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Abstract: The application of the time-inclined method in a fourth-order unstructured flux-reconstruction
code for turbomachinery is demonstrated. Inviscid and viscous unsteady results due to the interaction
of an incoming gust of total pressure with a linear cascade of flat plates and a linear cascade of T106A
low-pressure turbine airfoils are reported. The agreement between the time-inclined method and
the equivalent full-annulus multipassage solution is very high for both cases. Viscous solutions at
Reynolds numbers of 104 and 105 were conducted. A high degree of matching was obtained between
the time-inclined and the whole annulus approaches. The limitations of the method are explored
and discussed. While the evolution of the unsteady boundary layers created by the interaction with
the incoming wakes was very well captured, the mixing associated with the trailing edge vortex
shedding was less accurate. The critical parameter controlling the method’s accuracy is the local
Strouhal number. It was demonstrated that the benefit of retaining the exact blade count in the
simulations overcomes the slight differences in the mixing due to the limitation of the time-inclined
method to model viscous effects accurately in all situations.

Keywords: high-fidelity; scale-resolving simulations; turbomachinery; rotor/stator; time-inclined;
flux reconstruction

1. Introduction

Scale-resolving simulations have evolved up to a point in which they can compete
with low technology readiness level (TRL) experiments [1,2]. A substantial fraction of the
fine scales are appropriately resolved, often without any modelling, and the computational
cost is affordable at the industrial level for quasi-three-dimensional simulations at mod-
erate Reynolds numbers (Re ∼ 105) provided that they are restricted to a single passage.
However, the long spatial scales associated with the blade count disparity between stators
and rotors play a significant role in aeroelastic and aeroacoustics problems, making it con-
venient to retain the exact blade count of the airfoil and its perturbations in eddy-resolving
simulations. Moreover, keeping the exact blade count of the incoming wakes is relevant for
the mixing process and avoids modifying the flow parameter of the simulations as well.

Virtual experiments reproducing the losses of linear cascades with moving bars are be-
ginning to become commonplace [1–5]. Nonetheless, the simulations accuracy is frequently
compromised to accommodate the blade count to a single passage. For instance, in the
experiment reported by Bolinches et al. [2], the actual ratio between the pitch of the rotating
bars and the airfoils was Pr/Ps = 1.07, but it was approximated to Pr/Ps = 1 in the simu-
lations. Moreover, the bar speed was adjusted to match the bar passing frequency changing
the experimental flow parameter. This is not an option for realistic blade counts, and this
approach contradicts performing computationally intensive high-fidelity simulations since,
at the same time, the physical parameters of the simulations are approximated grossly.

The problem is further aggravated in scale-resolving simulations to predict fan broad-
band interaction noise. In this case, the blade count of the single fan stage is frequently
approximated to reduce the size of the computational domain [6,7]. Although the impact
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can be small for broadband noise predictions, it does affect the aerodynamics and the gen-
eration of pure tones hindering the holistic nature of the simulation. Generally speaking,
although the impact of adjusting the number of incoming wakes in the aerodynamic loss
predictions can be small, the same is not valid in the acoustic field.

One of the main bottlenecks for a generalised application of high-fidelity simulations
in the industry lies in the difficulties encountered when the stator/rotor pitch ratio is not a
small integer ratio. In this case, spatial periodicity is only recovered by including many
blade passages in the computational domain, significantly reducing the affordability of
the simulations.

Several methods have been proposed to deal with dissimilar blade counts using a
single-passage approach for time-periodic flows. Erdos et al. [8] addressed, for the first time,
the problem of the computational efficiency of a stator/rotor interaction with dissimilar
pitches between the stator and the rotor (see Figure 1) using a method whereby the solution
was reconstructed in the periodic boundaries and the sliding plane, assuming that the
solution was periodic in time. This approach was optimised, approximating the stored
solution with a truncated Fourier series in time to reduce the amount of storage [9,10] and
to account for multiple fundamental frequencies [11].

Figure 1. Nomenclature and illustration of a rotor/stator problem with dissimilar gaps.

The strongest hypothesis of the methods mentioned above posits that the harmonic
content of the flow is formed by a few fundamental frequencies associated with the blade
passing frequencies of the neighbouring rows and their higher-order harmonics [11]. This
hypothesis is needed to reconstruct the signal using earlier time instants on the opposite
side of the periodic line. Temporal signals from scale-resolving rotor/stator simulations
superimpose random-like unsteady contributions to a baseline periodic content of the signal
similar to unsteady Reynolds-averaged Navier–Stokes (URANS) simulations, conceptually
preventing a direct application of phase-lagged boundary conditions. However, recent
attempts have been pursued unsuccessfully [12,13].

The use of phase-shifted boundary conditions experiences two additional problems.
The first is a degradation of the convergence time with respect to the full-annulus (FA)
simulation, even for URANS analyses. Part of this problem stems from the difficulty in im-
plementing fully consistent phase-lagged boundary conditions in the periodic boundaries.
To remedy this problem, Biesinger et al. [14] proposed the dual-passage method whereby
the phase-lagged boundary conditions are implemented in two passages instead of a single
one to mitigate the convergence problem. Giovannini et al. [15] reported a factor of five in
computational time using this technique in a rotor/stator simulation despite using twice as
many points as that of the original method. Moreover, in a scale-resolving simulation, the
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time spectrum is richer than that in URANS simulations, and the number of snapshots that
need to be stored in the boundaries is very high.

