowing
into or out of the cell, integrating the measurement over time, and dividing the integral by
the total capacity of the cell. However, even if the initial SOC is known, this method can be
affected by the bias in the current sensor and variations in total capacity. The model-based
method is an alternative approach that merges the benefits of both methods. This method
utilizes model-based state estimators to deduce the internal state of a physical system based
on sensor measurements. In the context of SOC estimation, this method entails passing
the same current through both a physical cell and its virtual model and comparing the
resulting measured and predicted voltages. An error between these voltages is used to
estimate the SOC. However, it is crucial to make a careful correction as the error may result
from inaccuracies not only in state estimates but also in measurements and a model. The
current sensor bias, as previously noted, serves as a typical source of process noise in a
model and continues to pose a challenge for achieving an accurate SOC estimation, despite
the implementation of a model-based method.

Table 1. Prior studies on model-based SOC and/or current sensor bias estimator for ground vehicles.

Ref. Battery Model State Estimator Test Profile Range of
SOC [%]

Amount of
Bias [mA] Notes

[5] Thevenin AEKF, AUKF, PF - 30–50 - Adaptive EKF,
Adaptive UKF

[8] Thevenin KF, EKF - 0–100 1000
[9] Thevenin EKF, UKF FUDS, Artemis 50~90 100

[10] Thevenin KF, EKF, DEKF - 40~100 12.5, 25 Dual EKF
[11] Thevenin EKF, DEKF UDDS, NYCC, BCDC 10~100 10, 20

[12] Thevenin AEKF

UDDS, HWFET,
SFTP,

NYCC, LA92
(combined)

0–100 113.5 Adaptive EKF

[13] ESC UKF - - 500

[14]
Combined,

Simple,
Hysteresis, ESC

EKF UDDS 10~90 -

[15]
Rint, RC,
Thevenin,

PNGV
EKF HPPC, DST, FUDS 20~100 -

[16] Thevenin, ESC EKF, SVSF UDDS 10~100 - Smooth variable
structure filter

[17] Thevenin EKF, UKF,
ASRUKF Constant, Pulse, DST 40~100 -

Adaptive square
root
UKF
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Table 1. Cont.

Ref. Battery Model State Estimator Test Profile Range of
SOC [%]

Amount of
Bias [mA] Notes

[18] Thevenin LPVS Asymmetrical pulse 10~90 - Linear parameter
varying system

[19] PNGV EKF HPPC 10~80 -
[20] PNGV AEKF HPPC - - Adaptive EKF

[21] ESC EKF, MMAE,
MMAE + EKF Constant 0~100 - Multiple model

adaptive estimation
[22] RC SMO Random current 0~100 -
[23] Thevenin KF Random current 10~100 -
[24] Thevenin KF, EKF Constant 10~100 -

[25] Thevenin EKF, AUKF UDDS, FTP, HWFET,
NEDC, NYCC 0~100 - Adaptive UKF

[26] Thevenin HEKF DST, NEDC, FUDS 10~100 - H-infinity UKF
[27] RC ALO FUDS 10~90 - Adaptive LO
[28] Thevenin PF Pulse 10~100 -

