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Abstract: The contribution is devoted to combined shape- and mesh-update strategies for parameter-
free (CAD-free) shape optimization methods. Three different strategies to translate the shape sen-
sitivities computed by adjoint shape optimization procedures into simultaneous updates of both
the shape and the discretized domain are employed in combination with a mesh-morphing strategy.
Considered methods involve a linear Steklov–Poincaré (Hilbert space) approach, a recently suggested
highly non-linear p-Laplace (Banach space) method, and a hybrid variant which updates the shape in
Hilbert space. The methods are scrutinized for optimizing the power loss of a two-dimensional bent
duct flow using an unstructured, locally refined grid that initially displays favorable grid properties.
Optimization results are compared with respect to the optimization convergence, the computational
effort, and the preservation of the mesh quality during the optimization sequence. Results indicate
that all methods reach, approximately, the same converged optimal solution , which reduces the
objective function by about 18% for this classical benchmark example. However, as regards the preser-
vation of the mesh quality, more advanced Banach space methods are advantageous in comparison to
Hilbert space methods even when the shape update is performed in Hilbert space to save costs. In
specific, while the computational cost of the Banach space method and the hybrid method is about
3.5 and 2.5 times the cost of the pure Hilbert space method, respectively, the grid quality metrics are
2 times and 1.7 times improved for the Banach space and hybrid method, respectively.

Keywords: adjoint-based optimization; CAD-free shape optimization; mesh update methods;
gradient-descent shape optimization; CFD

1. Introduction

The ever-growing advances in computational sciences have made simulation-based
design an indispensable tool for many engineering industries dealing with applications of
either fluid [1,2] or structural mechanics [3]. A crucial aspect of the design is the shape of
the investigated device.

To this end, a variety of shape optimization methods have been developed to en-
able the efficient identification of optimal, or rather optimized, shapes that minimize (or
maximize) the response, namely the objective functional, of the shape to a set of prescribed
conditions. Such methods range from stochastic [4] (or global) to deterministic [5] (or local)
procedures, with the latter usually requiring the gradient of the objective functional with
respect to the shape. This paper is concerned with continuous adjoint- and gradient-based
shape optimization methods. Adjoint-based techniques have successfully been applied in
various areas of industrial applications [6–9] in order to compute shape sensitivities (shape
derivatives) required by a gradient-based optimization method. The appeal of adjoint
methods is that the computation of the derivatives is independent of the number of design
or control variables of the problem, as this method does not require the derivative of the
state variable with respect to the control.
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Generally, such methods can be categorized into parameterized, where the shapes
follow an a priori explicit parameterization—e.g., specified by a set of control points [10]—or
parameter-free methods, where the control refers directly to the investigated shapes [11–13].
As regards the former, a common technique is to directly apply the computed sensitivity
expressions within a shape optimization loop. On the other hand, when the control
corresponds to the (non-parameterized) shape itself, an additional step is required to
identify admissible descent directions and sequentially applicable shape updates. As
an additional step, researchers have successfully applied discrete filtering of the shape
sensitivity field [12–14] or more involved approaches such as the Steklov–Poincaré [15],
Laplace–Beltrami [8] or the recently suggested p-harmonic descent method [16,17]. A
general overview of such methods for engineering applications can be found in [14,18].
These methods aim to obtain a deformation vector field with a certain regularity on the
boundary, which leads to feasible shape updates. The issue of regularity is not only
important in the context of shape optimization but also in other areas, such as optimal
flow control; see, e.g., [19,20], where the issue of regularity is discussed for inhomogeneous
boundary data.

Regardless of the applied approach, a critical aspect of the optimization process is the
preservation of the mesh quality during the optimization. To reduce the computational
cost, a simple restart from the previous design is highly appreciated. In particular, one
ideally wants to conserve the grid topology and update the shape and the grid using mesh
morphing techniques, i.e., without the need for re-meshing. To this end, the paper discusses
recent update techniques. Attention is restricted to strategies that simultaneously compute
the shape and mesh updates, i.e., the Steklov–Poincaré (Hilbert space) method [15] and the
p-Laplace (Banach space) method [17]. While the former is deemed more efficient, the latter
is seen to preserve the quality of the mesh much better but is also harder to solve [17,18].

In view of a viable compromise between mesh quality preservation and required
computational effort, we investigate a novel hybrid approach that combines elements of
both strategies. In contrast to the previously established methods, the hybrid method
utilizes the Steklov–Poincaré approach to efficiently compute the displacement vector field
on the boundary of the shape and then employs a p-harmonic domain extension to compute
the displacement on the nodes of the internal mesh. The motivation of this approach is to
achieve shape updates that are computationally viable for engineering applications while
at the same time preserving the quality of the employed mesh by extracting the positive
characteristics of each ingredient approach. The concept shares ideas with the extension
method suggested in [21].

Within this paper, we particularly focus on mesh quality aspects and computational
efficiency. The application presented, refers to power-loss optimization for a 2D S-bent
duct flow. The unstructured grid discretization involves locally refined quadrilateral
control volumes and the solution of the primal and adjoint Navier–Stokes equations is
obtained from a classical second-order accurate finite-volume method. Optimized shapes
are assessed in terms of the convergence of the objective functional, the final shape, as well
as the mesh quality by means of the orthogonality of the grid and the aspect ratio of the
cells for the final configuration. Preserving the mesh quality is a necessary prerequisite for
trustworthy optimization results and is thereby of importance. Moreover, related issues
might even cause the divergence of the optimization in mesh morphing approaches.

The two-dimensional application considered in this paper refers to an optimization
problem constrained by the stationary Navier–Stokes equations. However, the methods
presented can be readily applied to most shape optimization problems (two or three-
dimensional) constrained by a set of partial differential equations (PDEs), as long as a shape
sensitivity can be computationally approximated. Additionally, the investigated methods
are not restricted to stationary problems and may be extended to time-dependent problems
as well. In the case that the domain and thus the control parameter does not change over
time the directional derivative of the shape functional represents a time averaged sensitivity.
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If the shape, however, is varying over time, the domain of definition of the deformation
vector field is no longer the spatial domain but the space–time domain.