In the early nineties, Giles [16,17] introduced the use of time-inclined (TI) computa-
tional planes to deal with the difficulties encountered with dissimilar stator/rotor pitch
ratios. The TI method performs a time transformation of the equations leading to a new set
of governing equations. In contrast to the time-harmonic and phase-shifted methods, the
TI method does not require the hypothesis of flow periodicity which makes it potentially
suitable for the scale-resolving simulation of turbulent flow. One of the main limitations
attributed to the TI method is that it can only deal with a single stage (single-pitch ratio)
but does not suffer from convergence problems due to the boundary conditions; neither
requires additional storage nor makes explicit use of the time periodicity of the flow. The
method is limited to specific combinations of pitch ratios and rotor velocities, but typical
turbomachinery applications lie within the applicability range. Moreover, it is generally
possible to circumvent such limitations by simulating more than a single passage in the
reduced domain, yet avoiding the cost of computing a much larger domain with directly
periodic boundary conditions. Despite the fact that the time-inclined method was intro-
duced more than 30 years ago, it is not widely implemented in turbomachinery solvers
with the sole exception of the ANSYS suite of solvers [18], and therefore its analysis is
very limited.

To the authors’ knowledge, this is the first time that the time-inclined method has
been implemented in a high-order flux-reconstruction (FR) method, and the accuracy
of the TI method is discussed in detail. The discussion concerning the accuracy of the
TI method to represent viscous unsteady non-periodic flows is also new and applies to
classical second-order RANS solvers as well. The combination of the time-inclined and flux-
reconstruction methods is an original solution to tackle the LES or DNS of a single-stage
turbomachine with dissimilar blade counts in the rotor and the stator using a single-passage
approach. The efficient and accurate simulation of this problem will enable eddy-resolving
simulations of at least single-stage configurations, which is a problem that has not been
overcome thus far.

This paper first introduces the time-inclined method and the high-order numerical
scheme of the baseline solver. It further identifies the conditions under which the accuracy
of the TI method is degraded. Following this, two-dimensional results in linear cascades of
flat plates and low-pressure turbine (LPT) airfoils are presented. Finally, the paper ends
with a discussion on the accuracy of the results and the conclusions.

2. Materials and Methods
2.1. Numerical Method

Because of computational efficiency, low dissipation schemes are used frequently in
scale-resolving simulations of turbulent flows instead of standard second-order methods
typically used in RANS analysis. Higher-order compact numerical methods, such as the
flux reconstruction method (FR), offer low numerical dissipation and are well-suited for
simulating vortical structures and turbulent flows [19].

The time-inclined method has been integrated into a compressible high-order solver [20,21]
based on the FR method of Huynh [22] and extended to triangular elements following the
work of Wang and Gao [23]. The technique has been successfully used to perform quasi-
direct numerical simulations of low-pressure turbine transitional flows in the presence
of incoming wakes [1,2]. A summary of the numerical method is given next for the sake
of completeness.

Spatial Discretization

The FR method [22] for the solution of one-dimensional conservation laws

∂U
∂t

+
∂f
∂x

= 0 (1)
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is revisited first. Consider a 1D integration domain Ω = [0, L] discretized in N elements
with the ith element defined by Vi = [xi, xi+1]. For each element i, we define p + 1 solution
points (SPs) at which the state variable (U) is evaluated. Given these SPs, the solution is
approximated using Lagrange polynomials as

U(x, t) ' Uh
i (x, t) =

p+1

∑
j=1

Uh
ij(t)Lj(x) (2)

where Uh
ij is the solution at SP j of element i, and Lj(x) is the Lagrange polynomial with

value 1 at x = xj. For each element, we define a local coordinate, ξ = [−1, 1], such that

xj = xi +
4xi

2
(
ξ j + 1

)
with ∆xi = xi+1 − xi. The flux is defined analogously:

f(Uh) ' fD
i (ξ, t) =

p+1

∑
j=1

f(Uh
ij)Lj(ξ) (3)

Since the solution is in general discontinuous across element interfaces, the flux is
reconstructed in such a way that the reconstructed flux fC: (i) is of degree p + 1, where
p is the order of fD, (ii) is close to fD, and (iii) takes the value of the interface fluxes
at the boundaries of the element which is computed with a Riemann solver. The final
corrected flux is of the form fC

i (ξ) = fD
i (ξ) + γi(ξ) where γi(ξ) is the correction flux

function defined as follows:

γi(ξ) = [fI
L − fD(ξ = −1)]gL(ξ) + [fI

R − fD(ξ = 1)]gR(ξ) (4)

where fI
L and fI

R are the left and right interface fluxes, and gL(ξ) and gR(ξ)are the left and
right correction functions, respectively. The correction functions are chosen as the left and
right Radau polynomials in this work to recover the nodal-based discontinuous Galerkin
formulation. The discrete form of Equation (1) is as follows:

∂U
∂t

+
dξ

dx

{
p+1

∑
j=1

f(Uh
ij)

dLj

dξ
(ξ) + [fI

L − fD(ξ = −1)]
dgL
dξ

(ξ) + [fI
R − fD(ξ = 1)]

dgR
dξ

(ξ)

}
= 0 (5)

which is advanced in time using a fourth-order Runge–Kutta scheme.
The extension to multiple dimensions of the method is readily performed for quadri-

lateral elements as tensor product operations in multiple dimensions. The extension of the
method to triangular elements is performed using the correction procedure by reconstruc-
tion (CPR) approach of Wang and Gao [23].