[29] RC, Thevenin AGSMO UDDS 50~100 - Adaptive gain
SMO

Among possible options in the model-based method, ECMs combined with KFs have
been widely used. This combination is especially suitable for real-time estimation us-
ing computationally light BMSs because ECMs can offer an efficient representation of
battery behavior, and KFs can provide a robust solution for estimating battery states,
even in the presence of measurement noise and model uncertainty. Numerous ECMs
have been studied for their different levels of complexity and accuracy, including the
Thevenin [5,8–12,15–18,23–26,28,29], RC [15,22,27,29], partnership for a new generation of
vehicles (PNGV) [15,19,20], and enhanced self-correcting (ESC) [13,14,16,21]. In the pursuit
of more reliable SOC estimation, various adaptive filters have been integrated with ECMs,
such as the KF [8,23,24], EKF [5,7–11,13–17,19–21,24–26], UKF [5,9,12,17,25], PF [5,28], slid-
ing mode observer (SMO) [22,29], and Luenberger observer (LO) [27]. Of particular interest
are non-linear KFs [8–13], which have also been studied for their effectiveness in estimating
the current sensor bias along with the SOC. Test data is required for both identifying
model parameters and validating state estimates. To this end, various test profiles have
been employed, such as the UDDS [11,13,14,16,25,29], federal urban dynamic schedule
(FUDS) [9,15,26,27], highway fuel economy driving schedule (HWFET) [13,25], US06 sup-
plemental federal test procedure (SFTP) [13], New York City cycle (NYCC) [11,13,25],
LA92 [13], new European driving cycle (NEDC) [25,26], Artemis [9], Braunschweig city
driving cycle (BCDC) [11], dynamic stress test (DST) [15,17,26], pulse tests such as hybrid
pulse power characterization (HPPC) [15,19,20], and a test to charge and discharge with
the same current [17,21,24]. An overview of notable prior studies on estimating the SOC
and current sensor bias is provided in Table 1, which categorizes them according to the
type of test profiles, state estimators, and battery models used.

3. LIB Cell Testing

This section details our experimental setup for generating test data.

3.1. Test Profile

Our load profile needs to incorporate the operational modes evolving from CD to
CS, as the flight phase of the hybrid UAM progresses from take-off to cruise. However,
previous studies have only concentrated on load profiles that are close to the CD mode.
Since a load profile for the UAM has not been established yet, data from the D-segment
PHEV was adopted as a preliminary study. Similar to the UAM, the hybrid system in
the PHEV initially operates in the CD mode solely using the battery at its upper limit
of the SOC. When the SOC decreases to its lower limit, the mode switches to the CS,



Aerospace 2023, 10, 550 6 of 17

where the battery is replenished by a gasoline engine to maintain the SOC within a specific
range. Figure 2 depicts an analogy between the operational modes of the hybrid UAM and
PHEV. In order to diversify the characteristics of test data, three distinct load profiles were
adopted: City, Highway, and High-speed. As their names indicate, the city profile is the
least aggressive, while the High-speed profile is the most intense. As shown in Figure 3,
the difference in characteristics is reflected in the magnitude and direction of the current,
where positive values indicate battery discharge. The measured voltage is used as test data
in the subsequent section. As noted, these load profiles were originally applied to a large
LIB pack in the PHEV containing 96 cells, each with a nominal capacity of approximately
37 Ah. The magnitude of the current was scaled based on the C-rate to match with a smaller
LIB cell used in this study. Except for the High-speed profile, the CD to CS mode transition
in the City and Highway profiles occurs at approximately 15% SOC, which corresponds to
8500 s and 4300 s, respectively. The mode shift can also be noticed with a variation in the
rate of change in the voltage.
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3.2. Experiment Setup

