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Abstract: The reliability and safety of launch vehicle launch missions might be effectively increased
thanks to the fault prediction and health management (PHM) technology of engines, which could
also improve with problem diagnostics and decrease the cost of operation and maintenance overhaul.
This paper combines the equipment characteristics and the current state of safeguarding for large,
complex space systems, introduces the intelligent launch vehicle engine PHM technology methods
that are being gradually implemented in space systems, and discusses and compares fault detection
and health assessment techniques. Subsequently, analysis of the measurement signals from a rocket
engine was performed using an example, and it was shown that the established comprehensive
health assessment structure, which is based on the fault prediction algorithm method and the fuzzy
comprehensive assessment method, could successfully realize the effectiveness of the rocket engine
system health assessment, which had an outstanding application value.

Keywords: intelligent launch vehicle engine; PHM technology; fault detection; health management

1. Introduction

Launch vehicle high-density launches have been commonplace in recent years, al-
though flight mishaps, even complete flight failures, have also occasionally happened.
The technical crew discovered that the flight outcomes could be greatly enhanced and
the mission would be more trustworthy if the arrow had the capability to diagnose flaws
and fly autonomously, that is, make the launch vehicle intelligent and smarter and make
autonomous changes when faults emerge. As the brains behind clever launch vehicle
propulsion, launch vehicle engines must operate with great reliability in order for space
launch operations to go off without a hitch. There is no assurance that the hardware
operating margin in the design and production of the engine will be sufficient as it is a
highly coupled nonlinear complex system with operating circumstances that are close to
the physical limits of materials [1]. The launch vehicle’s engine, however, is an incredibly
sensitive and prone component of the launch vehicle system failure due to its high techni-
cal complexity and difficulty in balancing the requirements of large thrust, high specific
impulse, high thrust-to-weight ratio, long operation in the harsh environment of space,
and the ability to withstand significant vibration and shock loads. In order to increase
the dependability and safety of next space launch missions, research into Prognostics
and Health Management (PHM) technologies for the new generation of intelligent launch
vehicle engine systems has become necessary [2–6].

In an effort to minimize the impact of engine failures, the U.S. has been trying to put
engine PHM systems on launch vehicles and test stands for launch vehicle engines since
the 1970s. The engine PHM system [7], which consists of hardware including sensors and
operators and has a fault diagnosis algorithm at its core, could identify engine abnormalities,
diagnose faults, and predict an engine’s health state. With considerable improvements in
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sensors [8] and their fault diagnoses [9,10], fault diagnostic algorithms, operators [4,5], and
health management over the years, PHM technology for launch vehicle engines has reached
its complete development, enabling quicker, more precise, and more thorough diagnosis of
engine issues [11]. The health management system promptly identified engine failure in
numerous Space Shuttle and Falcon-9 launch vehicle operations, allowing fault-tolerant
control to successfully continue the launch mission. Hence, the likelihood of launch failure
due to engine failure would be somewhat reduced by the application of defect identification
algorithms for engine health management [12].

The maintenance strategy and research idea have advanced significantly in recent
years due to the rapid advancement of technology. PHM technology is evolving from a con-
ventional sensor-based diagnosis to an intelligent system-based prediction, from passive
after-the-fact maintenance to precise condition-based maintenance, and from straightfor-
ward in-flight monitoring and condition monitoring of avionics equipment to thorough
diagnosis and condition management encompassing all important parts of the entire air-
craft system. The management system for launch vehicle engines is attempting to develop
and moving toward automation, intelligence, and integration.

We contribute in the following two ways. Prior to categorizing and summarizing the
PHM strategies developed for intelligent launch vehicle engines, we list each technique’s
benefits and drawbacks. On the basis of examples, we also examine the research gaps in
signal analysis and signal processing-based techniques for launch vehicle engine health
management systems, and we provide sound ideas and recommendations for future
research directions which could serve as a guide for engineering practice in this area.

2. Intelligent Launch Vehicle Engine Fault Detection
2.1. Launch Vehicle Engine Failure Analysis

There are few examples of launch vehicle failures due to the high complexity of
launch vehicles and the harsh operating environment. According to past historical data,
launch vehicle engines were once sensitive and prone to failures in launch vehicles, and
the occurrence and development of failures were rapid and destructive [13]. It has been
reported that liquid launch vehicle engine failures in the United States account for more
than 60% of launch vehicle failures. European “Ariane” launch vehicles have been launched
a total of 36 times, of which five launch failures were caused by engine failures. China has
had 10 launch failures since 2009, 8 of which were caused by engine failures. In addition to
this, engine failure will also seriously affect the safety of the engine test [14].

The main causes of liquid launch vehicle engine failures, such as propellant leakage,
propulsion system component failure, excess material, and unstable combustion, are inade-
quate thrust and early shutdown. The Space Shuttle Main Engine (SSME), which served as
a representative of liquid launch vehicle engines in the United States’ study of the failure
mechanism in the late 1980s, served as the basis for a number of subsequent studies on the
health monitoring of launch vehicle power systems. In order to identify the most significant
failures, the U.S. collected and processed the SSME failure history data, created a failure
mode and impact analysis table, and classified the failure levels in accordance with expert
experience recommendations in 1987 [3]. As shown in Table 1, with a high percentage of
faults occurring in high-pressure oxidant turbines and fuel turbopumps, 17 fault modes of
engines like the SSME were discovered in 1990 and used as the foundation for creating a
database of SSME fault modes [5,15].
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Table 1. Examples of engine failure modes.