2.2. Time-Inclined Formulation

The formulation of the time-inclined method has been described previously [16] but is
summarised below for the sake of completeness.

2.2.1. Euler Equations

The two-dimensional Euler equations in the physical coordinate system can be written
in a conservative form as follows:

h
∂U
∂t

+
∂(hf)

∂x
+

∂(hg)
∂y

= S, (6)

where

U =


ρ

ρu
ρv
ρE

, f =


ρu

ρu2 + p
ρuv
ρuH

, g =


ρv

ρuv
ρv2 + p

ρvH

 (7)
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and h is the streamtube thickness of the two-dimensional section that gives rise to the
source term S = (0 phx phy 0)T in the right-hand side of Equation (6). Giles considered
a transformation from the physical coordinates (x, y, t) to the computational coordinates
(x′, y′, t′) such that periodicity is achieved in the rotor and stator computational domains
(see Figure 1), i.e., U(x, y, t) = U(x, y + Pr, t + ∆T).

The equations defining the transformation are

x′ = x, y′ = y, τ = t− λy (8)

where
λ =

∆T
Pr

=
Ps − Pr

VPr
. (9)

This transformation can be regarded as grid mapping analogous to that performed
to map the governing equations from the physical domain to the transformed domain in
structured solvers. The main difference is that time is deemed one more dimension and
transformed in the mapping process. The resultant system of equations in the computa-
tional coordinate system is as follows:

∂Q
∂τ

+
∂f
∂x′

+
∂g
∂y′

= S, (10)

where the new conservation variables are Q = U−λg. This redefinition of the conservation
variables causes a minimum disruption in the baseline numerical method because U can be
calculated from Q in closed form for a perfect gas. This is particularly useful in GPU-based
codes where increasing the number of operations per point is computationally forgiven. For
explicit codes, the main idea is to advance the new conservative variables to the next time
step Qn+1, then compute Un+1 = z(Qn+1), and finally, re-evaluate the original physical
fluxes in the time instant (n + 1)∆t, i.e., fn+1 = f(Un+1) and gn+1 = g(Un+1).

With a departure from the values of Q = (q1, q2, q3, q4)
T , the relationship between Q

and U can be written as follows:

q1 = ρ(1− λv)
q2 = q1u
q3 = q1v− λp
q4 = 1

2 q1(u2 + v2) + 1
γ−1 p− λ γ

γ−1 pv

(11)

By injecting u = q2/q1 and v = (q3 + λp)/q1 from the second and third equations
into the fourth equation, the following equation for the static pressure is obtained:

ap2 + 2bp + c = 0 (12)

where
a = (γ + 1)λ2

b = −(q1 − λq3)
c = (γ− 1)(2q1q4 − (q2

2 + q2
3))

(13)

The quadratic equation has two solutions:

p =
1
a

(
−b±

√
b2 − ac

)
(14)

The negative root yields the correct value for λ→ 0. Once p is obtained, the remaining
physical variables can be easily obtained.
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2.2.2. Navier–Stokes Equations

The 2D Navier–Stokes equations can be written in conservative form and in the
physical coordinate system as follows:

h
∂U
∂t

+
∂(hf)

∂x
+

∂(hg)
∂y

=
∂(hF)

∂x
+

∂(hG)

∂y
+ S (15)

where

F =


0

τxx
τyx

τxxu + τxyv− qx

, G =


0

τxy
τyy

τyxu + τyyv− qy

 (16)

where the stress tensor is given by

τ = µ(∇v +∇vT)− 2
3

µI∇ · v (17)

where µ is the dynamic viscosity, and I is the identity matrix. The heat flux vector is given
by q = κ∇T, where κ is the conductivity.

The application of the time-inclined transformation to Equation (15) leads to

h
∂Q
∂t

+
∂(hf)
∂x′

+
∂(hg)

∂y′
=

∂(hF)
∂x′

+
∂(hG)

∂y′
+ S (18)

with Q = U − λ(g − G). The problem now is that Q contains temporal and spatial
derivatives of U, and a direct relationship U = z(Q) does not exist. To circumvent this
problem, Q is replaced by U− λg which can be shown to be a valid approximation for
flows with low locally reduced frequencies [24].