In this study, a LIB cell (Samsung SDI, 18650-35E) with a nominal capacity of 3.5 Ah
and a nominal voltage of 3.7 V was selected. The load profiles were simulated using the
combination of a DC electronic load (Kikusui, PLZ1004W) and a DC power supply (Kikusui,
PWR800L). The seamless transition between charge and discharge in the load profiles was
facilitated by integrating these two pieces of equipment with a charge-discharge system
controller (Kikusui, PFX2512) (see Figure 4). Apart from the current sensor built into the
equipment, two additions were employed for cross-checking purposes: a hall sensor (LEM,
DHAB S/145) and a shunt resistor (YOKOGAWA, 2215-09) (see Table 2). The latter uses
direct measurement of the flow of current, which is proportional to the voltage drop across
the shunt resistor within a circuit. On the other hand, the former uses indirect measurement
of the magnetic field generated by the current flowing through a circuit. Each method has
its advantages and disadvantages that are tied to the underlying physics of its measurement
principles. When accuracy is a top priority, shunt resistors have a clear advantage as they
rely on direct measurement. Despite having documented accuracy specifications, it is
challenging to determine the actual measurement error of a non-contact Hall sensor due to
the potential effects of various external influences. This indicates that Hall sensors tend to
be susceptible to noise and are prone to bias. In contrast, Hall sensors are more compact,
making them a good choice for applications where size minimization is important. This
is particularly serious in high currents because a shunt resistor would have a footprint
directly proportional to the magnitude of the current being measured. Taken together, a
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Hall sensor can surpass shunt resistors, as long as its bias is effectively compensated. The
accuracy of the current measurement can be evaluated with sensitivity. The Hall sensor
used in this study, with a sensitivity of 10 mV/A, was four times inferior to the shunt
resistor’s 2.5 mV/A resolution. In the following section, the effect of this difference on the
accuracy of SOC estimation is experimentally demonstrated. Furthermore, the effect of this
difference is minimized by correcting the bias in the Hall sensor while estimating the SOC.
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Table 2. Comparison of the current sensors utilized.

Hall Sensor Shunt Resistor

Model LEM DHAB S/145 YOKOGAWA 2215-09
Input 200 A (Channel 2) 20 A

Output 2 V 50 mV
Sensitivity 10 mV/A 2.5 mV/A
Accuracy 3.3% 0.2%

Retail Price $35/ea $150/ea
Dimension (L ×W × H) 52.75 × 48.5 × 24 mm 700 × 310 × 390 mm

Externals
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3.3. Test Data

With the equipment in place, test data was collected through static and dynamic tests.
The static test aims to establish the OCV-SOC relationship of the cell. The dynamic test
aims to identify the transient behavior of the cell against the applied load profiles. Figure 3
(dynamic test) and Figure 5 (static test) plot the test data generated. For a feasibility study,
test data based on the city profile was used to calculate the SOC simply by Coulomb
counting with the two current sensors being compared. The results are in Figure 6. The
Hall sensor’s output indicates that even a slight variance in current measurement can
accumulate and lead to a notable difference in the estimation of SOC. The shunt resistor’s
output indicates that the operational mode transition takes place at 15% SOC, owing to
its higher level of accuracy. Therefore, the bias in a Hall sensor needs to be estimated and
corrected to accurately estimate the SOC.



Aerospace 2023, 10, 550 9 of 17

Aerospace 2023, 10, x FOR PEER REVIEW 9 of 20 
 

 

higher level of accuracy. Therefore, the bias in a Hall sensor needs to be estimated and 
corrected to accurately estimate the SOC. 

 
Figure 5. OCV–SOC relationship established.  

  

Figure 5. OCV–SOC relationship established.

Aerospace 2023, 10, x FOR PEER REVIEW 10 of 20 
 

 

 

 
Figure 6. (a) Current sensor bias demonstrated during the city profile, (b) which affects the accuracy 
of SOC estimation. 

4. Framework for Model-Based State Estimation 
This section outlines the framework for accurately estimating the SOC and current 

sensor bias that comprises three major stages (see Table 3). The first stage is to generate 
test data (Stages 1.1 and 1.2). As in the previous section, the OCV-SOC relationship, as 
well as the voltage response to the current profile, were generated from the cell. In this 
study, the City, Highway, and High-speed profiles were applied to simulate the loads the 
cell may bear during actual operational scenarios for the UAM. The load profile’s current 
input was monitored by the Hall sensor and shunt resistor. 

  

Figure 6. (a) Current sensor bias demonstrated during the city profile, (b) which affects the accuracy
of SOC estimation.

4. Framework for Model-Based State Estimation

This section outlines the framework for accurately estimating the SOC and current
sensor bias that comprises three major stages (see Table 3). The first stage is to generate test
data (Stages 1.1 and 1.2). As in the previous section, the OCV-SOC relationship, as well as
the voltage response to the current profile, were generated from the cell. In this study, the
City, Highway, and High-speed profiles were applied to simulate the loads the cell may
bear during actual operational scenarios for the UAM. The load profile’s current input was
monitored by the Hall sensor and shunt resistor.
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Table 3. Three stages for estimating the SOC and current sensor bias.

