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Abstract: This work presents a strategy to build reduced-order models suitable for aerodynamic shape
optimisation, resulting in a multifidelity optimisation framework. A reduced-order model (ROM)
based on a discrete empirical interpolation (DEIM) method is employed in lieu of computational
fluid dynamics (CFD) solvers for fast, nonlinear, aerodynamic modelling. The DEIM builds a set
of interpolation points that allows it to reconstruct the flow fields from sets of basis obtained by
proper orthogonal decomposition of a matrix of snapshots. The aerodynamic reduced-order model
is completed by introducing a nonlinear mapping function between surface deformation and the
DEIM interpolation points. The optimisation problem is managed by a trust region algorithm linking
the multiple-fidelity solvers, with each subproblem solved using a gradient-based algorithm. The
design space is initially restricted; as the optimisation trajectory evolves, new samples enrich the
ROM. The proposed methodology is evaluated using a series of transonic viscous test cases based
on wing configurations. Results show that for cases with a moderate number of design variables,
the approach proposed is competitive with state-of-the-art gradient-based methods; in addition, the
use of trust region methodology mitigates the likelihood of the optimiser converging to, shallower,
local minima.

Keywords: ROM; CFD; aerodynamics; shape optimisation; gradient-based optimisation; trust-region;
multifidelity

1. Introduction

The pressure to reduce design cycles, increase performance or further explore design
spaces keeps on demanding more efficient analysis tools. Typical engineering problems,
such as aerodynamic shape optimisation, require sophisticated analysis tools to solve
parametric partial differential equations (PDEs). This is a challenging process due to the
high computational cost associated with having to interrogate a large and complex model
multiple times. The advent of adjoint methods to compute gradients at a cost independent
of the number of design variables opened up the perspective of affordable design whilst
retaining a high-fidelity model [1–6]. The solution of the CFD adjoint equations requires
similar computational resources to those used to solve the original flow equations. Fur-
thermore, adjoint methods require the modification of the original software code, which
may or may not be available to users. Therefore, the use of high-fidelity models in design
optimisation is feasible, but not necessarily trivial or affordable.

Several strategies are available to accelerate the time to solution required for a given
analysis, in particular for problems such as optimisation or uncertainty quantification,
where it is necessary to interrogate a large and complex model multiple times. One common
approach is to build surrogate models and devise a multifidelity strategy to compute the
quantity of interest efficiently. Surrogates are typically based on interpolation methods
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such as response surfaces or kriging [7–10] or neural networks [11,12]; it is also possible
to resort to lower-fidelity models that remain representative of some relevant physical
phenomenon to act as an effective surrogate [13,14]. The obvious penalty of such strategies
is on how to guarantee that the method converges to a local optimum common with the
high-fidelity model; in addition, users face challenges in associating models and respective
parameterisations that use very different representations of the same problem.

A slightly different alternative is to build a ROM by examining the governing equa-
tions and performing some type of model reduction that is suitable for the physics of
the problem. Here, the common approach is to assume that the parametric behaviour
of the high-fidelity model can be approximated by a small number of modes or basis,
typically obtained by methods such as proper orthogonal decomposition (POD) [15], bal-
ance POD [16,17] or proper generalised decomposition [18], among others—extensive
reviews on the wider subject of model reduction can be found in [19–24]. The exploita-
tion of ROMs for aerodynamic shape optimisation was investigated by LeGresley and
Alonso [25] for inverse aerofoil design, where a POD ROM was used to approximate the
gradient of the objective function by finite differencing. Investigators have also been suc-
cessful in deriving efficient ROMs for shape optimisation problems described by elliptical
PDEs, such as those found in marine or biological applications [26–28]. The problem of
aerofoil shape optimisation subject to compressible flows was revisited by Zahr and Farhat;
the authors assumed a monotonic nonlinear trust region optimisation method that updates
the reduced basis as the optimisation progresses when the residual fails to reach a required
threshold [29]. Carlberg et al. exploit a least-squares Petrov–Galerkin projection [30] to
reduce the state equations and respective sensitivities; hence, each snapshot involved con-
catenating samples of the fluid-state variables and sensitivities with respect to the design
variables. Yao et al. employed a similar strategy, but for gradient-based optimisation for
aerofoils in compressible and transonic flows, reducing the time to solution by 30–50% with
respect to an adjoint-based optimisation [31].