2.2.3. Time-Inclined Method Limitations

The TI method is not exact for unsteady viscous flows. The question that remains to be
answered is under which circumstances the TI method is an acceptable approximation for
the Navier–Stokes equations. To clarify this point, let us consider the momentum equation
in the TI plane:

(1− λv)
∂v
∂t

+ v∇v = −1
ρ
∇p− λptj + ν (∇2v

(4)
− 2λ

∂2v
∂t∂y′
(5)

+ λ2 ∂2v
∂t2 )

(6)
(19)

The first line corresponds to the inviscid terms, which are transformed exactly. How-
ever, the unsteady viscous terms (5) and (6) are not resolved within the framework of the
TI method, and they will be regarded as error terms since they become null when λ = 0.
The order of magnitude of the term (5) with respect to (4) is

(5)
(4)
∼ λvc fc/Lc

vc/L2
c
∼ λ fcLc = St (20)

where fc is the characteristic frequency, and St = f L/v is the Strouhal number of the
problem being confronted. The time inclination parameter λ has the units of the inverse of
a velocity, and for stability reasons, λ̃ = λvexit is at most of the order unity, i.e., λ̃ ∼ O(1),
being vexit the exit velocity of the cascade. The characteristic speed of the problem is vc, and
so, analogously, the order of magnitude of the term (6) with respect to the (4) is as follows:

(6)
(4)
∼ λ2vc f 2

c
vc/L2

c
∼ (λ fcLc)

2 = St2 (21)
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Therefore, this term is higher or lower than is term (5) depending on whether St is greater
or less than one.

Inlet Region and Airfoil Passage

It will be assumed that the reduced frequency of the forcing St f = f f c/vexit ∼ O(1)
where f f is the frequency of the incoming perturbation, and c is the airfoil chord which is
typically similar to the airfoil pitch. This effectively means that the decay of the incoming
wake due to viscous effects is altered in the TI plane. However, this impact is small for high
Reynolds number flows since the wake decay between the trailing edge of the preceding airfoil
and the leading edge, as well as along the airfoil passage, is small since St f Re f � 1. The Rapid
Distortion Theory (RDT) [25] of turbulence requires the same condition, which essentially
states that vortices pass through the cascade without attenuation or interaction since the
diffusion time is much longer than is the residence time in the airfoil. The RDT assumption
has been used successfully in broadband rotor/stator interaction noise simulations [26,27].

Laminar Boundary Layers

The characteristic length of a laminar boundary layer (BL) is its thickness, δ, which is
much smaller than the characteristic length of the perturbations that is taken as the chord.
The characteristic velocity in the boundary layer is vexit since this is the origin of the shear
in the BL. The characteristic time of the oscillations in the BL is the same as that of the
forcing, and hence

StBL =
f f δ

vexit
= St f

δ

c
∼ St f

1

Re1/2
c

(22)

which is small if the Reynolds number is high enough. The conclusion is that the evolution
of an unsteady laminar boundary layer is properly resolved using the TI transformation.

Vortex Shedding

In this case the characteristic length is the trailing edge thickness, tTE., which is
typically similar to the boundary layer thickness, tTE ∼ δ. The main difference here is that
the frequencies associated with the flow oscillation in the TE are much higher than those of
the forcing since

StTE =
fTEtTE
vexit

∼ O(1) (23)

The neglected viscous terms are as important as the retained terms, so the approxi-
mation is inconsistent. It will be shown that discrepancies between the exact and the TI
solution in the mixing process behind a 2D plate can be noticed due to this problem.

3. Results

Several test cases were conducted to assess the accuracy of the implementation and
the approach. A pair of two-dimensional linear cascades, the first being flat plates and the
second being T106A [28] airfoils, were chosen as the testing vehicles. It is important to
remark that comparing a single-passage method with the equivalent full-annulus solution
in a high-order code can be a daunting task due to the sensitivity of the solution to the
details of the numerics.

3.1. Flat-Plate Linear Cascade

A linear cascade of flat plates with zero stagger angle and a pitch-to-chord ratio of
Ps/c = 0.5 was used to test the implementation. The exit Mach number of the cascade is
M2 = 0.39, and the incidence is null. The cascade has a finite thickness t to ease the mesh
generation process (t/c = 1.5%). The plate is considered a rotor passing downstream of
a row of stators with pitch Ps. The ratio between the number of stators, Ns, and rotors,
Nr, is Ns/Nr = 15/6, and therefore, the simulation does not fit into a single passage. The
computational domain of the full annulus simulation (with direct periodicity) consists of six
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plates in this particular case. The domain is discretized using a hybrid grid of fourth-order
triangles and quads. The equivalent second-order mesh consists of 100 points on the plate
and 20 on the leading and trailing edges. The boundary layer regions are discretized with
four quad layers (16 points in the fourth-order mesh), and the whole mesh totals 13,500 cells
per passage. The full-annulus computational domain is constructed replicating the mesh
of a single passage. This eliminates some of the spatial discretization differences between
the time-inclined and full-annulus simulations since the mesh per passage is identical. A
sinusoidal perturbation of 2.5% of the inlet total pressure is imposed at the inlet, giving rise
to a mix of pressure, vortical, and entropy waves. The dimensionless speed of the rotor
is Mr = 0.52. The combination of the rotor speed and the number of perturbations gives
rise to a high blade-passing reduced frequency k = ωc/v2,is = 40.4. See Figure 2 for a
general setup description. The unusually high value of the reduced frequency was chosen
to magnify the errors created by the viscous terms in TI transformation.

Figure 2. Schematic of the flat plate cascade with inlet perturbations.