Component Failure
Mode Possible Causes Possible Effects

Heat
Exchanger

(HEX)

Coil frac-
ture/leakage

1© Coil weld or parent material fracture due to
fatigue, 2© loss of channel/bracket supports,

3© damage due to impact from fragmented liner,
turning vanes, or channels, 4© tube wall wear at
support points, 5© tube damage during HPOTP
removal and installation, and 6© coil collapse.

Mixing of GOX with fuel-rich hot gas stream
could result in ignition, detonation, and burning.

Burning would result in coil, HGM liner or
HPOTP turbine, or main injector burn-through
causing loss of engine. Fuel-rich hot gas could

enter the downstream side of the coil and
combine with oxygen from the bypass system,

causing a fire in the discharge line that supplies
the POGO accumulator and the vehicle oxygen

pressurization system.

High
Pressure

Fuel
Turbop-

ump
(HPFTP)

Structural
Failure of
Turbine
Blades

1© Rotor blade cracks, 2© loss of blade dampers,
3© excessive tip rubbing, 4© tip seal failure,

5© housing pilot lip failure, 6© housing retaining
lug failure, 7© nozzle failure, 8© impact from

macroscopic contaminant, 9© disk fir-tree
yielding or fracture, and 10© excessive rubbing of

platform seals.

Multiple blade failures resulting in immediate
loss of turbine power and rotor imbalance. Rotor
imbalance results in excessive vibration which

would cause more rubbing and additional
component failures. Extensive turbine damage
could result from impact and overtemperature.

Possible burst of pump inlet due to pressure
surge. Possible HPFTP seizure could result in

LOX-rich shutdown with subsequent main
injector or fuel preburner injector post

damage/erosion.

Loss of
support or

position
control.

1© Bearing failure (ball/cage failure, loss of
coolant corrosion, contamination, race, failures,

2© fracture/distortion of bearing carrier or
excessive loss of bolt preload, 3© excessive loss of

bearing retaining nut preload, 4© excessive
clearance at pump interstage seals, 5© failure or

excessive wear of bearing preload spring,
6© pump slinger pin failure, and 7© stud failure

or loss of preload.

Reduced speed, flow and pump output pressure,
and increased vibration levels. Possible turbine

blade failure or disintegration of
rotating assembly.

High
Pressure
Oxidizer
Turbop-

ump.
(HPOTP)

Turbine
Blade

structural
failure.

1© Blade cracks, 2© rotor blade tip rubbing,
3© honeycomb retainer failure, 4© impact,

5© inadequate cooling flow, 6© loss of damper
function, 7© operation to resonance, 8© fir-tree
yielding and fracture, and 9© nozzle failure.

Loss of turbine blades, leading to multiple blade
failure and rotor unbalance, with subsequent

rubbing and ultimate rotating
assembly disintegration.

Loss of
Axial

Balancing
Force

1© Damage to balance piston orifices from
contamination, and 2© loss of bolt preload

causing rubbing in the balance piston region.

Excessive shaft axial displacement resulting in
internal rubbing of rotating components.

Disintegration of rotating parts will occur at high
speeds.

Failure to
Transient

Torque

1© Failure of shaft or impeller splines, 2© curvic
coupling failure, 3© loss of turbine tie-bolt

preload, 4© loss of preburner tie-bolt preload,
5© main impeller retainer nut/lock failure,
6© turbine disc failure, and 7© shaft failure.

Turbine unload and overspeed with probable
blade failure and/or disk burst, rubbing, and

rotor unbalance. Turbine burst may cause
shrapnel damage to other parts of the engine,

resulting in ultimate rotating assembly
disintegration, fire, or explosion.

Low
Pressure

Fuel
Turbop-

ump
(LPFTP)

Fuel
leakage fast
liftoff seal.

1© Contamination, 2© damaged scaling surfaces
on liftoff seal or shaft, 3© binding within liftoff
seal, 4© leakage past static seal at liftoff seal to

manifold interface, and 5© damage due to failure
to liftoff.

Fuel flow into the turbine and through the MCC
and nozzle with the possible result of open-air

fire/detonation.
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Table 1. Cont.

Component Failure
Mode Possible Causes Possible Effects

Low Pressure
Oxidizer

Turbopump

Loss of
Support and

Position
Control

1© High rotor axial thrust loads; 2© pump/turbine end
bearing failure due to wear, spalling, pitting, cage

wear/failure, corrosion, loss of coolant or
contamination. 3© Loss of support bolt preload; 4© loss

of pump/turbine end bearing inner and outer race
retaining nut preload due to nut failure, lock failure, or

vibration. 5© turbine end bearing preload spring
wear/failure; 6© excessive fretting at bearing journals;

and 7© excessive rotor radial loads.

Potential contact between rotor and stationary
components due to excessive rotor movement; rubbing

in oxygen environment can cause LPOTP fire
or explosion.

Nozzle
Assembly

External
Rupture

1© Structural failure of the steer horn, feedlines, mixer,
diffuser, forward and aft manifold, and 2© tube failure

and jacket fatigue.