One particular challenge with the aforementioned ROM strategies is that they are
intrusive, i.e., they require the manipulation of the original CFD solver, which may not be
available or desirable. In reference [32], the authors investigate the ability of the DEIM [33]
of reconstructing unsteady flowfields for the prediction of dynamic aeroelastic instabilities.
Inspired by these findings, and to overcome the difficulties of intrusive methods whilst
obtaining high computational efficiency, this paper proposes a nonintrusive strategy suit-
able for aerodynamic shape optimisation; this is achieved by a new nonlinear mapping
between the surface DEIM points and flow quantities of interest, allowing the DEIM ROM
to reconstruct surface flow fields for new shapes. The paper will also show how a trust
region model management (TRMM) ROM is able to drive the aerodynamic shape to new
local minima at a reduced cost with respect to adjoint-based optimisation, while treating
the high-fidelity model as a black box.

The remainder of the paper provides details of the DEIM formulation and the TRMM
algorithm. This is followed by the description and analysis of two transonic, viscous wing
test cases. The paper is completed with a conclusion section.

2. Methodology
2.1. The General Optimisation Problem

A constrained aerodynamic shape optimisation can be represented by [31]

minimise
µ∈D

F (w(µ), µ)

subject to R(w(µ), µ) = 0, (1)

CE (w(µ), µ) = 0,

CI (w(µ), µ) ≤ 0.
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In Equation (1), the objective function F depends on the flow variables w = [ρ, ρU, ρE]
and parameter set µ. Typically, F denotes an aerodynamic coefficient such as CL or CD;
therefore, the nonintrusive ROM aims to reconstruct the surface pressure and wall shear
stress fields to compute the required aerodynamic coefficients. This leads to a data-driven
ROM, based on samples of the aforementioned quantities from the CFD full-order model
(FOM), which are reduced by POD and a DEIM algorithm; this allows the flow field of every
new shape produced by the optimiser to be reconstructed. The parameter set µ represents
the design variables manipulated by the optimiser to control the aerodynamic shape. The
different components required are outlined are described in the following sections.

2.2. Nonintrusive Reduced-Order Modelling

The DEIM aims to approximate u as a nonlinear function of µ, where u = u(w, µ), by
projecting it on the subspace spanned by the basis TM:

u(µ) ≈ TMc(µ), (2)

where c(µ) represents a set of coefficients and the matrix TM is obtained by POD of flow
snapshots of the quantities represented by u, which can be p, τw, etc. The task now is how
to select the M distinct rows or interpolation indices that allow a unique solution of c(µ)
to be obtained. This can be achieved by following the algorithm in [33]; the interpolation
indices are coded into the matrix ℘, which can be obtained using Algorithm 1, and the
result is the DEIM approximation:

u(µ) ≈ TM

(
℘TTM

)−1
℘Tû(µ). (3)

Algorithm 1 DEIM method for interpolation index selection [33]

Input: Subspace TM ∈ RN×nr

Output: Interpolation indices ℘ = [℘1, . . . ,℘nr ]
T

1: [imax,℘1] = [argmax(T1)
a, max(|T1|)]

2: for i = 2 to nr do
3: X = T(:, i) ;
4: solve (℘TT)c(µ) = ℘TX for c(µ) ;
5: r = X− Tc(µ) ;
6: [imax,℘i] = [argmax(r), max(|r|)] ;
7: ℘ = [℘,℘i]

T ;
8: end for

For cases such as those presented here, the objective function is obtained through
integrating the fluid forces over surfaces; hence, the size of the ROM can be further reduced
by letting û(µ) represent only the values of the surface pressure and shear stress corre-
sponding to the nonzero indices in ℘, i.e., the M elements required to recover the full-order
vector u(µ).

Thus, for viscous problems, the pressure and each component of the wall shear stress
are individually reconstructed using Equation (3) and a respective set of bases, TM.