3.1.1. Inviscid Case

Figure 3 compares the normalized modulus (normalized amplitude of the complex
unsteady perturbations) of the first three harmonics of the static pressure

∣∣ p̂′1∣∣ ,| p̂′2| and∣∣ p̂′3∣∣, on the lower side of the plate obtained by a full-annulus analysis and the time-
inclined method. The static pressure can be expressed as the sum of a mean flow and an
unsteady perturbation,

p(x, y, t) = p(x, y) + p′(x, y, t) = p(x, y) + Re
(

p̂′neI2πωnt
)

, (24)

where p̂′n is the n-th complex Fourier coefficient of the pressure.
Solid lines and filled symbols correspond to the full-annulus analysis, whereas the

time-inclined solution is represented with dotted lines with empty symbols. The degree of
agreement between both approaches is very high, and it is an indication that the solution is
converged. It must be recalled at this point that for inviscid flows, the time-inclined method
is exact. Some tiny discrepancies in the displayed solutions in the higher harmonics can
be attributed to minor differences in the numerics. This is as expected since the higher the
harmonic is, the greater the influence of the numerical errors. However, the matching is
deemed excellent. In this case, the dimensionless parameter of the time-inclined method is
λa0 = 0.385.
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Figure 3. Modulus of the first (left axis) , second, and third (right axis) harmonics of the unsteady
pressure on the plate (inviscid case).

3.1.2. High Reynolds Number Case

The same configuration was computed retaining the viscous terms. The Reynolds
number based on the flat plate chord is Rec = 1.1× 105. The first observation is that the
unsteady pressure fields created due to the interaction of the wake with the plate leading
edge are different (see Figure 4a). The moduli of the unsteady pressure patterns are alike,
but it can be observed that close to the plate, there is a short-wavelength oscillation caused
by vortex shedding in the leading-edge region. The same behaviour can be observed in the
first harmonic of the unsteady pressure distribution on the plate as well (Figure 4b). The
comparison between the full-domain and time-inclined method is displayed in Figure 4b,
in addition to a single-passage approximation that will be addressed in a following section.
It can be noticed that although time-inclined and the directly periodic domain curves are
alike, the agreement is not as good as that in the inviscid case. However, at the front and
rear of the plate, the matching is good.

Inviscid


(a) (b)

Figure 4. (a) Modulus of the first harmonic of the pressure in the inviscid and viscous cases and
(b) modulus of the first harmonic of the pressure on the lower side of the plate for the full-annulus
(black), time-inclined (red), and single-passage (blue) methodologies.

The root cause of the error is that a direct relationship between the transformed and
the conservative variables, U = z(Q), does not exist for the Navier–Stokes equations, and
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therefore, the resulting set of equations is approximated. The problem is exacerbated in this
case due to the high-frequency separation in the flat plate leading edge that sheds small
vortices that are convected along the plate.

Figure 5 sketches the physics of the flow past a flat plate subject to incoming dis-
turbances. Three regions of unsteadiness can be distinguished. Firstly, the plate passage
contains wakes which are essentially undisturbed by the plates. Secondly, the plate has an
unsteady boundary layer. In this case, the wall flow is affected by a separation in the lead-
ing edge that triggers the convection of small high-frequency vortices along the plate [29].
Finally, the plate trailing edge gives rise to a Karman vortex street that propagates and dissi-
pates downstream. The impact of the TI transformation is different in the three regions. The
frequency of the vortices created by the leading-edge separation is significantly higher than
that of the incoming perturbation. The errors of the TI transformation are correspondingly
higher too. High-frequency vortices propagating at nearly the free-stream velocity in a
region dominated by the viscosity constitutes the most challenging case for the TI method.

Figure 5. Physics of the viscous flow past a cascade of flat plates at high Reynolds numbers sketched
by a snapshot of the entropy.

The following subsections will show that the impact of the TI transformation on
an LPT airfoil is much smaller than it is in this case. The main reason for the different
behaviour of the TI method on the T106A airfoil is that well-designed LPT airfoils do not
present leading-edge separation due to the favourable pressure gradient downstream of
the leading edge.

3.1.3. Low Reynolds Number Case

The same case described in the previous subsection was simulated at a much lower
Reynolds number (Re = 10,000) to elucidate the origin of the discrepancies between the TI
and the full-annulus solution. The grid was kept constant to increase the resolution and
reduce the uncertainty associated with the different numerics of both methods. However,
since the Reynolds number is lower than that in the previous case, the expected relative
contribution of the nonphysical terms is higher.

Figure 6 displays the first harmonic of the unsteady pressure modulus along the
passage’s midplane nondimensionalised with the total pressure perturbation imposed at
the inlet, ∆p0. It can be observed that the matching between the TI and the full-annulus
solution is nearly perfect. The highest unsteady pressure is located in the plate region.
Downstream of the plate, for x ≥ 2c, the unsteady pressure is much smaller, but the
matching between both solutions is still good. The differences on the plate surface are
hardly visible in the Figure 6 inset.
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0.4 0.6 0.8

x/c

x/c

(a) (b)

Figure 6. First (a), second, and third (b) harmonics of the unsteady pressure along the passage
midline and along a plate (inset) at Re = 10,000.

Figure 7a displays the evolution of the mean velocity profiles along the flat plate
computed using the single-passage TI method and the equivalent multipassage domain
with direct periodicity. First, it can be noticed that the matching between both approaches is
nearly perfect. Except for that of the leading edge, all the remaining time-averaged profiles
resemble the classical Blasius profiles at different Rex. The boundary layer thickness is
about 10% of the pitch at the plate exit, and therefore some blockage from the BL can be
appreciated in the free-stream velocity.