The remainder of the paper is organized as follows: Section 2 briefly presents the
optimization method. Emphasis is given to the domain transformation problem and
related novel aspects applied herein. The section closes with algorithms that outline the
complete process. Section 3 is concerned with an exemplary application that renders
the characteristics of the proposed methodology. The paper closes with conclusions and
outlines future directions in Section 4. Within this publication, Einstein’s summation
convention is used for repeated lower-case Latin subscripts. Furthermore we denote the
iterate for the primal and adjoint state variable as well as the descent direction with a
superscript index k, e.g., uk for the descent direction of the k-th shape Ωk.

2. Mathematical and Computational Model
2.1. Optimization Method

In general, let Ω ⊂ Rd, d = 2 or d = 3, be a domain with Lipschitz boundary Γ, and
y be a physical state defined on Ω. In the context of the application studied in this paper,
we consider Γ to be the union of an inlet (ΓI), outlet (ΓO), and wall (ΓW) boundary, that is
Γ = ΓI ∪ ΓO ∪ ΓW. We consider shape optimization problems of the general form

min
Ω,y

J(Ω, y) subject to e(Ω, y) = 0, (1)

where e(Ω, y) denotes the PDE constraints on the state y, which in our case correspond to
the Navier–Stokes equations and J(Ω, y) is a shape function. We assume that the state is
unique on Ω, and thus the control to state mapping Ω 7→ y(Ω) exists [22]. Therewith we
obtain the reduced objective function J(Ω, y(Ω)) =: j(Ω) and in order to compute shape
sensitivities for j(Ω) the domain has to be made variable. We follow the standard ansatz
with a perturbation of the identity id+ tu where the descent direction is given by the vector
field u : Ω→ Rd with u ∈W1,∞(Ω), cf. [23] (Section 2.8) and [24] (Chapter 2, Section 2.6).
Then the transformed domain reads

(id + tu)(Ω) :=
{

x + tu ∈ Rd : x ∈ Ω
}

. (2)

With a suitable displacement field u and a sufficiently small step size t > 0, the
perturbation of the identity is invertible with bounded inverse [23]. The shape derivative
of the reduced cost function j(Ω) is denoted by j′(Ω)u and fulfills the approximation
condition [25]

j((id + tu)(Ω)) = j(Ω) + tj′(Ω)u + o(t) for t→ 0. (3)

In the following, we describe methods of how to obtain a descent direction u such that

j′(Ω)u < 0 (4)

holds.

2.2. Descent Approaches to Simultaneously Update the Mesh and the Shape

First we consider a Steklov-Poincaré-type method which has been introduced in [26].
Therein the descent direction is obtained by solving a linear elasticity-like problem from
structural mechanics where the shape sensitivity enters as right hand side as forcing
term. The method is similar to the Hilbertian extension and regularization in [27] and [28]
(Section 5.2). In a Hilbert space setting the gradient of j(Ω) gives a descent direction.
Consider the Hilbert space H with the inner product a(·, ·) : H × H → R. Then we obtain
a descent direction u ∈ H defined as the solution of the variational form

a(u, w) = −j′(Ω)w, ∀w ∈ H. (5)
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Of course, the direction depends on the choice of a(·, ·). The Hilbert space approach
leads to regular vector fields which are defined on the whole computational domain. How-
ever, the obtained transformations might not give ’good’ deformations of the internal mesh;
that is, the resulting displacement fields do not sufficiently preserve mesh quality, regarding
e.g., changes to the level of orthogonality or the aspect ratio. This is only a technical issue
but it has a significant influence on the implementation and algorithmic realization of the
approach. We therefore suggest to compute a p-harmonic domain extension of the resulting
shape deformations by solving a non-linear elliptic equation containing the p-Laplace
operator. This second approach builds on the idea proposed in [21] where the extension of
the boundary deformation is extended via a non-linear convection diffusion problem into
the domain. Here, we compute a descent direction and the domain extension in a two step
process. First, the shape gradient is given by the solution of (5), and second, the movement
of the discrete nodes within the domain is given by the solution of the Dirichlet problem

− ∂

∂xi


(∂ūi

∂xj

)2


p−2
2

∂ūj

∂xi

 = 0 in Ω,

ū = u on Γ.

(6)

for p > 2 in a weak sense. Because the solution of (5) enters as Dirichlet data, the shape
itself still is deformed by u ∈ H and only the internal nodes of the mesh are affected. For
the inner product in (5) we consider

a(u, w) =
∫

Ω
η

∂ui
∂xj

∂wi
∂xj

dx , (7)

with the diffusivity [9]

η(x) =
1

η−1
max + min

x̄∈Γ
‖x− x̄‖2

. (8)

For now, we neglect the fact that in general H 6⊂ W1,∞(Ω,Rd) when considering (5)
with the inner product (7). However, the obtained solutions give regular deformations
and are applicable for practical use. In [15], this method is associated with applying the
Dirichelt-to-Neumann map or Steklov–Poincaré operator for the case in which j′(Ω)u has
a boundary formulation of the form

j′(Ω)u =
∫

ΓD

σuini ds (9)

where σ : Γ → R depends on the state and the adjoint state and thus it is specific to the
problem. Note that the formulation in (5) is rather general and does not necessarily require
the boundary formulation of the shape derivative.