Stage Task Output

1.1 Dynamic test vT
1.2 Static test vOC
2.1 Model formulation v̂T = vOC + M0s + Mh− R0i− R1iR1 − R2iR2

2.2 Model parameter identification τj, M, M0, R0, Rj, γ

3.1 Filter parameter tuning Σz, Σib
, Σv, Σω

3.2 State estimation iR, z, h, ib

The next stage is to formulate the cell model and identify its parameters (Stages 2.1 and
2.2). This study exploited the Thevenin and ESC models. The Thevenin model is considered
the most representative form of ECMs. This model captures the time-varying polarization
voltages simply using one or more parallel resistor-capacitor elements. The ESC model is an
advanced form of the Thevenin model. As shown in Figure 7, this model captures the SOC-
varying and instantaneous hysteresis voltages using an additional element connected in
series to the R-C elements. These models were developed using an evolutionary approach,
allowing for the gradual incorporation of relevant model states to more accurately predict
the cell’s transient behavior. Overall, the output vT (terminal voltage) is predicted in
response to the input i (current flowing through R0 (ohmic resistance)). The Thevenin
model to estimate the SOC is formed by first incorporating the states, iRj (current flowing
through Rj and Cj (polarization resistance and capacitance) and z (SOC)). Then, the state
ib (current bias) is added to the input i to account for the current sensor bias. Finally, the
addition of the state h (hysteresis voltage) and input s (instantaneous hysteresis voltage)
completes the ESC model. The resulting non-linear system model and measurement
function of the ESC model are described separately in Appendix A for the sake of brevity.

Aerospace 2023, 10, x FOR PEER REVIEW 11 of 20 
 

 

Table 3. Three stages for estimating the SOC and current sensor bias. 

Stage Task Output 
1.1 Dynamic test 𝑣  
1.2 Static test 𝑣  
2.1 Model formulation 𝑣 = 𝑣 + 𝑀 𝑠 + 𝑀ℎ − 𝑅 𝑖 − 𝑅 𝑖 − 𝑅 𝑖  
2.2 Model parameter identification 𝜏 , 𝑀, 𝑀 , 𝑅 , 𝑅 , 𝛾 
3.1 Filter parameter tuning 𝛴 , 𝛴 , 𝛴 , 𝛴  
3.2 State estimation 𝑖 , 𝑧, ℎ, 𝑖  

The next stage is to formulate the cell model and identify its parameters (Stages 2.1 
and 2.2). This study exploited the Thevenin and ESC models. The Thevenin model is con-
sidered the most representative form of ECMs. This model captures the time-varying po-
larization voltages simply using one or more parallel resistor-capacitor elements. The ESC 
model is an advanced form of the Thevenin model. As shown in Figure 7, this model cap-
tures the SOC-varying and instantaneous hysteresis voltages using an additional element 
connected in series to the R-C elements. These models were developed using an evolu-
tionary approach, allowing for the gradual incorporation of relevant model states to more 
accurately predict the cell’s transient behavior. Overall, the output 𝑣  (terminal voltage) 
is predicted in response to the input 𝑖 (current flowing through 𝑅  (ohmic resistance)). 
The Thevenin model to estimate the SOC is formed by first incorporating the states, 𝑖  
(current flowing through 𝑅   and 𝐶   (polarization resistance and capacitance) and 𝑧 
(SOC)). Then, the state 𝑖  (current bias) is added to the input 𝑖 to account for the current 
sensor bias. Finally, the addition of the state ℎ (hysteresis voltage) and input 𝑠 (instan-
taneous hysteresis voltage) completes the ESC model. The resulting non-linear system 
model and measurement function of the ESC model are described separately in Appendix 
A for the sake of brevity. 