(a) (b)

Figure 7. (a) Time-averaged and (b) first harmonic velocity profiles in the flat plate boundary layer.
Time-inclined (dotted lines) vs. full-annulus approach (solid lines).

The modulus of the first harmonic of the stream-wise velocity nondimensionalised
with the exit isentropic velocity is shown in Figure 7b. The first harmonic of the perturbation
velocity in the middle of the passage is about 2%. All the profiles exhibit extrema inside
and outside of the boundary layer that are well-reproduced with the TI method. This result
is consistent with the conclusions derived about the validity of the TI for unsteady laminar
boundary layers. In this case, the boundary layer Strouhal number is StBL = St f Re−1/2

c ∼
40× 10, 000−1/2/2π ∼ 0.1. The second and third harmonics of the problem are reproduced
with the same level of accuracy as in Figure 6b, but they are not reproduced here for brevity.
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A key aspect to match the results obtained by the TI and the full-annulus simulations
is reproducing the wake mixing losses. If the wake mixing is mispredicted, then even
the free-stream velocity can be mismatched, spoiling the whole comparison. The reduced
frequency associated with the trailing-edge vortex shedding is fairly constant with the
Reynolds number and typically is StTE ' 0.2. The Karman vortex street generated behind
a 2D flat plate contains larger structures than does the three-dimensional wake behind an
airfoil. As a consequence, this case is considered more demanding than a 3D wake.

Figure 8 displays the stream-wise evolution of the static pressure along a straight
line of the computational domain with an offset of 50% of the pitch with respect to the
plate. The matching between the TI and FA solution is very high until slightly after the
trailing edge (x/c = 1.5), where high vortices develop, fostering mixing. Differences can be
appreciated downstream of this point, being the impact of the TI approach to this slightly
delayed mixing.

Figure 8. Stream-wise evolution of the time-averaged static pressure along a straight line of the flat
plate channel with an offset of 50% of the plate (Re = 10,000).

Figure 9a compares the stream-wise evolution of the time-averaged total pressure
profile downstream of the trailing edge computed using the TI (empty symbols), and the FA
(filled symbols) approaches. The total pressure profiles match perfectly just downstream
of the trailing edge ((x − xte)/c = 0), indicating that up to this point, both approaches
yield essentially the same solution. However, the downstream evolution diverges. It can be
appreciated at (x− xte)/c = 0.33 that the TI solution is less mixed than is the FA solution,
i.e., its wake is deeper than that of the FA solution. Further downstream, where the wake
is more mixed, the matching is recovered. Interestingly, the wake is not symmetric due
the different degrees of unsteadiness created by the wake passing in the upper and lower
sides of the plate. The pitch-wise area average of the profiles in Figure 9a can be seen in
Figure 9b, which also shows their downstream evolution. The matching between the TI
and FA approaches is good near the trailing edge, diverges downstream, and is recovered
when the wake is nearly completely mixed.

Figure 10 displays a close-up of the 2D wake created downstream the flat plate by
the TI and the FA approaches. One chord downstream of the trailing edge, the dissipation
becomes very effective and the two solutions begin to diverge.

It is remarkable that even in this extreme case of high-frequency and a low Reynolds
number leading to the presence of many wakes in the passage and thick boundary layers,
δ/c ' 10%, the TI approach performs so well.
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(a) (b)

Figure 9. (a) Stream-wise evolution of the time-averaged total pressure profiles in the flat-plate wake
at Re = 10,000 and (b) Stream-wise evolution of the azimuthally and time-averaged total pressure
profiles. The horizontal axis measured from the trailing edge is denoted as z = x− xTE.

z

2cc0

y

Figure 10. Close-up of a snapshot of the entropy isolines for Re = 10,000. Top: Time inclined. Bottom:
Full annulus.

3.2. T106A LPT Linear Cascade

The T106A airfoil [28] was chosen to test the time-inclined method in a realistic
configuration. The isentropic exit Mach number, M2,is = 0.39, the rotor Mach number,
Mr = 0.52, and the ratio between the rotor and the stator pitch, Pr/Ps = 15/6, are the
same as those in the flat-plate case. The Reynolds number based on the chord and the exit
velocity is Rec = 1.1× 105. A sinusoidal perturbation of 2.5% of the total inlet pressure
is imposed at the inflow. The computational domain is discretized using a hybrid grid
of fourth-order triangles and quads. The equivalent second-order mesh (See Figure 11)
consists of 150 points on the airfoil and eight quad layers to account for the boundary layer
region, totalling 7600 triangular cells and 3200 quad cells per passage. As in the flat-plate
cascade case, the meshes of all the passages of the full-annulus cases are identical and equal
to that of the time-inclined case. The fourth-order mesh has 16 degrees of freedom (DOF)
per quad and 10 DOF per triangle. Although the focus of this work is to compare the TI
and FA approaches and not to achieve the highest level of accuracy in the resolution of the
physical phenomena, a grid independence analysis was conducted to choose the adequate
mesh resolution. The results of this analysis can be found in Appendix A.
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Figure 11. Second-order mesh detail and real part of the first harmonic of the entropy for the T106A
airfoil at Rec = 1.1× 105.