Third, we consider the p-Laplace relaxation of the steepest descent direction in W1,∞-
topology [16,17]. The direction of steepest descent in W1,∞(Ω,Rd) is defined by

u∗ = arg min
u∈W1,∞(Ω,Rd), ‖∇u‖≤1

j′(Ω)u (10)

where ‖ · ‖ is the operator (spectral) norm. Following [29] (Proposition 5.1 and 5.3) the
minimizer of

I(u) :=
1
p

∫
Ω
(∇u : ∇u)p/2 dx + j′(Ω)u (11)

tends to the solution of (10) for p→ ∞ and thus the desired direction of steepest descent.
The approximation is obtained by solving the boundary value problem
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− ∂

∂xi

((∂uk
∂xl

)2
) p−2

2 ∂uj

∂xi

 = 0 in Ω,

u = 0, on Γ \ ΓD,

η
∂uj

∂n
= −σnj, on ΓD.

(12)

In practice, this means that we are interested in solutions of (11) for p as large as
possible. This involves at least two difficulties for the practical application. On the one
hand, the numerical computation of solutions of (11) requires higher computational effort
the higher the value of p is [30,31]. On the other hand, the order of integrability p depends
on the spatial dimension; that is, p > d has to be fulfilled, which directly follows from the
Sobolev imbedding theorem [32] (Theorem 4.12). Additionally, when considering a second
order method for solving (11) the second derivative of I(u) does not exist where ∇u = 0
for p ≤ 4, regardless of the spatial dimension. Thus a solution strategy as described in [33]
may be considered.

The shape optimization procedure is summarized in Algorithm 1, where we follow a
standard approach via the Lagrange multiplier rule.

Algorithm 1 Shape Optimization Procedure

1: Ω0 ⊂ Rd

2: k← 0
3: repeat
4: Compute state yk

5: Compute adjoint variables ŷk

6: Compute descent direction uk such that j′(Ω)uk < 0
7: Choose tk > 0 such that j((id + tkuk)(Ω)) < j(Ω)
8: Set Ωk+1 = (id + tkuk)(Ω)
9: k← k + 1

10: until j(Ωk+1) ≤ j(Ωk) tol

In a first step, the state y is computed by solving the underlying boundary value
problem which, in the present study, is given by the steady-state Navier–Stokes (16) below.
In a second step the adjoint state ŷ is computed which is associated with the Lagrange mul-
tipliers and given by the solution of the adjoint equations in (19). For the shape derivative
j′(Ω)u we consider the boundary formulation (9) from which the descent direction u is
obtained by applying one of the three different strategies. The process to determine the
modified shape deformation with p-Laplace extension is summarized in Algorithm 2.

A full non-linear approach is to solve the p-Laplace problem, that is, to solve (12).
Algorithm 3 schematically illustrates the realization of this approach.

A rigorous comparison of the descent direction influence on the shape optimization
procedure would require the determination of an optimal step size for each direction.
However, the identification of the optimal step size is computationally demanding when
the state is defined by the solution of a PDE, and thus this might be unfeasible. Nevertheless,
we control the sequence of successive shape updates k by applying

tk =
αk

max
x∈Ω
‖uk(x)‖2

. (13)

where αk is chosen such that the Armijo condition is fulfilled.
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Algorithm 2 Steklov–Poincaré with p-Laplace domain extension (SP+p)

Require: pmax, pinc, ε1, ε2
1: Compute the boundary deformation u according to (5)
2: ū0 ← u . Use the solution from 5 as initial guess.
3: p← 2
4: repeat
5: if p < pmax then
6: ε← ε1
7: else
8: ε← ε2 . Where ε2 << ε1
9: end if

10: Compute the dom. extension according to (6) with initial guess ū0 and tolerance ε.
11: p← p + pinc
12: ū0 ← ū . Set the initial guess for the next p.
13: until p > pmax
14: u← ū . Set the deformation for the whole domain.

Algorithm 3 p-Laplace relaxed steepest descent direction

Require: pmax, pinc, ε1, ε2
1: u0 ← 0
2: p← 2
3: repeat
4: if p < pmax then
5: ε← ε1
6: else
7: ε← ε2 . Where ε2 << ε1
8: end if
9: Compute the deformation field according to (12), initial guess u0 and tolerance ε.

10: p← p + pinc
11: u0 ← u . Set the initial guess for the next p.
12: until p > pmax

Furthermore, an additional issue that one might face in CAD-free shape optimization
relates to the construction of the problem. In general but most frequently in internal flow
shape optimization problems, such as the ones studied in this paper, we are interested in
optimizing a certain Section of the wall, namely ΓD ⊂ ΓW. We thus define ΓW := ΓD ∪ ΓB
as the union of the non-intersecting sets of design and non-design (bound to their initial
configuration) points, respectively. The construction of the optimization problem results
in a change of the boundary condition of u in ΓW. A common problem that might arise,
is that the sudden change of boundary conditions and displacement leads to distorted
computational grids, as shown in Figure 1 (right). To ensure compatibility, we apply a
filtering approach in a close neighborhood around the connection of ΓD and ΓB, that reads

u f (x) =

{
u(x) 1

2

(
1− cos

(
π

r(x)
r0

))
, if r(x) ≤ r0

u(x), otherwise,
(14)

where r0 controls the filtering radius with

r(x) =
√
(x1 − x̄1)2 + (x2 − x̄2)2. (15)

For the application studied herein, x̄ = (x̄1, x̄2) corresponds to the position vector of a
node connecting ΓD and ΓB. Figure 1 schematically shows the impact of the filter for the
same 2D case. As shown in Figure 1 (left), the optimizer has managed to update the shape
while maintaining its grid quality. In contrast, when the solution u is directly applied, the
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grid quality is rapidly deteriorated, leading to even intersecting faces as shown in Figure 1
(right), making the numerical solution of the PDE constraints unfeasible.

x̄

r0

ΓB

x̄
ΓB

Figure 1. Two-dimensional optimization case: Detail of the computational unstructured grid of
intermediate updated shapes around the connection of ΓD and ΓB using (left) u f and (right) u.