2.3. Proper Orthogonal Decomposition

The basis TM can be built by taking the POD modes of the flow field. This requires
obtaining a set of snapshots and assembling the matrix A, where each column represents
the flow solution vector for one particular set of parameter values µ:

A = [u1, u2, . . . , uns ], (4)
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where ns is the number of samples. Since ns is much smaller than the dimension of u, the
POD modes can be obtained by performing singular value decomposition (SVD) to ATA,
where ATA ∈ Rns×ns :

ATA = TSVT , (5)

where S is a diagonal matrix containing the eigenvalues and T, V are the left and right
singular vectors, respectively. The POD bases, TM ∈ Rns×N , are obtained with proper
truncation according to the energy rank given by the amplitude of the first M eigenvalues:

TM = AVMS−1/2
M (6)

2.4. Interpolation Point Estimation

To employ the DEIM in lieu of a high-fidelity model, it is necessary to obtain û(µ) for
any shape produced by the optimiser. In this work, a nonlinear mapping between the design
parameters µ and the flow values at the interpolation indices needs to be built. Note that
µ and û are vectors of distinct sizes, which results in a multi−input/multi−output problem.
Any suitable interpolation method can be used here; following from
reference [32], an exact radial basis function (RBF) neural network using the MatLab
function newrbe [34] was built using the respective input/output sample pairs (µi, ûi),
i = 1, . . . , ns. This interpolation method ensures that the function values interpolated are
exact at the sample points.

2.5. Trust Region Model Management

Obtaining a set of global bases is usually not achievable, or would require and exces-
sive number of snapshots, rendering the ROM approach unattractive. An alternative is to
start with a small number of samples and augment the snapshot matrix as the optimisation
progresses, as demonstrated in [29,31]. Trust region methods are provable to be convergent
and able to manage the exchanges between different fidelity models. At each major iteration
k, an optimisation subproblem is defined on the trust region centred at µk and radius ∆k:

minimise
s∈Bk

F̂ (u(µk), µ)

subject to ĈE (u(µk), µk + s) = 0,

ĈI (u(µk), µk + s) ≤ 0, (7)

lb ≤ (µk + s) ≤ ub,

||s||∞ ≤ ∆k,

where the “ ˆ ” symbol indicates quantities computed using Equation (3); s is the optimisa-
tion step size; and Bk = {µ ∈ Rnp : ||µ− µk|| ≤ ∆k}. The optimisation subproblem was
solved using MatLab’s fmincon with the gradients obtained by finite differences using the
DEIM ROM.

The effectiveness of the trust region step is evaluated by the ratio of the actual im-
provement over the improvement predicted by the ROM, ρ:

ρk =
∆F
∆F̂

, (8)

where ∆F = F (µk) − F (µk + s) and ∆F̂ = F̂ (µk) − F̂ (µk + s). The step is accepted,
except if ∆F is nonpositive. In addition, for values of ρ < δ1 or ρ > δ2, the trust region
radius is maintained if ∆F > 0, and decreased if ∆F ≤ 0; if δ1 < ρ < δ2, the trust region
size is increased. In this work, the trust region is set up with δ1 = 0.80 and δ2 = 1.20; the
trust region size, ∆k+1, is then reduced by a factor of 0.75, maintained or increased by a
factor 1.25. Numerical experiments show these values to perform adequately over a range
of test cases. The sequence of steps is outlined in Figure 1.
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Figure 1. ROM shape optimisation flow chart.

3. Results

The framework described was demonstrated using two wing test cases and different drag
minimisation problems. The first test case involved the Onera M6 wing, test 2308, as described
in [35]. This is a widely used test case by the CFD community [36]; hence, it acts as the first
benchmark for the method proposed in this work. The second test case employed the NASA
Common Research Model (CRM) wing [37]. The FOMs were built using the SU2 software
v7.07 [38]; in all cases, the compressible RANS equations were solved employing the Spallart–
Almaras turbulence model; the full details of the flow equation descriptions and implementa-
tion, including the turbulence model, are given in reference [38].