Figure 11 plots the first harmonic of the entropy to give an overall idea of the unsteady
flowfield. It can be observed how the incoming wakes propagate undistorted through the
inlet uniform field and then are distorted by the mean flow within the passage. A slight
separation can be observed in the rear part of the suction side. The separation region is very
small due to the highly reduced frequency of the incoming wakes (k = ωc/v2,is = 26.4)
that tend to suppress the steady separation. Qualitatively, this phenomenon is as described
by Bolinches et al. [2] but in a much finer and three-dimensional grid.

Figure 12a displays the mean isentropic Mach number distribution obtained via a
viscous full-annulus analysis (6 passages) and the time-inclined method. It can be noticed
that the matching between both is nearly perfect. The separation point, located at about
90% of the axial chord, is hardly visible. The case with the steady inflow (solid red line)
exhibits a longer bubble that reattaches closer to the trailing-edge than to the unsteady
inflow. Moreover, the pressure side is slightly different.

Figure 12b shows the distribution of the first harmonic of the unsteady pressure on
the airfoil. The highest level of unsteadiness is located in the rear part of the suction side,
where a closed and thin recirculating bubble can be seen. The shedding of this bubble
gives rise to high unsteadiness. The second observation is that the agreement between
the time-inclined approach and the full-domain simulation is very high. This degree of
matching is the same for all the variables.

(a) (b)

Figure 12. (a) Comparison of the mean isentropic Mach number distribution and (b) the first
harmonic of the unsteady pressure for the T106A between the full-annulus analysis and the time-
inclined method.
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A comparison between the directly periodic and single-passage simulations is shown
in Figures 4 and 13. There were two single-passage simulations. The first was performed
with the TI method matching the blade count and reduced frequency of the actual full-
annulus case. The second employed the baseline code approximating a pitch ratio between
the rotor and stator of three instead of using the exact Pr/Ps = 15/6, and decreasing the
velocity of the rotor to match the reduced frequency of the original problem.

Figure 13. First harmonic of the unsteady pressure for the inviscid T106A linear cascade. Comparison
between the full-annulus (black), time-inclined (red), and single-passage (blue) methodologies.

Figure 4 compares the modulus of the first harmonic of the unsteady pressure obtained
by the three methods in the flat-plate cascade. The agreement between the TI method and
the full-annulus solution is better than that found for the approximate blade count. This is
especially true for the areas close to the leading and trailing edges. The same observation
can be made for the T106A cascade in the inviscid simulations, as shown in Figure 13,
where the TI method matches the full-annulus solution very well, but the single-passage
approximation grossly mispredicts the fundamental harmonic of the unsteady pressure.

Finally, Figure 14 shows a snapshot of the first harmonic of the unsteady pressure. The
case is equivalent to having 15 stators in front of 6 rotors. A cutoff potential perturbation
is clearly seen at the inlet. The suction side exhibits a strong unsteadiness caused by a
local separation. This unsteadiness is synchronized with the inlet perturbation. This local
unsteadiness is also captured with the time-inclined method.

Figure 14. Snapshot of the of the real part of the first harmonic of the static pressure of a viscous
solution for the T106A airfoils.
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3.3. Computational Cost Considerations

The computational cost per time step and point of the TI and baseline time-marching
methods are essentially the same. In practice, only one additional operation is required per
time step and solution point for time-inclining, which consists of transforming back the
inclined variables Q to the conservative variables U. This operation allows for the compu-
tation of the fluxes since they are a function of U, while the time-marching is performed on
Q. However, the cost of this operation is negligible, especially for GPU architectures.

The impact on the maximum time step due to numerical stability constraints of the TI
approach is simple to analyse and depends on the inclination parameter λ. However, even
for the high inclination parameter chosen in the presented test cases, the TI simulations
were carried out with the same time step as the full-annulus cases without numerical
stability problems.

Finally, the computational cost reduction associated with reducing the number of
passages is straightforward. In the cases presented in this work, the periodicity of the
problem required a minimum of two passages in the full domain. Since the transformed
cases were reduced to a single passage, the computational cost was halved. However, for
realistic cases, the cost reduction is more significant.

Concerning computational cost, the most challenging part of quantifying its effect
on the reduction obtained by the TI method is the convergence time to a periodically or a
statistically converged state. The convergence time of the single-passage method is only
sometimes well-understood, and small practical details of the implementation often hinder
it [14,15]. Most rotor/stator simulations do not show a proper unsteady convergence
analysis and, if any, it is restricted to monitoring the key engineering figures of merit of
the problem.

Figure 15 displays the unsteady norm L2 of the FA analysis with direct periodicity and
the TI method, where L2 is defined as

L2 =
1

T S

√√√√√√ˆ
S

ds

t0+Tˆ

t0

{
p(t)− p(t− T)

p(t− T)

}2

(25)

where S is the airfoil surface. It can be noticed that the convergence rates of both approaches
are similar, but they stall at a slightly different level. It is essential to recall that the final
solution is not purely periodic since there are flow instabilities with frequencies different
from the fundamental one. If these nonsynchronous frequencies dominate, then the chosen
unsteady norm says very little about the final converged state. It can be noticed that the
final state is reached in about 100-plate through-flow times, where the residence time
is defined as tr = c/v2,is. The total length of the computational domain is 4c. Since the
convergence time is controlled by the total size of the computational domain, it can be
stated that the solution converges in about 25 computational domain through-flow times,
both in the TI and the full-annulus cases. The main conclusion is that the TI method does
not degrade the convergence to the final state.