2.3. Governing Equations

Here, we consider the domain Ω ⊂ R2, and the state is described by the velocity
vi : Ω → R, i = 1, 2 and pressure p : Ω → R which are the solution to the stationary
Navier–Stokes equations of an incompressible, Newtonian fluid, viz.

− ∂vi
∂xi

= 0 in Ω,

− ∂

∂xj

(
ν

(
∂vi
∂xj

+
∂vj

∂xi

))
+ vj

∂vi
∂xj

= −1
ρ

∂p
∂xi

in Ω,

vi = 0 on ΓW,

vi = vi,in on ΓI,

ν

(
∂vi
∂xj

+
∂vj

∂xi

)
nj = pni on ΓO,

i = 1, 2 ,

(16)

where ν > 0 is the kinematic viscosity and ρ > 0 denotes the density of the fluid. The aim
of the present shape optimization procedure is to minimize the power loss within the flow
domain which is described by the objective function

J(Γ, vi, p) = −
∫

Γ

(
p +

ρ

2
v2

i

)
vjnj ds . (17)

By introducing the multipliers v̂i, i = 1, 2 and p̂ we define the Lagrangian

L(Γ, (v, p), (v̂, p̂)) :=
∫

Γ

(
p +

ρ

2
v2

i

)
vjnj ds

+
∫

Ω
−ν

(
∂vi
∂xj

+
∂vj

∂xi

)
∂v̂i
∂xj

+ vj
∂vi
∂xj

v̂i −
1
ρ

p
∂v̂j

∂xj
−

∂vj

∂xj
p̂ dx,

(18)

which for arbitrary ŷ = (v̂, p̂) gives j(Γ) = J(Γ, (v, p)(Γ)) = L(Γ, (v, p)(Γ), (v̂, p̂)) if the
state Equation (16) is fulfilled. The Lagrange multipliers are identified with the adjoint
state ŷ = (v̂, p̂) which is the solution to the system of adjoint equations to (16). The system
of adjoint equations defined on the reference domain read
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− ∂v̂i
∂xi

= 0 in Ω,

− ∂

∂xj

(
ν

(
∂v̂i
∂xj

+
∂v̂j

∂xi

))
− ∂v̂i

∂xj
vj +

∂vj

∂xi
v̂j +

1
ρ

∂ p̂
∂xi

= 0 in Ω,

v̂i = 0 on ΓW,

v̂i ni = vi ni on ΓI,

p̂ = v̂n vn −
1
2

ρv2
i − ρv2

n on ΓO,

i = 1, 2 .

(19)

With the solution of the primal and adjoint equations, one can compute the shape
sensitivity given by the expression

j′(Γ)u =
∫

ΓD

−µ

(
∂vi
∂n

∂v̂i
∂n

)
︸ ︷︷ ︸

=σ

ujnj ds. (20)

2.4. Numerical Method

The numerical procedure for the solution of the primal (16) and adjoint system (19) is
based upon the finite volume method (FVM) [9,34]. The implicit numerical approximation
is second-order accurate in space and time and supports arbitrary polyhedral cells as well
as local grid refinement. The segregated algorithm uses a cell-centered, co-located storage
arrangement for all transport properties. A detailed derivation of this hybrid adjoint
approach can be found in [6,9,11]. The primal and adjoint pressure–velocity coupling
utilizes a pressure-correction scheme and parallelization is realized by means of a domain
decomposition approach [35,36].

3. Application

The application considered refers to a 2D S-bent duct. Results compare three different
concurrent mesh and shape update approaches, i.e., a Steklov–Poincaré (SP) method, a
Steklov–Poincaré with a subsequent p-Laplace extension (SP+p) and a p-Laplace approach.
In both methods we choose the value of pmax = 4.1. This value is slightly above the
threshold value p = 4 that is deemed to by large enough as described in Section 2. The SP
approach essentially follows from (5) with the inner product (7) and the SP+p method is
described by Algorithm 2. The p-Laplace mesh and shape update approach corresponds
to the original p-Laplace method outlined in Algorithm 3. Emphasis is put on assessing
the evolution of the objective functional, the final shape, the computational cost, and the
preservation of the grid orthogonality and the aspect ratio.

3.1. Two-Dimensional Bent

The application considers the optimization of a two-dimensional S-bent duct. A sketch
of the initial shape and the employed unstructured grid are shown in Figure 2. The total
length of the computational domain is L while h1 + h2 is its height. We assume wall sections
of length l from the inlet and outlet, where the shape is bound to its initial configuration.
The following non-dimensional geometric ratios hold: l/h1 = 2, h2/h1 = 1.5, L/h1 = 7.5.
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h1 ΓI

h2 ΓO

ΓB

ΓB

ΓD

L

x1

x2

l

l

Figure 2. Illustration of the S-bent 2D duct’s initial shape with geometric/boundary annotations
(left) and employed unstructured, locally refined grid (right). The lower wall of the duct is split in
ΓB and ΓD in accordance with the split of the upper wall.

To ensure the independence of the objective function J with respect to the spatial
discretization, a mesh sensitivity study is initially conducted. The results of the study are
presented in Table 1. Since the estimated objective function doesn’t change by more than
2% from refinement level 2 to 3, we employ an unstructured-grid discretization of 31,600
quadrilateral control volumes. As indicated by Figure 2 (right), the grid is progressively
refined towards the wall boundaries. It features almost orthogonal control volumes with
an approximate unity cell aspect ratio in the boundary-adjacent cell layer. The filtering
approach described in Section 2 is applied around the four points, connecting ΓB and ΓD
boundaries, with a normalized filtering radius of r0/h1 = 0.2. We assume a unidirectional,
parabolic inlet velocity profile, that reads

v1,in(x2) = 2 vre f

(
1−

(2x2

h1

)2
)

, v2,in(x2) = 0 , (21)

where the coordinate origin aligns with the midpoint of ΓI. The laminar flow is character-
ized by a Reynolds number of Re = (vre f h1)/ν = 500.