Overpressurization due to leakage external to the
nozzle and into the aft compartment. Fragmentation

may cause damage to adjacent engines. Sudden loss of
fuel causes LOX-rich operation.

Fuel Valve Internal
Leakage

1© Damage/failure of seal, ball, or bellows, and
2© contamination.

1© Fire due to leakage, and 2© open-air detonation and
overpressure condition.

Fuel
Preburner

Non-
uniformity of
Fuel Flow in
the Injector

Element.

1© Contamination in the fuel annulus, and 2© slippage
of LOX post support pins.

Local high mixtures and recirculation of gases around
the elements’ periphery due to non-uniformity which,
in turn, cause local erosion of the injection element tip,

the injector faceplate, the combustion zone liner or
injector baffle. Erosion through the liner may result in

burn-through of the structural wall.

Chamber
Coolant
Valve

Actuator

Sequence
Valve Leaks

Passing Early
Control

Pressurant
Downstream

Damaged sequence valve and valve seals.

The control pressurant closes the purge sequence PAV
early with the result of terminating preburner

shutdown purges, HPOTP intermediate seal purge,
and pogo shutdown charge. Loss of pogo shutdown

charge during MECO, at zero 6 condition and
minimum NPSP, will result in cavitation/overspeed of

HPOTP and/or LPOTP.

2.2. Fault Detection Methods

While the measurable parameters are consistently evaluated and verified, measurable
parameters relating to failure causes and failure processes need to be determined. The
ultimate objective is to maximize the sensing of system operational health, to reduce
unnecessary corrective maintenance, to warn of and predict approaching failures, and to
foresee aberrant situations.

2.2.1. Mathematical Modeling

The fault prediction technology method based on a mathematical model is the most
mature and widespread technology with the development of PHM technology, and its
applications are the most extensive. The basic principle of the mathematical model for
engine fault diagnosis is to consider the output of the engine mathematical model as a
standard state and then determine the deviation of the actual engine operating condition
from the standard state by various indicators. If the deviation is too large, the engine
operating conditions in this state will be considered abnormal. This method can reflect the
system’s operating condition and fault situation. At present, the application is more mature
based on the static modeling of the system structure and dynamic modeling based on the
object state estimation, physical parameter estimation, and time series and other signals.

The classical mathematical models are filter theory, diagnostic observer, parity equa-
tion, and parameter estimation [4]. For example, Cha J used the extended Kalman filter
and the traceless Kalman filter to consider the model of launch vehicle engine [16], which
combined with the redline method successfully predicted the fault at the moment of engine
start, but the real-time performance was not enough. Furthermore, the ARMA model is
the most classical model in the field of aerospace fault detection. In Figure 1 below [17],
Xue has achieved real-time detection of launch vehicle engines based on the ARMA model,
which is extremely effective for the detection of launch vehicles at steady state. The benefits
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of model-based engine fault detection are the ability to gain insight into the mechanics of
the engine system and the ability to predict faults in real time. The higher the accuracy of
modeling, the higher the accuracy of fault diagnosis. Nevertheless, the disadvantage is
that it depends on modeling accuracy and hardware redundancy, and is suitable for small
systems with clear input and output. For systems with unclear inputs and outputs, large
changes in operating conditions and strong randomness, it is extremely difficult to establish
their mathematical models and is not suitable for mathematical model-based methods. For
complex systems such as launch vehicle engines, it has been challenging to establish an
accurate model.

2.2.2. Signal Processing

The signal processing-based approach is to provide fault diagnosis using a certain
measurement signal of the launch vehicle. When the signal processing-based method
is employed for fault diagnosis, the features of the measurement signal are extracted
and combined with prior knowledge to make a prediction decision based on symptom
analysis. Typical signals consist of vibration, velocity, current, and magnetic flux. Certain
features of the signal, such as correlation functions, higher-order statistics, spectra and
autoregressive sliding average processes may be directly used for analysis, effectively
avoiding the difficulty of establishing a mathematical model of the research object.