3.1. Onera M6 Test Case

A baseline mesh for the optimisation study was selected following the grid con-
vergence results shown in Figure 2. This study was performed at M∞ = 0.84, Reynolds
n. = 11.7× 106 and α = 3.06◦. The meshes included a fine mesh containing about 2.2 million
elements, a medium mesh with approximately 315 thousand cells and a coarse mesh made
up with approximately 140 thousand elements. The medium mesh, shown in Figure 3a,
was selected for the baseline optimisation case as it gives adequate results without demand-
ing excessive computational resources (mesh obtained from: https://github.com/su2code/
TestCases/tree/master/optimization_rans/steady_oneram—accessed on 3 June 2022).

The wing is parameterised using 60 control points equally distributed over the top
and lower surfaces of the wing. The surface mesh shape is controlled by the position of
the control points and deformed by an RBF morphing method [39]. The surface mesh and
associated control points are illustrated in Figure 3b.

To build the ROM, four quantities are required from the FOM: pressure, and three
Cartesian components of the shear stress projected on the surface mesh. Each quantity
is used to build a set of bases and interpolation point matrix, ℘; therefore, each function
evaluation using the ROM requires reconstructing a matrix with (NSur f × 4) elements.
The reconstruction of the surface values at the sample points was exact; as an example,
considering the test case conditions described above, Figure 4a–c shows two samples and
resultant DEIM points (the DEIM points locations are highlighted by the black markers),

https://github.com/su2code/TestCases/tree/master/optimization_rans/steady_oneram
https://github.com/su2code/TestCases/tree/master/optimization_rans/steady_oneram
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the Cp ROM values are plotted against the FOM results for each respective sample in
Figure 4b–d, illustrating the exact reconstruction of the surface field.

Figure 2. Onera M6 grid convergence.

(a) (b)

Figure 3. Onera M6 baseline mesh: (a) surface and symmetry plane; (b) surface mesh and associated
control points.

The result of applying the ROM built from these two samples to a new wing shape
is compared in Figure 5. As expected, the ROM predictions degraded. The level of
degradation was mitigated by controlling the trust region radius. This shows that in
principle, an optimisation problem can be initiated with any number of samples, including a
single point; however, numerical experiments show that this is inefficient, as due to the low
accuracy during the initial steps, 5−10 initial samples tend to produce faster convergences.

To facilitate benchmarking, the optimisation problem set up targets the wing at
M∞ = 0.84, Reynolds n. = 11.7× 106 and α = 3.06◦, and aims to minimise CD whilst
maintaining the CL above or on the value corresponding to the baseline wing:

minimise
µ∈D

CD (9)

subject to CL > 0.25,

where µ defines the control point positions that manipulate the wing shape.
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(a) FOM surface Cp sample 1 (b) Surface Cp values−ROM vs. FOM

(c) FOM surface Cp sample 2 (d) Surface Cp values−ROM vs. FOM

Figure 4. Assessment of ROM reconstruction at two sample points.

(a) FOM surface Cp of new shape (b) Surface Cp values − ROM vs. FOM

Figure 5. Assessment of ROM prediction at new sample point.

The ROM at the start of the optimisation was built with ten snapshots. The problem
was run on 4 Intel Core 5 CPUs, with both FOM and fmincon gradient calculations running
in parallel. Note that the gradients were obtained by finite differences using the ROM; this
operation scales linearly with the number of CPUs available. The optimisation convergence
is shown in Figure 6, where both constraint and objective functions are normalised with
respect to the baseline values for CD and CL, which are 0.018 and 0.25, respectively. The
right vertical axis shows the normalised value of the trust region radius, ∆, with respect to
its initial value; the convergence is plotted against the total number of FOM calls, i.e., the
number of trust region updates plus the FOM calls used to build the initial ROM. The cost
of the ROM calls is about 10% of a single FOM evaluation, per trust region iteration; this
cost scales with the number of design variables, but is also dependent on the convergence
of each optimisation subproblem.
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Figure 6. Onera M6 lift constrained optimisation convergence.