 
Figure 7. Circuit schematic for the ESC model that is nearly identical to that of the Thevenin model, 
except for the inclusion of hysteresis voltages (in blue). 

The optimization of parameters in the formulated models was divided into a series 
of steps, rather than identifying all parameters at once. The cell’s Coulombic efficiency 
and total capacity are first determined from the test data and specification sheet, respec-
tively. Subsequently, subspace system identification (a suboptimal linear optimization 
method) [32,33] is utilized to directly solve for 𝑅 𝐶  (time constants 𝜏 ), avoiding many 
of the challenges associated with non-linear optimization, such as local minima, slow con-
vergence, and high sensitivity to an initial guess. Using the initial guess of 𝛾 (the decay 
rate of hysteresis), 𝑖 , 𝑧, ℎ, 𝑠 and OCV are then computed. The remaining 𝑀 (maximum 
hysteresis), 𝑀   (maximum instantaneous hysteresis), 𝑅   and 𝑅   are iteratively solved 

Figure 7. Circuit schematic for the ESC model that is nearly identical to that of the Thevenin model,
except for the inclusion of hysteresis voltages (in blue).

The optimization of parameters in the formulated models was divided into a series
of steps, rather than identifying all parameters at once. The cell’s Coulombic efficiency
and total capacity are first determined from the test data and specification sheet, respec-
tively. Subsequently, subspace system identification (a suboptimal linear optimization
method) [32,33] is utilized to directly solve for RjCj (time constants τj), avoiding many
of the challenges associated with non-linear optimization, such as local minima, slow
convergence, and high sensitivity to an initial guess. Using the initial guess of γ (the decay
rate of hysteresis), iRj , z, h, s and OCV are then computed. The remaining M (maximum
hysteresis), M0 (maximum instantaneous hysteresis), R0 and Rj are iteratively solved us-
ing a non-negative least square method [34] that minimizes the difference between the
measured and predicted voltages. Finally, the γ is updated with the same method.

The final stage is to estimate the SOC and current sensor bias (Stages 3.1 and 3.2).
This study applied the EKF to the parameterized models. Basically, the KF is a recursive
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approach that repeatedly updates the state estimates of the system at each time step based
on the new measurements. Details regarding the estimation steps can be found in [35]. The
KF assumes that the system model and measurement function are linear, but these functions
in the ESC model are non-linear. The Taylor series expansion was used to analytically obtain
a linear approximation of these non-linear functions, allowing the states to be estimated
using the EKF. The linearized system model and measurement function of the ESC model
are succinctly presented in Appendix A through the use of matrix-vector multiplication.

5. Results

This section evaluates the performance of the model-based SOC and current sensor
bias estimator.

5.1. Model Parameters Identification

In accordance with the framework outlined in the preceding section, six models were
constructed by applying the three load profiles to the two cell models. These models are
named after the load profile used for modeling. For instance, either Thevenin or ESC model
based on the City profile is called the City model hereinafter. The results are presented in
Table 4. It is noted that the hysteresis voltage parameters are only available for the ESC
model. The uniformity of the polarization voltage parameters for the same load profile
is a result of subspace system identification employed to directly solve for RjCj before
iteratively solving for other parameters. Table 5 lists the resulting RMSEs of the predicted
terminal voltages for each load profile, cell model, and operational mode. It is noted
that the CS mode is unavailable for the High-speed profile. Figure 8 plots the measured
and predicted voltages along with their error, comparing modeling accuracy across the
operational modes. Due to space constraints, it is difficult to plot all cases. Instead, the
worst RMSE case was selected for each load profile, which are (a) the Highway model
validated with the City profile and (b) the High-speed model tested using the Highway
profile. The results indicate that the ESC model generally outperforms the Thevenin model
in terminal voltage prediction. In both models, their error increases as the mode shifts from
CD to CS, as was noted in Table 5. The reason is due to limitations in representing battery
behavior at low SOCs, around 15%. However, this tendency is less severe in the ESC model.
Although the error pattern of the two models looks similar in the CS mode, as shown in
lower Figure 8, greater accuracy is obtained by the ESC model as a consequence of the
inclusion of the hysteresis voltage state and its parameter. The results also demonstrate
that a load profile used for modeling has no significant impact on modeling accuracy. That
is, the High-speed models (CD mode only) exhibit comparable RMSEs to those produced
by other models (CD and CS modes).