The time domain could be used as the object of signal analysis, including mean, stan-
dard deviation, phase, slope, amplitude, peak, and root mean square, or the frequency
domain and spectrum. The redline system is one of the simplest and most basic signal-
based fault detection methods [18]. The system for anomaly and failure detection (SAFD)
proposed in the 1980s, the accelerometer safety shutdown system (FASCOS) developed
in the late 20th century [19], and the turbopump vibration monitoring system [20] are
all based on the redline method. The System for Anomaly and Failure Detection (SAFD)
in Figure 1 is an advanced redline system developed by Rock Dain for SSME real-time
anomaly detection, which could provide real-time monitoring of 22 engine measurement
parameters in the steady-state segment of SSME. The algorithm uses a statistical approach
for generating limits for the parameters based on mean and standard deviation. It cal-
culates a running average of the last five samples for each parameter and compares this
running average to the limits. If three of these parameters exceed the threshold at the
same time, the engine is determined to be operating abnormally [18]. The adaptation data
refer to the result of the adjustment calculation, which needs to be prepared before the
test run, and is used for the generation of the initial detection threshold in the steady state
period. Running Average refers to the average value of sensor measurement values at five
moments before the current moment. On the basis of the SAFD algorithm, the researchers
added the training of N1factor and N2factor to realize the abnormal detection of the engine
steady state [21]. Nevertheless, since the shortcomings of the redline system with high
misdiagnosis and leakage rate, more methods have been gradually developed, including
the Adaptive Threshold Algorithm (ATA) for measuring steady-state processes, Adaptive
Correlation Algorithm (ACA), Adaptive Weighted Sum Square Algorithm (AWSSA), En-
velop Algorithm (EA) for measuring transient processes, and Adaptive Correlative Safety
Band (ACSB). In this regard, the Short Time Fourier Transform (STFT), Wavelet Transform
(WT) [22], Hilbert–Huang Transform (HHT) and Wigner–Ville Distribution (WVD) are the
most popular time–frequency methods. In recent years, new data processing methods have
emerged, which typically include Principal Component Analysis (PCA) [23], Independent
Component Analysis (ICA), and so on [24]. Ji investigates the feature normalization process
in sparse filtering and introduces an intelligent fault diagnosis method for acoustic signal
processing based on parallel sparse filtering [25], which effectively achieves high diagnostic
accuracy for mechanical fault classification. The flow chart of the proposed method is
displayed in Figure 2. The signal processing-based method is independent of any model
and is much faster, but the detection accuracy of the method is highly dependent on the
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statistical accuracy of the data and is not suitable for handling smooth signals, which can
easily lead to false alarms.
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2.2.3. Knowledge Learning

For a launch vehicle engine, which is an extremely complex system with no apparent
system model or signal symptoms, a progressive learning mechanism is necessary to
automate the fault detection. When analysis is performed based on knowledge, the input
and output are compared and classified in a consistent manner, while machine learning
(ML) is used for training and learning to convert large amounts of data into knowledge for
making fault diagnosis and decisions. The characteristic that can be learned intelligently
from a large amount of data is what distinguishes knowledge-based fault detection from
signal-based and model-based [26], and for this reason, knowledge-based methods are also
referred to as data-driven fault diagnosis and prediction. Generally, knowledge-based fault
detection can be divided into qualitative and quantitative methods.

Qualitative methods involve Fault Trees (FT), Signed Directed Graph (SDG), and
Expert Systems (ES) [27]. One of the most typical approaches is the ES-based approach.
An expert system is a rule-based system that embodies human expertise and was initially
developed in the 1980s [28]. Because of its ability to reason under uncertainty, expert
system-based fault detection received a lot of attention in the 1990s. Nevertheless, it also
has weaknesses such as a more restrictive system nature and poor generality. In addition,
by combining production rules and minimal reduction of fault trees, the failure modes of
the system could be effectively extracted, and an optimized inference engine is constructed
based on the failure modes for logical reasoning using forward inference patterns [29].

Quantitative knowledge-based fault detection methods include statistical prediction
techniques such as the Principal Component Analysis (PCA), Partial Least Squares (PLS),
Bayesian Classifier and the currently popular Support Vector Machine (SVM) analysis
method [30]. In this regard, SVM applied to fault detection has the superiority of being able
to overcome the situation of small samples and limited features and provide maximum
analysis and prediction of the data [31]. Non-statistical analysis methods such as Neural
Networks (NN) and Fuzzy Logic (FL) are also included in quantitative knowledge fault
detection. With the powerful ability in nonlinearity and adaptive learning capability,
Neural Networks-based fault detection is widely used and has turned out to be one of
the most mature non-statistical fault diagnosis tools [32,33]. The Neural Network-based
fault prediction method is trained to learn based on the historical data provided, and
then the constructed network structure is constructed to achieve the required accuracy
for prediction, which is appropriate for the intelligent prediction of complex systems. As
the launch vehicle engine system has nonlinear and complex features, it will become an
essential tool for its diagnosis. Zhao introduced a new semi-supervised GNN approach that
utilizes a combination of tagged and untagged information for device fault diagnosis [34].
Additionally, this paper proposed two cross-domain aero engine fault diagnosis methods,
one-stage-transfer-learning ELM (OSTL-ELM) and two-stage-transfer-learning ELM (TSTL-
ELM) [35], which had a fast training speed and a good real-time diagnosis. As shown in
Figure 3, Yang [36] proposed a framework called multi-source transfer learning network
(MSTLN) to aggregate and transfer diagnostic knowledge from multiple source machines
by combining multiple distributed adaptive subnetworks and multi-source diagnostic
knowledge fusion modules. This approach could reduce the misdiagnosis rate and obtain
improved transfer performance for unbalanced target samples. Additionally, to diagnose
multiple fault types at the same time, an ensemble model based on multiple machine
learning methods was established [37].

In addition, Neural Network-based fault detection also suffers from “black box”
characteristics that are not reasonably interpretable, long machine learning time, large
computational power requirements, and the need for a larger number of labeled sample
data. Fuzzy Logic (FL) is a method of dividing feature spaces into fuzzy sets and reasoning
by using fuzzy rules that essentially provide approximate human reasoning. Zheng [38]
and Lyu [39] thoroughly investigate the robust stability as well as the reliable control
problems of several types of fuzzy systems for T–S fuzzy systems. Simultaneously, fuzzy
clustering contributes to fuzzy modeling. Huang [40] investigated a new fault diagnosis
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method based on fuzzy clustering for fast knowledge modeling. Palade [41] combined
fuzzy clustering with fault diagnosis models for coarse data modeling. Fuzzy prediction
possesses advantages in dealing with complex systems such as uncertainty, nonlinearity,
and having linguistic features to describe human knowledge, but it also has fault detection
which is devoid of temporal parameters and lacks time control.
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PDA-Subnet for the source domain sk and the target domain t (the dotted lines represent the
error backpropagation).