The solution terminates after 150 iterations and results in a drag reduction of about
36%. Note that the trust region radius increases significantly as new snapshots enrich
the POD basis, meaning that a larger portion of the design space is explored by each
optimisation subproblem. In the end, the large trust region radius resulted in increasingly
thinner wing sections, producing inviable geometries, which led to the optimiser stopping
after 150 iterations. The same optimisation problem was solved using a CAD-based adjoint
method in reference [40], and resulted in 14% performance improvement.

The surface flow field for the optimum obtained is compared against the original wing
in Figure 7, showing how the shock on the upper surface is nearly eliminated everywhere.

Figure 7. Upper surface pressure comparison. Left side: baseline; right side: optimum.

The pressure coefficient distribution at two span stations is compared in Figure 8.
Results suggest that the optimiser shifts the section loading further aft, resulting in a more
uniform pressure distribution along the chord, akin to supercritical sections.
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(a) Cp at 40% of the semispan (b) Cp at 80% of the semispan

Figure 8. Onera M6 pressure coefficient.

Following these results, the problem was modified by requiring the wing thickness
to remain above 95% of the original. The optimisation convergence history is shown
in Figure 9. The result was an improvement of approximately 14% in CD, but unlike
the previous case, the trust region radius declines rapidly and remains relatively small
throughout the optimisation trajectory. In this case, as the wing remains relatively thick,
there is more potential for shape perturbations to generate strong shocks that the ROM
fails to capture adequately, leading to larger discrepancies between the ROM and FOM
predictions. The upper surface pressure coefficient of the final shape is compared in
Figure 10, showing a more limited and uniform pressure drop over most of the upper
surface. It is clear that a mild shock remains on the wing upper surface. The surface
pressure coefficient distributions of the inboard and outboard sections of the wing are given
in Figure 11, showing a reduction on the leading edge suction peak, which mitigates the
downstream shock, pushing it further downstream as the tip is reached.

Figure 9. Onera M6 lift and thickness constrained optimisation convergence.
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Figure 10. Upper surface pressure comparison. Left side: baseline; right side: optimised.

(a) Cp at 40% of the semispan (b) Cp at 80% of the semispan

Figure 11. Onera M6 pressure coefficient.

3.2. CRM Wing Test Case

Recall that for the DEIM to reconstruct the surface variables, it requires the solution
at the DEIM points, which are interpolated based on their respective positions. Hence,
the next test case assesses the methodology using a wing twist parameterisation. The test
case is based on the AIAA Aerodynamic Design Optimization Discussion Group case 4.1
(data available online at: https://drive.google.com/file/d/107HHAUioOdiyFG_e63_S6R3
TwlwsVM47/view, retrieved on 27 February 2023), which makes use of the wing geometry
from the Common Research Model wing body configuration proposed for the AIAA Fifth
Drag Prediction Workshop; full details of the model are given by Vassberg [37]. The result
is a wing geometry representative of modern wide-body commercial airliner, with a span
of approximately 59 m and a mean aerodynamic chord of 7 m. The flow problem set up
corresponds to a flight condition with M∞ = 0.85 at an angle of attack α = 2.2◦, with a
corresponding Reynolds number based on the mean aerodynamic chord of 5× 106. This test
case is investigated in depth by Lyu et al. [41] using an adjoint solver; the authors provide
and assess a series of meshes, which are also used in this study (meshes obtained from
https://data.mendeley.com/datasets/7jnyjdbvf9/1, accessed on 10 June 2020). Table 1
shows a grid convergence study comparison between the SU2 results obtained as part of
this work and those from Lyu et al., showing very good agreement. Lyu et al. show that
the coarse mesh captures the design space trends adequately; hence, only that mesh is used
in this optimisation study.

https://drive.google.com/file/d/107HHAUioOdiyFG_e63_S6R3TwlwsVM47/view
https://drive.google.com/file/d/107HHAUioOdiyFG_e63_S6R3TwlwsVM47/view
https://data.mendeley.com/datasets/7jnyjdbvf9/1
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Table 1. SU2 grid convergence study and comparison with respect to reference [41].