Table 4. Comparison of model parameters identified.

Ohmic Polarization Hysteresis Parameters
R0 [ohm] R1C1 [s] R2C2 [s] M [mV] M0 [mV] γ

City Thevenin 0.0401 1.2148 14.4792 - - -
ESC 0.0396 1.2148 14.4792 109.5078 0 2.0179

Highway Thevenin 0.0379 0.6056 9.2996 - - -
ESC 0.0397 0.6056 9.2996 91.0749 4.292 29.2975

High-speed Thevenin 0.0404 0.3567 8.1987 - - -
ESC 0.0394 0.3567 8.1987 114.2882 0 2.5376
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Table 5. Effect of cell modeling on the accuracy of terminal voltage prediction.

RMSEs [mV]
City Highway High-Speed

CD CS Overall CD CS Overall CD

City Thevenin 37.96 54.69 42.98 34.32 56 42.79 27.54
ESC 11.3 26.14 16.54 19.6 45.23 30.63 11.68

Highway Thevenin 42.49 55.95 46.4 38.87 59.28 46.68 34.93
ESC 14.96 48.67 28.04 15.63 31.37 22.16 14.99

High-speed Thevenin 43.78 56.44 47.42 40.73 60.94 48.42 35.6
ESC 13.14 27.87 18.19 24.02 51.24 35.5 12.83
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5.2. SOC Estimation

The EKF was utilized to estimate the SOC by the two cell models across the three
load profiles. In the implementation, initial values of error variances wk−1 and vk as
shown in (A1) and (A2) in Appendix A should be assigned, which are the process and
measurement noises, respectively. In this study, they were assigned with w0 = [1e-6, 1e-6,
0.01, 1e-8, 0.2], and v1 = 0.2. Table 6 lists the resultant RMSEs of the estimated SOCs for
the two load profiles, City and Highway, by the six models constructed by the three load
profiles and two cell models. It is noted that the High-speed profile is excluded from
this comparison due to the absence of the CS mode. Figure 9 presents the results using a
histogram, facilitating a comparison of estimation accuracy, in which the Thevenin and
ESC models are distinguished by the edge colors orange and red. The results show that the
ESC model consistently outperforms the Thevenin model in SOC estimation mainly due
to its greater terminal voltage prediction accuracy. The results also show that the RMSEs
of the High-speed model (green face color), which is constructed by the CD mode profile
only, are of similar magnitude to the other two models: City (blue) and Highway (brown)
constructed by the CD-CS mode profiles. This means that a load profile in the modeling
has a negligible effect on estimation accuracy, which was contrary to our expectations.
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Table 6. Effect of cell modeling on the accuracy of SOC estimation.

RMSEs [%]
City Highway

CD CS Overall CD CS Overall

City Thevenin 1.975 1.665 1.899 2.344 1.498 2.021
ESC 1.732 0.56 1.515 1.253 1.123 1.34

Highway Thevenin 2.492 1.85 2.341 2.208 2.101 2.173
ESC 1.231 1.751 1.412 1.534 1.036 1.388

High-speed Thevenin 2.344 1.804 2.215 2.768 1.946 2.237
ESC 1.861 0.521 1.621 1.897 1.094 1.914
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As a further comparison, the true and estimated SOCs are plotted in Figure 10, along
with their error for the six models. In the result, the true SOC was obtained by Coulomb
counting of the current from the shunt resistor, while the estimated SOC was obtained by
the EKF with bias correction from the Hall sensor.
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5.3. Current Sensor Bias Correction