2.2.4. Digital Twin

Recently, the development of digital twin has shown an explosive trend, which has
been widely used in satellite communication, smart city construction, aircrafts, vehicles,
ships, and other fields [42]. Undoubtedly, there is also a very broad development prospect
in the field of aerospace. NASA proposed as early as 2010 that it would successfully
apply digital twin to simulation-based systems engineering in 2027 as one of NASA’s top
technologies for the next three decades [43].

The digital twin-based PHM approach refers to the combination of the original PHM
technology with digital twin technology [44]. On the basis of building a digital twin,
physical and virtual devices are interactively fused using the twin data to drive the fusion
of physical and virtual devices, giving full play to the role of simulation data and virtual
models, in order to achieve early prediction and accurate positioning of faults. To begin
with, the physical information system achieves data acquisition and transmission to the
virtual model through sensors and communication networks. The virtual model, driven
by twin data, achieves synchronous simulation operation with the physical entity and
simulates possible faults to achieve fault location. Meanwhile, a repair solution is obtained
with the aid of a historical fault library. Eventually, the solution is run on the virtual model
and the physical entity successively to verify the feasibility of the solution. Currently,
there are a few case studies for launch vehicle engines, but with the progress of sensing
technology, digital twin-based fault detection has been gradually applied to launch vehicle
structure manufacturing [45], test launch [46], and other fields, which provide theoretical
reference for intelligent fault diagnosis of engines based on digital twin. The following
Figure 4 shows the schematic diagram of a digital twin-based structure design technol-
ogy. Tao Fei established a five-dimensional digital twin model of complex equipment,
and proposed that PHM supported by digital twin will bring a dynamic physical and
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virtual equipment real-time interaction of fault observation mode, a fault analysis mode, a
maintenance decision mode and an autonomous precise service of PHM function execution
mode [47].
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retains all data in the CAE model and conducts multidisciplinary simulation analysis, and in turn
transmits design improvement information to CAD to form a closed loop.

2.2.5. Hybrid Fault Detection

Mathematical model-based, signal processing-based, and knowledge-learning-based
fault detection methods each have their own advantages and limitations of applicability.
Mathematical model-based approaches could use a small amount of data but require a
clearly visible model that can represent the inputs and outputs. Signal processing-based
is without a model, but it requires a certain feature for fault diagnosis, and its diagnostic
performance decreases when the input is unknown. Knowledge-based fault diagnosis has
the advantage for complex and huge system analysis, but it relies on a high amount of
historical data and a lot of learning training, and it requires high computational power.
On the one hand, in order to give full play to the advantages of each diagnostic method,
they are often mixed together, which is called a hybrid fault diagnosis method. On the
other hand, in the design of complex PHM systems for intelligent launch vehicle engines,
fault diagnosis algorithms are often determined based on system design objectives, such as
time sensitivity, detection accuracy, coverage of faults, coverage of operating conditions,
etc. If there are too many system design objectives, a single algorithm is often difficult to
meet the requirements, and it is also necessary to integrate multiple methods to complete
the diagnosis and prediction of faults in parallel [48–50]. For instance, Brotherton T has
developed techniques that couple neural nets with automated rule extractors to form
systems that have good statistical performance, easy system explanation and validation,
potential new data insights and new rule discovery, novelty detection, and real-time
performance [51]. Additionally, they apply these techniques to data sets collected from
operating engines. Sergei Nikolaev proposed a methodology for building hybrid models of
gas turbine power plants for solving the task of prescriptive and predictive plant health
analytics [52].
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3. Intelligent Launch Vehicle Engine Health Management
3.1. Health Assessment

Health assessment is considered as one of the crucial PHM techniques to evaluate the
current health of the system or the health of its critical components [53]. The health assess-
ment of launch vehicle engines is to evaluate the health degradation of the engine based on
the monitoring information, providing fault diagnosis conclusions with confidence levels.
By combining the health history, operating status, and operational load characteristics
of the system, an evaluation model reflecting the current performance is established to
accurately grasp the operating status of the launch vehicle engine, so that various perfor-
mance degradation processes of the system or its key components may be discovered in
a timely manner [54,55]. Furthermore, the health assessment of the launch vehicle motor
helps to provide a reference for the maintenance personnel to make maintenance decisions,
improve maintenance efficiency, and increase the efficiency of mobilizing components or
maintenance resources.