Table 1. Mesh sensitivity study. Control volumes are abbreviated by CVs.

Refinement Level Number of CVs
2J

ρv3
re f h1

0 3250 1.06
1 16,800 0.97
2 31,600 0.89
3 44,130 0.88

3.1.1. Shape and Objective Functional Evolution

Figure 3 (left) displays the computed reduction of the normalized power-loss objective
functional by about 18% from its initial value. Figure 3 (right) depicts the corresponding
evolution of the shape different from the initial shape. It is observed that all approaches
converge remarkably fast toward the final shape. A decrease of the regularization parameter
ηmax in (8), to unity reveals a substantial change of deformation and thus the final shape, cf.
Figure 3 (right).
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0 5 10 15
0.8

0.85

0.9

0.95

1

# Shape

J(
Ω
)/

J(
Ω

0)

SP ηmax = 1
SP ηmax = 1000

SP+p
p-Laplace

0 5 10
0

1

2

# Shape

d(
Ω

0,
Ω

k)

SP ηmax = 1
SP ηmax = 1000

SP+p
p-Laplace

Figure 3. Evolution of the normalized objective functional for the 2D S-bent (left) and evolution of
the symmetric shape difference d(Ω0, Ωk) :=

∫
Ω0\Ωk

1 dx +
∫

Ωk\Ω0
1 dx (right).

For each final shape, obtained by the different optimization approaches, the objective
is validated by a grid refinement study. Therefore the objective, computed on the deformed
grid, is compared to the objective computed on newly generated grids at three different
levels of refinement. Table 2 summarizes the results of the grid study where the third
column shows the objective functional J(Ωn) evaluated on the final shape Ωn after n
optimization steps (cf. Table 3), relative to objective Ji(Ωn) evaluated on newly generated
grids for the refinement levels i = 1, 2, 3. The results show that the difference is at most 2%
or 3%, respectively, for the individual cases.

Table 2. Mesh sensitivity study for the optimized shapes; where J is the approximate objective value
computed on the grid which is used for the optimization, and Ji is computed after remeshing with
different refinements.

Refinement Level i Number of CVs |J/Ji|
SP ηmax = 1

1 16,297 0.99
2 33,735 1.01
3 53,080 1.02

SP ηmax = 1000

1 16,130 0.99
2 33,859 1.01
3 52,405 1.02

SP+p

1 16,172 0.99
2 33,658 1.01
3 51,723 1.03

p-Laplace

1 16,172 0.99
2 33,658 1.01
3 51,723 1.03

Figure 4 displays the final shapes predicted by the four optimizations. Minor dif-
ferences between the respective shapes returned by the p-Laplace, the SP+p, and SP
(ηmax = 1000) methods, are observed. Except for the transition region, where the de-
formed part of the boundary meets the fixed part, the shapes obtained by all approaches
reduce the curvature of the boundary and straighten the bent part. At the lower left and
upper right transition region, the optimized shapes tend to form a kink in the shape of a
step. Apart from the SP approach with ηmmax = 1 the final shapes are rather close and the
contours of the shape almost cover each other.
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Table 3. Total number of optimization steps for the 2D S-bent, normalized average wall-clock time
per design step required to compute the descent direction, and normalized convergence effort. All
normalization computed with results of the SP approach (p-Laplace approaches employed p = 4.1).

2D S-Bend Steps Norm. Time/Step Norm. Effort

Steklov-Poincaré (SP; ηmax = 1000) 11 1 1
Steklov-Poincaré (SP; ηmax = 1) 5 2.4 1.1
Steklov-Poincaré with p-Laplace ext. (SP+p) 10 2.8 2.6
p-Laplace 9 4.3 3.6

Figure 4. Contours of the final shapes for the 2D S-bent optimization displayed by the Initial
shape , Steklov–Poincaré with ηmax = 1 and with ηmax = 1000, the Steklov–Poincaré
with p-Laplace extension and the p-Laplace methods.

Figure 5 displays the distribution of the objective function along the inlet and outlet
for the initial and optimized shape obtained from the p-Laplace method (left) and the
respective drop of the absolute values from initial to optimized (right). The computed
values follow from jΓ(ΓI) = jΓ(0, x2) and jΓ(ΓO) = jΓ(L, x2 − h2) where jΓ(Γ) denotes
the integrand of Equation (17). We remind the reader that (x1, x2) = (0, 0) lies at the
midpoint of ΓI. Along the inlet, where the velocity values are fixed, a parabolic drop of
the absolute objective value is observed, which is due to the homogeneous decrease of
the pressure value, as illustrated in Figure 6. Along the outlet, the pressure is fixed and
the velocities of the optimized shape are more homogeneous as compared to the initial
shape. Smaller core flow velocities are confirmed for the optimal shape in Figures 7 and 8
and yield a reduction of the power loss, cf. Figure 5. In theory, an unbounded increase of
the duct’s area (volume) would result in a minimization of the power loss within the flow
domain. However, by restricting certain sections of the shape to their initial configuration,
an optimal solution is not simply associated with an area increase, as also displayed by
Figure 4. Due to the constrained segments near the inlet and outlet of the domain, an area
increase would promote sudden expansion/contraction losses due to recirculation and
drive the total pressure loss away from an optimal solution. On the other hand, the flow
on the optimized shapes herein, admits no recirculation regions while at the same time
minimizing the velocity magnitude at the core of the flow as illustrated in Figure 8.
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Figure 5. Left: The distribution of the objective function (17) along the inlet (dashed lines) and outlet
(continuous lines) boundaries for the initial (blue) and the optimized (p-Laplace, red) shape of the 2D
S-bent. Here, −h1/2 refers to the bottom corner of each boundary. Right: Distribution of the drop of
the absolute objective function from initial (jinit

Γ ) to optimized (jopt
Γ ) shape along the inlet and outlet.