Mesh Level Mesh Size CD—[41] CD—SU2

L0 28,835,840 0.01997 0.02007
L1 3,604,480 0.02017 0.02034
L2 450,560 0.02111 0.02169

The selected mesh contains approximately 450 thousand elements, of which about
11 thousand are on the surface. The control points are organised in seven sets, equally
spread along the span of the wing, resulting in seven design variables to control the local
wing twist at each station. The normalised surface model, including the sections used as
design variables is shown in Figure 12.

Figure 12. CRM wing baseline shape.

The optimisation problem definition is identical to the previous test case:

minimise
µ∈D

CD (10)

subject to CL > 0.50,

where µ represents the different wing twist angles at each span location and CL corresponds
to the CRM design lift coefficient. The ROM was initialised with 10 random samples,
generated using Latin hypercube sampling from a uniform distribution, with bounds
[−0.5◦, 0.5◦].

The optimisation convergence history is given in Figure 13; results show a decrease in
drag of just over 8%. Similarly to the last case, the trust region radius decreased rapidly,
however, with new samples, the accuracy of the ROM increased, leading to further gains,
and eventually, the improvements became less than a set threshold, and the optimiser
stopped after 51 iterations.

An overview of the surface pressure coefficient is shown in Figure 14; results indicate
a slight attenuation of the shock pattern on the upper surface, particularly in the inboard
and wing tip regions. This is consistent with the the local effects of the optimisation shown
in Figure 15.

Of course, wave drag is not the only contributor to the wing’s aerodynamic perfor-
mance; Figure 16 shows a comparison between the span loadings of the original and
optimised wings against an elliptical load distribution. Results indicate that the baseline
wing should reduce the inboard lift and increase the lift produced outboard, which is what
the optimised wing loading does. However, the new loading outboard exceeds the ideal
case and the lift inboard mostly undershoots the elliptical loading, suggesting that any
improvements to the induced drag are marginal at best. However, the overall effect is a
drag reduction of about 8%.
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Figure 13. Comparison of optimisations with random initial ROM data.

Figure 14. Upper surface pressure coefficient. Left side: baseline; right side: optimised.

(a) y = 25% of semispan (b) y = 70% of semispan (c) y = 90% of semispan

Figure 15. CRM wing section modifications and corresponding surface pressure coefficient at different
span locations.
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Figure 16. Comparison of different span loadings.

4. Conclusions

A new surrogate-based optimisation strategy is proposed using a POD-DEIM ROM to
replace full-order CFD simulations. The ROM uses the POD-DEIM to reconstruct surface
flowfields of the quantities of interest; the reconstructed variable values at the DEIM points
required for the field reconstructions were interpolated and obtained using an RBF neural
network based on the position of the DEIM points on the shapes proposed by the optimiser.
The resultant framework is able to approximate flowfields for transonic, viscous problems
with a relative small number of POD bases, i.e., requiring a limited number of snapshots.
The optimisation framework was completed with a TRMM algorithm that manages the
optimisation and triggers new samples that are used to enrich the ROM as the optimisation
progresses. The framework was tested against two transonic wing cases. The results
obtained demonstrate the ROM-based surrogate model to be a practical, nonintrusive
method for problems with a moderate number of design variables, without compromising
the critical physics of the problem or the performance of the optimiser.
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Abbreviations
Latin Symbols
A Snapshot matrix
CD drag coefficient
CL lift coefficient
Cp pressure coefficient
c DEIM coefficients
CE equality constraint
CI inequality constraint
E energy per unit mass
F objective function
lb design parameter lower bound values
M∞ free-stream Mach number
N number of points in full-order model
np number of optimisation design variables
nr number of reduced bases
ns number of samples to build ROM
p pressure
℘ DEIM interpolation indices matrix
R vector of fluid equation residuals
s optimisation step
S eigenvalues of snapshot matrix
TM reduced-basis matrix
T left singular vectors
ub design parameter upper bound values
V right singular vectors
w conserved flow variables
U velocity vector
u vector containing surface pressures
Greek Symbols
α step length for Newtown method, angle of attack
∆ trust region radius
δ1, δ2 trust region effectiveness thresholds
η nondimensional span location
µ design parameters
ρ density
τw wall shear stress
Mixed Symbols
ρE energy per unit volume
ρU momentum per unit volume
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