The foundation of the launch vehicle engine health assessment is condition monitoring
data, so the primary issue of health assessment is how to effectively select the characteristic
parameters that could indicate the engine operation for condition monitoring [56]. Theo-
retically, more information provides a more comprehensive and accurate reflection of the
system’s operating status, and can effectively carry out the subsequent fault isolation and
fault location work. However, too many measurement points can easily introduce sensor
measurement errors, while a cascading system will gradually superimpose the errors of
each node, affecting the final assessment accuracy. Therefore, in order to fully reflect the
operating status of launch vehicle engines, it is necessary to select parameter sets that are
suitable for measurement and recording to maximize the information of the measured
data and reduce the redundant information of the characteristic parameter sets. To fol-
low the above principles, the selection of feature parameters includes the following two
ideas. The first one is to convert the selection of test points into an objective optimization
problem with constraints from the testability point of view [57–59], using algorithms such
as greedy algorithms, or heuristic search algorithms, such as particle swarm algorithms
and ant colony algorithms to find the best. Afterwards, the information collected from
the optimized test points is used to form the final set of feature parameters. The second
type is to select some of the main features from the existing feature parameter set from
the feature selection perspective [60–62], which usually uses algorithms, such as Principal
Component Analysis, popular learning algorithms, or compressed self-coding to determine
the final set of feature parameters. After the feature parameter set is determined, a health
index could be constructed based on the feature parameter set to visually represent the
performance state of the system. The health index is generally normalized to the interval
0–1, which could be analyzed qualitatively or quantitatively to determine the health status
of the system.

3.1.1. Quantitative Methods

From the quantitative point of view, the change process of the health index reflects the
performance degradation course of the launch vehicle engine. Therefore, the performance
change trend could be predicted by algorithms or models. For instance, Liao introduced
a method [63] for the bearing health assessment by applying the fast Fourier transform
(FFT) to extract the vibration signal as a feature vector representing the health status of
the bearing. The feature vectors are then transformed using a Neural Network technique,
self-organizing mapping (SOM), to derive health maps for different bearing failure modes,
and the evaluation model is shown in Figure 5. The left image shows a plot of the vibration
data acquired while the machine is operating in a normal condition, as well as plots of
seven different combinations of the failure modes identified. The right map shows eight
areas which are labeled by ‘N’, ‘RF’, ‘IF’, ‘OF’, ‘OR’, ‘OI’, ‘IR’, and ‘OIR’, indicating the
normal status, roller defect, inner-race defect, outer-race defect, outer-race and roller defect,
outer-race and inner-race defect, inner-race and roller-defect, and outer-race and inner-race
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and roller defect, respectively. The input vector of a specific bearing defect was represented
by the Best Matching Unit (BMU) on the map indicated by a “Hit Point”. By looking at the
area pointed by the “Hit Point”, the failure mode of the bearing was determined [64]. Yang
Feng [65] introduced a dynamic smoothing algorithm to predict the health state of a system
by using a health index. Hamed Zeinoddini Meyman [66] proposed a strategy of using
technology class parameters together as feature parameters, and then, using an artificial
Neural Network algorithm to construct a health index to monitor the health state of the
system throughout its life cycle by solving the health index. Professor Michael Pecht [67] of
the University of Maryland selected the set of feature parameters to construct the circuit
health index from a fault diagnosis perspective, and used the features extracted from the
circuit response to reflect the performance state of the key components of the circuit, and
analyzed the circuit health state with improved particle filtering algorithm to evaluate and
predict the circuit health state in an adaptive manner. Liu Kaibo [68] from Georgia Institute
of Technology proposed a method to integrate feature parameters collected by multiple
sensors to construct a health index to characterize system performance. Furthermore, the
process from feature parameter selection, feature preprocessing, feature fusion to health
index construction was discussed in detail. Taking an engine system as an example, it
was verified that the health index model based on multi-sensor data fusion could more
accurately characterize the system performance degradation history. Liang Zhou combined
simulation techniques with deep learning methods to construct a deep digital twin model
which could intuitively reflect the engine health condition in real-time [69].
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3.1.2. Qualitative Methods

From the qualitative point of view, the health index could be divided into different
health levels, each of which represents a performance state of the system. Maintenance
personnel are able to make maintenance decisions corresponding to the different health
levels. Professor Michael Pecht [70] proposes to construct a health index for each key
sub-circuit utilizing the system circuit characteristics to address the performance degra-
dation of electronic systems. The multiple subhealth indices then synthesized into an
overall health index. Through classifying the health index into different levels to evaluate
the current performance state of the system circuit, it could be possible to evaluate the
current performance state of the electronic system through the constructed health index
by monitoring only a few key nodes in the circuit. Maryam Khoddam et al. [71] used
scoring and weighting to construct a health index of the system and classified the health
index into three levels of health, performance degradation, and risk to characterize the
performance status of high-voltage circuit breakers. Prasanna Tamilselvan [72] addressed
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the problem of multi-sensor data fusion and feature extraction using deep belief networks,
starting from the trouble-shooting problem of complex systems, such as engine systems
and power transformers. They used BP Neural Network to fuse the extracted features
into health indices, and then classified the health indices into different health classes to
further investigate the fault states of the systems. Lu Chen [73] worked on the health status
problem of engine rolling bearings, and the method flow is shown in Figure 6. In the first
place, the collected rolling bearing data from intact to faulty are distributed into different
health classes, and then the convolutional Neural Network is used to extract features from
the bearing data. The extracted features are classified into the corresponding health classes
according to the classifier, which could complete the fault state diagnosis of rolling bearings
in engines.
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As a summary, for intelligent launch vehicle engine systems with high complexity
and integration, monitoring all components or functions of the system one by one leads
to serious waste of resources and the burden of cost. Comparatively, building an overall
system health state model with the method based on feature parameter fusion provides an
effective description of the performance degradation history of the engine, and such an
approach has a high assessment accuracy, which can improve the safety and maintenance
efficiency of the system [72,74,75].
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3.2. Health Management