Figure 6. Pressure contours in [Pa] near the inlet for the initial (left) and optimized (right; p-Laplace)
shapes of the 2D S.bent. The exit pressure is assigned to zero in both cases.

Figure 7. Contours of the velocity magnitude in [m/s] near the outlet for the initial (left) and
optimized (p-Laplace) (right) shapes of the 2D S-bent.

Figure 8. Velocity magnitude vectors in [m/s] near the outlet for the initial (left) and optimized
(p-Laplace) (right) shapes of the 2D S-bent.
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Table 3 provides information on the computational efforts. It is seen that the severe non-
linearity inherent to both p-Laplace approaches significantly increases the computational
cost. Compared to the SP approaches, the SP+p method increases the effort approximately
by a factor of 2.5, whereas the p-Laplace method is afflicted with roughly 3.5 times the
costs of the SP approach. Since the optimization convergence varies, these average costs
per design step were normalized by the convergence ratio. We also observed that the lower
the ηmax value is, the more computationally expensive the SP approach becomes. These
costs will usually be compared to the flow simulation efforts, which are rapidly increasing
for more complex flows and can substantially benefit from an improved mesh quality.
Moreover, the credibility of the optimization result is an issue that is usually assessed by
comparing the objective functional for the optimized geometry obtained in conjunction
with the morphed and a new mesh. In this regard, an improved mesh quality might speed
up the convergence and the feasibility of a morphing-based optimization.

3.1.2. Mesh Quality

With attention directed to the mesh quality, Figure 4 also indicates that all methods
display the most severe deformation where the design wall meets the non-design wall,
which might also challenge the attainable mesh quality in this region. Figures 9, 10 and
Table 4 reveal that the SP+p method can lift the cell minimum angle in comparison to
the SP method (ηmax = 1000) while also reducing the amount of inferior cells by one
order of magnitude, and thereby improve the mesh quality. However, the p-Laplace
method displays even more localized changes and smaller deviations from the ideal grid
arrangement, cf. right graph of Figure 9. The critical lowest value refers to approximately
35◦ and the total amount of critical cells is reduced by approximately one [two] order[s] of
magnitude in comparison to the SP+p[SP] method, cf. Figure 10. Interestingly, a reduction
in the regularization parameter ηmax = 1000 to an exemplary alternative value of ηmax = 1
results in a considerable deterioration of the cell shapes, as indicated by the critical cells
denoted in Table 4 and the histogram in Figure 10. The latter is also seen by an observation
of the minimum orthogonality depicted in Figure 11, where a continuous deterioration of
cell quality is observed with increasing deformation when the regularization parameter
is reduced. To this extent, the benefits of the p-Laplace and the hybrid SP+p approach
are outlined.

Table 4. Most critical grid-orthogonality values observed for morphed mesh of the final design of the
2D S-bent. Values indicate minimum of 90◦ − β, where β refers to the angle between a face normal
and the connecting line between the adjacent cell centers.

Initial
SP SP SP+p p-Laplace

(ηmax = 1) (ηmax = 1000) (ηmax = 1000, p = 4.1) (p = 4.1)

min. angle 50 17 27 30 35

Figure 9. Grid orthogonality of the final design in the lower downstream transition region of the
2D S-bent. The displayed property is 90◦ − β, where β refers to the angle between a face normal
and the connecting line between the adjacent cell centers and higher values (blue) are better. The
results are obtained with, from left to right, SP with ηmax = 1 and with ηmax = 1000, SP+p, and
p-Laplace approach.
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Figure 11. Evolution of the minimum orthogonality for the initial and deformed meshes during the
optimization.

Figure 12 displays the cell aspect ratio in the vicinity of the transition regime for the
final shapes of all three methods. Again, the leftmost graphs refer to the SP approach,
followed by the SP+p method and the p-Laplace method (rightmost graph). The deterio-
ration of the aspect ratio is moderate and most pronounced by the SP method. Again, a
p-Laplace extension helps to preserve the mesh quality, as depicted by the SP+p results.
Aspect ratios obtained from the p-Laplace method are in fair qualitative agreement with
the SP+p grids, though reported p-Laplace values are again superior. Furthermore, it is
noted that an increasing value of ηmax enables the SP method to increase the overall quality
of the produced mesh, without, however, being able to reach the beneficial behavior of the
SP+p and p-Laplace methods.
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Figure 12. Cell aspect ratio at the lower channel for the final shapes each obtained from left to right
with the SP with ηmax = 1 and with ηmax = 1000, the SP+p and with the p-Laplace method for the
optimized shapes of the 2D bent in the lower downstream transition region (range from 1 to 3 where
lower values (blue) are better).

4. Conclusions

This paper investigated approaches to simultaneously compute the shape and mesh
update in the context of a parameter-free, adjoint-assisted shape optimization. Included
methods refer to Steklov–Poincaré (SP) and p-Laplace approaches and a newly proposed
hybrid approach. The shape update of the hybrid approach follows from the SP method,
while the extension to the domain is realized based on the p-Laplace method. The mo-
tivation of the newly proposed method (SP+p) was to extract the positive properties of
both ingredients, with the lower computational cost of SP and the improved mesh quality
preservation of p-Laplace. The implementation of the SP+p approach was described in
accordance with the established individual baseline methods, and technical aspects, such
as the treatment of deformations near the connection of design and non-design boundaries,
were discussed.

The suggested methods were applied to the power loss optimization in a 2D steady-
state, laminar incompressible fluid flow. All approaches managed to locate an optimal
solution after 5–10 shape updates. However, as regards the computational effort and
mesh quality metrics, the observations verified our initial hypothesis. The SP+p method
performed better than a pure SP approach in terms of the quality of the optimized mesh
while also requiring approximately half the computational effort of the p-Laplace approach.
Additionally, we have studied the influence of the regularization parameter value for the
diffusion coefficient of the SP approach on mesh quality metrics. Results indicate that the
quality of the initial mesh is better preserved as the parameter increases. Nevertheless, for
all investigated values, the mesh quality metrics of the SP approach fell short in comparison
to the SP+p and p-Laplace approach.