The EKF was also utilized to estimate the current sensor bias. Table 7 lists the resulting
RMSEs of the estimated SOCs, distinguishing between the results that were bias-corrected
or not. Figure 11 presents the results using a histogram, facilitating a comparison of
estimation accuracy. Figure 12 plots the true and estimated SOCs along with their error.
Given its superiority over the Thevenin, it is noted that the ESC is the only model addressed
in bias correction. In the last figures of Figure 12, the true and estimated biases are also
plotted, in which the true value was obtained by the shunt resistor. In the results of City and
Highway profiles, the true biases were measured to be approximately−0.38 A and−0.43 A,
respectively. This indicates that the readings from the Hall sensor were approximately 0.4
A lower than those from the shunt resistor, which causes poor accuracy in SOC estimation;
that is, the RMSE of SOC increases by nearly 6%, depending on load profiles used for
modeling and validation. By correcting the bias, the RMSE is reduced to around 1%. In case
the High-speed model is applied to the City profile, the RMSE of bias estimation between
2000 s and 11500 s is less than 0.05 A. The correction is less effective in the Highway profile,
yielding a bias estimation RMSE of about 0.17 A between 2000 s and 6000 s.

Table 7. Effect of bias correction on the accuracy of SOC estimation.

RMSEs [%]
City Highway

CD CS Overall CD CS Overall

City Uncorrected 5.469 9.307 6.692 3.207 5.71 4.21
Bias-

corrected 1.732 0.56 1.515 1.253 1.123 1.34

Highway Uncorrected 5.594 7.933 6.292 3.252 5.379 4.086
Bias-

corrected 1.231 1.751 1.412 1.534 1.036 1.388

High-speed Uncorrected 5.574 9.427 6.79 3.441 5.581 4.275
Bias-

corrected 1.861 0.521 1.621 1.897 1.094 1.914

Aerospace 2023, 10, x FOR PEER REVIEW 16 of 20 
 

 

Table 7. Effect of bias correction on the accuracy of SOC estimation. 

 
RMSEs [%] 

City Highway 
CD CS Overall CD CS Overall 

City Uncorrected 5.469 9.307 6.692 3.207 5.71 4.21 
Bias-corrected 1.732 0.56 1.515 1.253 1.123 1.34 

Highway Uncorrected 5.594 7.933 6.292 3.252 5.379 4.086 
Bias-corrected 1.231 1.751 1.412 1.534 1.036 1.388 

High-speed 
Uncorrected 5.574 9.427 6.79 3.441 5.581 4.275 

Bias-corrected 1.861 0.521 1.621 1.897 1.094 1.914 

 
Figure 11. Evaluation of SOC estimation accuracy with bias correction under the (a) City and (b) 
Highway profiles. 

  

Figure 11. Evaluation of SOC estimation accuracy with bias correction under the (a) City and
(b) Highway profiles.



Aerospace 2023, 10, 550 15 of 17

Aerospace 2023, 10, x FOR PEER REVIEW 17 of 20 
 

 

 

 
Figure 12. Validation of bias estimation using the (a) City and (b) Highway profiles. 

6. Conclusions 
This paper presented a framework for accurately estimating the SOC and current 

sensor bias, with the aim of applying it to UAMs with hybrid propulsion. Two main con-
tributions of our study are summarized as follows: (1) For improved accuracy, realistic 
test profiles that simulate actual operational scenarios for the UAM were employed to 
model the battery and validate its state estimator. (2) Additionally, the current sensor bias 
was estimated simultaneously with the SOC. Using the shunt resistor, an actual bias of 
around 400 mA was measured from the Hall sensor, equivalent to a 0.1 C-rate for the cell 
used in the experiment. The measured amount of bias is approximately the median of the 
values imagined by the prior studies: 10, 20 mA [11], 12.5, 25 mA [10], 100 mA [9], 113.5 
mA [12], 500 mA [13], and 1000 mA [8]. Our model-based estimator corrected this Hall 
sensor bias, which enabled SOC estimation error to remain below 2% against the load 
profiles. Further improvement in SOC estimation is possible by achieving greater accuracy 
in predicting terminal voltage across the full range of SOCs. Additionally, SOC estimation 
can be affected due to changes in the total capacity, requiring it to be estimated correctly 
and updated periodically. 