The health management system [76] is to collect data through sensor integration,
obtain relevant characteristic quantity information with the support of data mining meth-
ods such as the Fourier transform and classification clustering, constantly monitor the
internal state and external environment, and perform timely fault diagnosis and prediction
to guarantee system reliability and safety and maximize economic benefits. The Open
Systems Architecture for Condition-Based Maintenance (OSA-CBM) [77], which was led by
Boeing and developed through multiple organizations from industry, military, commercial
manufacturing, sensor technology, and other fields, was a typical hierarchical converged
PHM architecture. Its framework architecture diagram is shown in Figure 7. Presently
numerous equipment health management systems were designed and implemented with
this model as their architecture. The OSA-CBM-based equipment health management
system not only focused on equipment condition monitoring and maintenance, but also
emphasized intelligent and information-based equipment management, which is a strong
guideline for the design of an engine system health management system for intelligent
launch vehicles.
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3.2.1. Design Requirements

The principal purpose of the health management system on launch vehicle engines [1]
are as follows. On the one hand, it could improve engine safety by providing early real-time
monitoring of operating conditions which might develop into critical system failures. On
the other hand, it may minimize failure isolation time for failed components to become
linearly replaceable units through the automatic reasoning of the data to assist in reducing
maintenance assurance costs and termination tasks. The autonomous logistics approach
introduced in the Joint Strike Fighter is an example of the application of airborne diagnostics
and predictive health management capabilities [78]. The aim is to abandon timed engine
inspections and instead rely on situational health assessments.

The function of the health management system on a launch vehicle engine is to acquire
data, monitor and evaluate the current engine condition, and to forecast the in-future
condition of the engine. Subtle changes in a few combinations of measured parameters
may predict the early symptoms of a failure process. These changes in parameter charac-
teristics are often hard to detect by simply observing whether the parameter values are
out of bounds, since the parameter values usually remain within the normal range. The
analysis of trends in parameter values over time under a particular operating condition
has the capability to help detect shifts in data, anomalies in the rate of change of data, and
anomalous distributions of data. The operation of the fuel and lubrication systems, as well
as the rotational functions, can all be measured in order to examine these trends.
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3.2.2. Operation Process

The health management system of intelligent launch vehicle engines includes a large
number of different devices and components. Health status management of such a complex
system requires the completion of multi-level health information collection of components,
equipment, subsystems, and systems. Additionally, the collected information is used to
realize health management applications such as system-wide condition monitoring, fault
diagnosis, health status assessment, and maintenance-assisted decision-making. The busi-
ness process of an intelligent launch vehicle engine health management system is shown
in Figure 8 [79], which mainly covers system health information collection, a health man-
agement database, and health management application. The data and knowledge support
for health management business, such as fault diagnosis and health status assessment
are based on the system’s multi-level health information collection and health business
knowledge, which in turn provides operation and maintenance guarantee services for
launch vehicle motor system equipment.
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4. A Multilayered and Multifactorial Health Assessment Method for Launch Vehicle
Engine under Vibration Conditions
4.1. Instance Overview

During launch vehicle flight, vibration signals cover low, medium, and high frequen-
cies, which seriously affect the normal operation of equipment structures and electrical
systems of several launch vehicle systems, resulting in a decrease in the reliability and
safety of the rocket. Mechanical vibrations could provide high information content and are
very sensitive to mechanical hardware failures and the external environment. Traditional
launch vehicle health management is stratified and analyzed from the hardware perspec-
tive, but it could hardly monitor all internal components and there are missed alarms. This
part performed an example analysis of launch vehicle engine measurement signals based
on vibration signals and establishes a comprehensive health assessment structure based
on a fault prediction algorithm and a fuzzy integrated assessment method. In this way,
the engine health level could be evaluated and the internal health of the engine could be
analyzed more comprehensively. The work and conclusions of this chapter were obtained
by the authors through experiments.

4.2. Instance Scheme

The instance scheme of the vibration signal-based evaluation method is shown in
Figure 9.
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Firstly, through the state space partitioning method based on the box-line diagram,
we are able to obtain the upper and lower limit values of the state waveform. Secondly, the
predicted waveform is obtained by the prediction algorithm LSTM and compared with the
state space of health values to determine the probability of evaluation distribution, which
is set as the evaluation set. After that, the weight relationship between each layer of data on
health effects is calculated by the hierarchical analysis method (AHP) and set as the weight



Aerospace 2023, 10, 517 16 of 20

set. Finally, the evaluation set V and the weight set W are used as the input of the fuzzy
comprehensive evaluation method (FCE) to calculate the overall system health values.

4.3. Instance Steps

1. LSTM prediction error indicators (RMSE) was shown in Table 2.

Table 2. Prediction results using RMSE as an error indicator.