Future work will scrutinize the proposed hybrid method (SP+p) in three-dimensional
geometries and external flows to investigate if the benefits of the method hold in these
scenarios as well.

Author Contributions: Conceptualization, P.M.M., G.B., and T.R.; methodology, P.M.M., G.B., and
T.R.; validation, P.M.M. and G.B.; formal analysis, P.M.M. and G.B.; investigation, P.M.M. and G.B.;
resources, T.R.; writing—original draft preparation, P.M.M., G.B., and T.R.; writing—review and
editing, P.M.M., G.B., and T.R.; visualization, P.M.M. and G.B.; supervision, T.R.; project administra-
tion, T.R.; funding acquisition, T.R. All authors have read and agreed to the published version of
the manuscript.

Funding: The current work is a part of the research training group ‘Simulation-Based Design Op-
timization of Dynamic Systems Under Uncertainties’ (SENSUS) funded by the state of Hamburg
within the Landesforschungsförderung under project number LFF-GK11, and the Research Training
Group RTG 2583 ’Modeling, Simulation and Optimization of Fluid Dynamic Applications’ support
by the Deutsche Forschungsgemeinschaft (DFG). Publishing fees supported by Funding Programme
Open Access Publishing of Hamburg University of Technology (TUHH).



Aerospace 2023, 10, 519 16 of 17

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Löhner, R.; Soto, O.; Yang, C. An adjoint-based design methodology for CFD optimization problems. In Proceedings of the 41st

Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 6–9 January 2003; p. 299. [CrossRef]
2. Othmer, C. A continuous adjoint formulation for the computation of topological and surface sensitivities of ducted flows. Int. J.

Numer. Methods Fluids 2008, 58, 861–877. [CrossRef]
3. Upadhyay, B.; Sonigra, S.; Daxini, S. Numerical analysis perspective in structural shape optimization: A review post 2000. Adv.

Eng. Softw. 2021, 155, 102992. [CrossRef]
4. Bäck, T. Evolutionary Algorithms in Theory and Practice. Evolution Strategies, Evolutionary Programming, Genetic Algorithms; Oxford

University Press: Oxford, UK, 1996.
5. Jameson, A. Aerodynamic design via control theory. J. Sci. Comput. 1988, 3, 233–260. [CrossRef]
6. Kröger, J.; Kühl, N.; Rung, T. Adjoint Volume-of-Fluid Approaches for the Hydrodynamic Optimisation of Ships. Ship Technol.

Res. 2018, 65, 47–68. [CrossRef]
7. Papoutsis-Kiachagias, E.M.; Asouti, V.G.; Giannakoglou, K.C.; Gkagkas, K.; Shimokawa, S.; Itakura, E. Multi-point aerodynamic

shape optimization of cars based on continuous adjoint. Struct. Multidiscip. Optim. 2019, 59, 675–694. [CrossRef]
8. Bletsos, G.; Kühl, N.; Rung, T. Adjoint-based shape optimization for the minimization of flow-induced hemolysis in biomedical

applications. Eng. Appl. Comput. Fluid Mech. 2021, 15, 1095–1112. [CrossRef]
9. Kühl, N.; Nguyen, T.T.; Palm, M.; Jürgens, D.; Rung, T. Adjoint Node-Based Shape Optimization of Free Floating Vessels. Struct.

Multidiscip. Optim. 2022, 65, 247. [CrossRef]
10. Trompoukis, X.S.; Tsiakas, K.T.; Asouti, V.G.; Giannakoglou, K.C. Continuous adjoint-based shape optimization of a turbomachin-

ery stage using a 3D volumetric parameterization. Int. J. Numer. Methods Fluids 2023, Early view. [CrossRef]
11. Stück, A.; Rung, T. Adjoint complement to viscous finite-volume pressure-correction methods. J. Comput. Phys. 2013, 248, 402–419.

[CrossRef]
12. Bletzinger, K.U. A consistent frame for sensitivity filtering and the vertex assigned morphing of optimal shape. Struct. Multidiscip.

Optim. 2014, 49, 873–895. [CrossRef]
13. Kröger, J.; Rung, T. CAD-free hydrodynamic optimisation using consistent kernel-based sensitivity filtering. Ship Technol. Res.

2015, 62, 111–130. [CrossRef]
14. Antonau, I.; Warankulasuriya, S.; Bletzinger, K.U.; Blum, F.; Hojjat, M.; Wüchner, R. Latest developments in node-based shape

optimization using Vertex Morphing parameterization. Struct. Multidiscip. Optim. 2023, 66, 35. [CrossRef]
15. Schulz, V.; Siebenborn, M. Computational Comparison of Surface Metrics for PDE Constrained Shape Optimization. Comput.

Methods Appl. Math. 2016, 16, 485–496. [CrossRef]
16. Deckelnick, K.; Herbert, P.J.; Hinze, M. A novel W1,proach to shape optimisation with Lipschitz domains. ESAIM COCV 2022,

28, 2. [CrossRef]
17. Müller, P.M.; Kühl, N.; Siebenborn, M.; Deckelnick, K.; Hinze, M.; Rung, T. A novel p-harmonic descent approach applied to fluid

dynamic shape optimization. Struct. Multidiscip. Optim. 2021, 64, 3489–3503. [CrossRef]
18. Radtke, L.; Bletsos, G.; Kühl, N.; Suchan, T.; Rung, T.; Düster, A.; Welker, K. Parameter-free shape optimization: Various shape

updates for engineering applications. arXiv 2023, arXiv.2302.12100. [CrossRef]
19. Fursikov, A.V. Flow of a viscous incompressible fluid around a body: Boundary-value problems and minimization of the work of

a fluid. J. Math. Sci. 2012, 180, 763–816. [CrossRef]
20. Baranovskii, E.S. Optimal boundary control of nonlinear-viscous fluid flows. Sb. Math. 2020, 211, 505–520. [CrossRef]
21. Onyshkevych, S.; Siebenborn, M. Mesh Quality Preserving Shape Optimization Using Nonlinear Extension Operators. J. Optim.