Author Contributions: Conceptualization, W.S. and J.-H.C.; methodology, M.Y.Y.; software, M.Y.Y. 
and J.H.L.; validation, M.Y.Y. and J.H.L.; investigation, J.H.L.; writing—original draft preparation, 
M.Y.Y.; writing—review and editing, W.S. and J.-H.C.; supervision W.S.; project administration, 
J.S.H.; funding acquisition, J.S.H. All authors have read and agreed to the published version of the 
manuscript. 

Figure 12. Validation of bias estimation using the (a) City and (b) Highway profiles.

6. Conclusions

This paper presented a framework for accurately estimating the SOC and current
sensor bias, with the aim of applying it to UAMs with hybrid propulsion. Two main
contributions of our study are summarized as follows: (1) For improved accuracy, realistic
test profiles that simulate actual operational scenarios for the UAM were employed to
model the battery and validate its state estimator. (2) Additionally, the current sensor bias
was estimated simultaneously with the SOC. Using the shunt resistor, an actual bias of
around 400 mA was measured from the Hall sensor, equivalent to a 0.1 C-rate for the cell
used in the experiment. The measured amount of bias is approximately the median of
the values imagined by the prior studies: 10, 20 mA [11], 12.5, 25 mA [10], 100 mA [9],
113.5 mA [12], 500 mA [13], and 1000 mA [8]. Our model-based estimator corrected this
Hall sensor bias, which enabled SOC estimation error to remain below 2% against the load
profiles. Further improvement in SOC estimation is possible by achieving greater accuracy
in predicting terminal voltage across the full range of SOCs. Additionally, SOC estimation
can be affected due to changes in the total capacity, requiring it to be estimated correctly
and updated periodically.
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Appendix A

Non-linear system model and measurement function of the ESC model.
iR1,k
iR2,k
zk
hk
ib,k

 =



e−
∆t

R1C1 0 0 0 e−
∆t

R1C1 − 1

0 e−
∆t

R2C2 0 0 e−
∆t

R2C2 − 1
0 0 1 0 η∆t

Q

0 0 0 e−|
η(ik−1−ib,k−1)γ∆t

Q | 0
0 0 0 0 1




iR1,k−1
iR2,k−1
zk−1
hk−1
ib,k−1



+



1− e−
∆t

R1C1 0

1− e−
∆t

R2C2 0
− η∆t

Q 0

0 e−|
η(ik−1−ib,k−1)γ∆t

Q | − 1
0 0


[

ik−1
sign(ik−1 − ib,k−1)

]
+ wk−1

(A1)

vT,k = OCV(zk) + M0sign(ik) + Mhk − R1iR1,k − R2iR2,k − R0(ik − ib,k) + vk (A2)

State transition matrix Â, input matrix B̂, output matrix Ĉ, and feedthrough matrix D̂
derived for linear approximation.

Âk−1 =



e−
∆t

R1C1 0 0 0 e−
∆t

R1C1 − 1

0 e−
∆t

R2C2 0 0 e−
∆t

R2C2 − 1
0 0 1 0 η∆t

Q

0 0 0 e−|
η(ik−1−ib,k−1)γ∆t

Q | ηγ∆t
Q
{

1 + sign(ik−1 − ib,k−1)hk−1
}

e−|
η(ik−1−ib,k−1)γ∆t

Q |

0 0 0 0 1



B̂k−1 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


Ĉk =

[
−R1 −R2

∂OCV(zk)
∂zk

M R0

]
D̂k = 1

(A3)
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