The physical convergence time of harmonically forced flows depends on the number
of periods, tcon ∝ f−1, for low reduced frequency excitations or the number of through-flow
times for high reduced frequency excitations, tcon ∝ tr = c/vc. The required level of
convergence depends on the amplitude of the highest harmonic resolved in the simulation.
It can be anticipated that without a high level of convergence, it is impossible to match the
third harmonic of the unsteady pressure shown in Figure 3 or Figure 6b, whose amplitude
is a small fraction of the inlet total pressure (about 10−4 p0). It can be safely stated that the
confidence in the level of convergence of the cases shown in this work is high.
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Figure 15. Convergence history of a flat-plate cascade as a function of the number of inlet disturbance
periods and through-flow times (tr = c/v2,is).

A thorough description of the computational benefit of the TI method is postponed for
a paper dedicated to this subject. However, if it is assumed that the convergence rate to the
final state of both approaches is the same (see Figure 15) and the added time computational
time per iteration is deemed negligible, then the cost reduction is proportional to the
decrease in the size of the computational domain.

To provide an example, the low Reynolds (Rec = 104) flat-plate case was run in a single
NVIDIA GeForce GTX 1080Ti GPU for about 5160 and 9208 min using the time-inclined
and the full-annulus approaches, respectively, yielding a speed-up factor of around 1.78.

4. Discussion

The time-inclined method was implemented in a high-order flux-reconstruction
method for the first time and was applied to account for dissimilar gaps in rotor/stator
interaction problems. The objective of this work is to reduce the computational time with a
minimal loss in the fidelity of the problem. Results for two linear cascades and two different
Reynolds numbers have been presented.

A linear cascade of flat plates was subject to a sinusoidal gust of total pressure. The
inviscid results compare very well to those of the full-annulus simulations as expected
since the TI transformation was exact for the inviscid cases. The matching of the low
Reynolds number viscous case (Re = 104) was nearly perfect as well, whereas that of the
high Reynolds number case (Re = 105) was not. It can be argued that the root cause of
the differences in the latter is associated with the separation of the flow in the flat-plate
leading edge that gives rise to a high-frequency oscillation that propagates downstream
along the plate. The high-frequency nature of the problem magnifies the errors and the
intrinsic inaccuracies of the TI method in dealing with unsteady viscous flows. However,
this problem is deemed irrelevant in practical applications.

A cascade of T106A airfoils with similar inlet conditions to the flat plate case was
simulated at representative Reynolds numbers. The matching, in this case, was as good as
that of the flat plate at low Reynolds numbers. The agreement of the mean solution and the
first harmonic with the full-domain simulation was very good.

5. Conclusions

This is the first time, in the authors’ opinion, that the limitations of the TI method for
viscous flows have been explored in general and particularly in the context of a high-order
flux-reconstruction method, making the discussion more relevant. It can be concluded
that the technique can be further pursued and applied to scale-resolving simulations.
Theoretical arguments have been presented that show that the TI method can be applied to
LES or under-resolved direct numerical simulations even though the wavelengths of the
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unsteadiness are very short and the impact of viscous terms has not been assessed yet in
eddy-resolving simulations. The test cases were designed to explore the limits of the TI
approach, and hence the results are considered satisfactory for many problems of industrial
interest, with most of the conclusions being applicable to 3D turbulent cases.
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Abbreviations
The following abbreviations are used in this paper:

Latin symbols
c = Airfoil or plate chord
f = Frequency
k = Reduced frequency
P = Pitch of the airfoil
Q = Time-inclined variables
Re = ρve,isc/µ, Reynolds number
St = f L/v, Strouhal number
t = Time
Greek symbols
γ = Correction flux
ξ = Element local coordinate
λ = Inclination parameter
ω = Blade passing frequency
Super-scripts
C = Continuous
D = Discontinuous
I = Interface
′ = Transformed coordinate
Sub-scripts
is = Isentropic
r = Rotor
s = Stator
0 = Total or stagnation conditions

Appendix A

A grid sensitivity analysis was carried out to minimize grid-induced discretization
errors. The procedure consists of running the baseline solver in the case of steady boundary
conditions on several meshes of different resolutions. The flow quantity of interest is the
pressure on the airfoil since this variable is used to compare the time-inclined solutions to
the full-annulus approach.
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The chosen mesh resolution, which corresponds to the green dotted line of Figure A1,
is more than enough to perform accurate comparisons between the full-annulus solution
and the time-inclined method. Figure A1 displays the pressure coefficient (based on the
inlet total pressure and the dynamic pressure at the outlet) on the airfoil under steady inlet
conditions for meshes of different physical degrees of freedom (DOF). The unstructured
meshes are assigned an equivalent grid spacing defined as ∆xeq = 1/

√
DOF. The achieved

level of convergence is deemed suitable for this work, whose main purpose is to compare
the FA and TI approaches, although some slight differences can be seen in the leading and
trailing edge of the airfoil.

Figure A1. Grid sensitivity analysis for the pressure coefficient of the T106A at Rec = 1.1× 105.
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