Theory Appl. 2021, 189, 291–316. [CrossRef]
22. Hinze, M.; Pinnau, R.; Ulbrich, M.; Ulbrich, S. Optimization with PDE Constraints; Springer: Berlin/Heidelberg, Germany, 2009;

Volume 23. [CrossRef]
23. Sokolowski, J.; Zolésio, J.P. Introduction to Shape Optimization; Springer: Berlin/Heidelberg, Germany, 1992. [CrossRef]
24. Delfour, M.C.; Zolésio, J.P. Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization; SIAM: Philadelphia, PA,

USA, 2011. [CrossRef]
25. Allaire, G.; Jouve, F.; Toader, A.M. Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys.

2004, 194, 363–393. [CrossRef]
26. Schulz, V.H.; Siebenborn, M.; Welker, K. Efficient PDE Constrained Shape Optimization Based on Steklov-Poincaré-Type Metrics.

SIAM J. Optim. 2016, 26, 2800–2819. [CrossRef]
27. de Gournay, F. Velocity Extension for the Level-set Method and Multiple Eigenvalues in Shape Optimization. SIAM J. Control.

Optim. 2006, 45, 343–367. [CrossRef]
28. Allaire, G.; Dapogny, C.; Jouve, F. Chapter 1—Shape and topology optimization. In Geometric Partial Differential Equations—Part II;

Handbook of Numerical Analysis; Elsevier: Amsterdam, The Netherlands, 2021; Volume 22 pp. 1–132. [CrossRef]
29. Ishii, H.; Loreti, P. Limits of solutions of p-Laplace equations as p goes to infinity and related variational problems. SIAM J. Math.

Anal. 2005, 37, 411–437. [CrossRef]
30. Loisel, S. Efficient algorithms for solving the p-Laplacian in polynomial time. Numer. Math. 2020, 146, 369–400. [CrossRef]

http://doi.org/10.2514/6.2003-299
http://dx.doi.org/10.1002/fld.1770
http://dx.doi.org/10.1016/j.advengsoft.2021.102992
http://dx.doi.org/10.1007/BF01061285
http://dx.doi.org/10.1080/09377255.2017.1411001
http://dx.doi.org/10.1007/s00158-018-2091-3
http://dx.doi.org/10.1080/19942060.2021.1943532
http://dx.doi.org/10.1007/s00158-022-03338-2
http://dx.doi.org/10.1002/fld.5187
http://dx.doi.org/10.1016/j.jcp.2013.01.002
http://dx.doi.org/10.1007/s00158-013-1031-5
http://dx.doi.org/10.1080/09377255.2015.1109872
http://dx.doi.org/10.1007/s00158-023-03486-z
http://dx.doi.org/10.1515/cmam-2016-0009
http://dx.doi.org/10.1051/cocv/2021108
http://dx.doi.org/10.1007/s00158-021-03030-x
http://dx.doi.org/10.48550/arXiv.2302.12100
http://dx.doi.org/10.1007/s10958-012-0670-1
http://dx.doi.org/10.1070/SM9246
http://dx.doi.org/10.1007/s10957-021-01837-8
http://dx.doi.org/10.1007/978-1-4020-8839-1
http://dx.doi.org/10.1007/978-3-642-58106-9
http://dx.doi.org/10.1137/1.9780898719826
http://dx.doi.org/10.1016/j.jcp.2003.09.032
http://dx.doi.org/10.1137/15M1029369
http://dx.doi.org/10.1137/050624108
http://dx.doi.org/10.1016/bs.hna.2020.10.004
http://dx.doi.org/10.1137/S0036141004432827
http://dx.doi.org/10.1007/s00211-020-01141-z


Aerospace 2023, 10, 519 17 of 17

31. Huang, Y.Q.; Li, R.; Liu, W. Preconditioned Descent Algorithms for p-Laplacian. J. Sci. Comput. 2007, 32, 343–371. [CrossRef]
32. Adams, R.A.; Fournier, J.J.F. Sobolev Spaces; Elsevier: Amsterdam, The Netherlands, 2003.
33. Müller, P.M.; Pinzón, J.; Rung, T.; Siebenborn, M. A Scalable Algorithm for Shape Optimization with Geometric Constraints in

Banach Spaces. SIAM J. Sci. Comput. 2023, 45, B231–B251. [CrossRef]
34. Rung, T.; Wöckner, K.; Manzke, M.; Brunswig, J.; Ulrich, C.; Stück, A. Challenges and Perspectives for Maritime CFD Applications.

Jahrb. Schiffbautechnischen Ges. 2009, 103, 127–39.
35. Yakubov, S.; Cankurt, B.; Abdel-Maksoud, M.; Rung, T. Hybrid MPI/OpenMP Parallelization of an Euler-Lagrange Approach to

Cavitation Modelling. Comput. Fluids 2013, 80, 365–371. [CrossRef]
36. Yakubov, S.; Maquil, T.; Rung, T. Experience Using Pressure-Based CFD Methods for Euler-Euler Simulations of Cavitating Flows.

Comput. Fluids 2015, 111, 91–104. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s10915-007-9134-z
http://dx.doi.org/10.1137/22M1494609
http://dx.doi.org/10.1016/j.compfluid.2012.01.020
http://dx.doi.org/10.1016/j.compfluid.2015.01.008

	Introduction
	Mathematical and Computational Model
	Optimization Method
	Descent Approaches to Simultaneously Update the Mesh and the Shape
	Governing Equations
	Numerical Method

	Application
	Two-Dimensional Bent
	Shape and Objective Functional Evolution
	Mesh Quality


	Conclusions
	References