POGO Low-FRE High-FRE Fluctuation Shock Noise

Batch 1 2 3 1 2 3 1 2 1 2 3 1 2 1 2

RMSE 0.002 0.003 12.061 0.005 0.0827 0.007 0.125 0.593 3.362 2.669 1.722 514.729 5.730 18.948 6.347

2. The results of the limit value calculation based on the box-line diagram method were
shown in Table 3.

Table 3. Boxplot analysis results.

Evaluation
Index Q1 Q3 IQR Upper Whisker Lower Whisker

POGO
0.00033 0.00192 0.00159 0.004311 −0.002059
0.00043 0.00197 0.00155 0.004293 −0.001894
7.23250 20.64000 13.40750 40.75125 −12.878750

Low-FRE
0.34259 0.51403 0.24975 0.888657 −0.032034
0.03875 0.08733 0.04858 0.160188 −0.034113
0.01493 0.03593 0.02100 0.06743 −0.016573

High-FRE 0.19508 1.46291 1.26783 3.364663 −1.706674
0.41815 1.09954 0.68138 2.121609 −0.603918

Fluctuation
0.89775 3.10775 2.21000 6.42275 −2.417250
0.32800 0.83250 0.50450 1.58925 −0.428750
1.65750 5.71250 4.05500 11.795 −4.425000

Shock
1458.52925 2113.22075 654.69150 3095.258 476.492000

2.08061 12.68086 10.60025 28.58124 −13.819764

Noise
103.58910 119.63305 16.04395 143.699 79.523175
120.62943 126.47000 5.84058 135.2309 111.868563

3. The evaluation index is thus set to M = {excellent, good, normal, bad, deterioration}.
The coefficient of the specified IQR is divided into five intervals, and the score of each
category is F = (1.0, 0.8, 0.6, 0.4, 0.1). The probabilities of statistical prediction data in
the intervals of health states are presented in the following Table 4.

Table 4. The valuation probability of waveform predicted by LSTM method.

Evaluation
Index Batch Excellent Good Normal Bad Deterioration

POGO
1 0.937 0.012 0.003 0.013 0.035
2 0.849 0.05 0.038 0.028 0.035
3 0.972 0.013 0.015 0.000 0.000

Low-FRE
1 1.000 0.000 0.000 0.000 0.000
2 0.975 0.003 0.003 0.006 0.013
3 1.000 0.000 0.000 0.000 0.000

High-FRE 1 1.000 0.000 0.000 0.000 0.000
2 0.936 0.028 0.019 0.013 0.004

Fluctuation
1 0.965 0.003 0.013 0.013 0.006
2 0.934 0.009 0.009 0.006 0.042
3 0.991 0.003 0.006 0.000 0.000

Shock
1 0.000 0.000 0.000 0.464 0.536
2 0.95 0.05 0.000 0.000 0.000

Noise
1 1.000 0.000 0.000 0.000 0.000
2 0.982 0.018 0.000 0.000 0.000



Aerospace 2023, 10, 517 17 of 20

4. The set of weights is shown below:

Effect of weighting of six types of vibration data:
W = (0.33, 0.20, 0.07, 0.27, 0.10, 0.03)
Batch weight of POGO vibration: W1 = (0.14, 0.29, 0.57);
Batch weight of low frequency vibration: W2 = (0.14, 0.29, 0.57);
Batch weight of high frequency vibration: W3 = (0.33, 0.67);
Batch weight of fluctuation vibration: W4 = (0.14, 0.29, 0.57);
Batch weight of shock vibration: W5 = (0.33, 0.67);
Batch weight of noise vibration: W6 = (0.33, 0.67).

5. The fuzzy integrated assessment result is: Score = V·W·F.

After normalization, the health of the data predicted by LSTM is assessed as 95.939.
Similarly, the error in the evaluation of the forecast and actual data is 0.0043%.

5. Discussion

With an emphasis on the PHM technology used in intelligent launch vehicle engines,
this article analyzes the typical failure types, failure detection approaches, health assessment
and management systems of launch vehicle engines. By studying instances of launch
vehicle engines, it also evaluates the technical foundation of the subject and suggests
present flaws and prospective future development directions in the field of intelligent
launch vehicle engine PHM.

It is vitally necessary to carry out in-depth research on cutting-edge technologies in-
cluding engine multi-source information fusion, multi-algorithm parallel decision making,
and full-arrow measurement information fusion in the hopes of improving the efficacy of
defect diagnosis. On the same hand, the PHM area for intelligent launch vehicle engines
currently has a number of shortcomings. On the other hand, in addition to the pertinent
theories and methods that still need to be investigated, it is urgent to clarify the objectives
and focus on the implementation of engineering research on the currently available, rela-
tively mature fault detection and diagnosis methods and technologies in order to apply
them to the development test and actual operation of liquid launch vehicle engines.

The three primary directions of future research in the field of PHM for intelligent
launch vehicle engines are synthesis, intelligence, and practicality. Intelligent launch
vehicle engine fault detection combines advanced artificial intelligence techniques such
as knowledge engineering, pattern recognition, expert systems, Neural Networks, and
qualitative reasoning in order to solve issues. A real-time online automated intelligent
launch vehicle engine health monitoring system will be able to be created and achieved in
order to enable intelligent launch vehicle flying successfully.
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