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Abstract: Maintenance is an essential part of long-term overall equipment effectiveness. Therefore, it
is essential to evaluate maintenance policies’ effectiveness in addition to planning them. This study
provides a classification of technical systems for selecting maintenance effectiveness indicators and
a classification of maintenance models for calculating these indicators. We classified the systems
according to signs, such as system maintainability, failure consequences, economic assessment of
the failure consequences, and temporary mode of system use. The classification of systems makes it
possible to identify 13 subgroups of systems with different indicators of maintenance effectiveness,
such as achieved availability, inherent availability, and average maintenance costs per unit of time.
When classifying maintenance models, we used signs such as the system structure in terms of
reliability, type of inspection, degree of unit restoration, and external manifestations of failure. We
identified one hundred and sixty-eight subgroups of maintenance models that differed in their values
for specified signs. To illustrate the proposed classification of maintenance models, we derived
mathematical equations to calculate all considered effectiveness indicators for one subgroup of
models related to condition-based maintenance. Mathematical models have been developed for the
case of arbitrary time-to-failure law and imperfect inspection. We show that the use of condition-
based maintenance significantly increases availability and reduces the number of inspections by more
than half compared with corrective maintenance.

Keywords: condition-based maintenance; predictive maintenance; prescriptive maintenance; inspection;
false positive; false negative; achieved availability; inherent availability

1. Introduction

According to the British standard BS EN 13306:2017, “Maintenance is a combina-
tion of all technical, administrative, and managerial actions during the life cycle of an
item intended to retain it in, or restore it to, a state in which it can perform the required
function [1].” Numerous maintenance types and techniques, such as condition-based
maintenance (CBM) [2,3], predictive maintenance [4], prescriptive maintenance [5], re-
mote maintenance [6,7], preventive maintenance [8,9], and e-maintenance [10,11] have
been developed in recent decades. Owners of various pieces of equipment face three
key maintenance challenges: lowering maintenance costs, increasing availability or op-
erational reliability, and selecting the most effective techniques to improve operational
characteristics. The estimated maintenance costs range from 15% to 70% of the cost of items
sold [12]. A significant part of the losses is due to unplanned downtime. According to [13],
industrial manufacturers incur an estimated USD 50 billion in annual losses owing to
unplanned downtime and equipment failure accounts for 42% of this unplanned downtime.
Therefore, it is crucial to assess the effectiveness of maintenance policies in addition to
developing them.

In the following, we discuss the concept of a maintenance and repair system (MRS).
We define MRS as a set of tools, maintenance, and repair documentation, and performers
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necessary to maintain and restore the object of maintenance (OM). The difference between
maintenance and repair is that maintenance is conducted to prevent unexpected equipment
downtime, whereas repair is conducted following downtime to restore the OM operable
state and reduce losses. Under MRS effectiveness, we refer to a set of properties that
characterize the ratio between the costs of resources (material, time, or labor) to maintain
and restore the health of the OM and the effect achieved. The effectiveness of MRS depends
on the reliability, maintainability, and durability of the OM as well as the trustworthiness
of inspections or condition monitoring. The quantitative characteristics of various MRS
properties are indicators of the reliability, maintainability, durability, and trustworthiness
of the inspections. For example, indicators of inspection trustworthiness quantitatively
characterize the properties of the inspection tool, which is a subsystem in the MRS, to
objectively display the actual condition of the OM based on the inspection results.

Currently, technical and technical-economic indicators are used to quantify main-
tenance effectiveness. Technical indicators include the achieved availability, inherent
availability, mission availability, and operational reliability. Technical-economic indicators
include the long-run average profit per unit time and long-run average cost per unit time.

Choosing maintenance effectiveness indicators of a system requires identifying the
key features that distinguish it from others. Therefore, for the proper selection of MRS
effectiveness indicators, the development of a technical system classification is required
according to signs that consider the unique features of their design, intended use, and
operating conditions.

After selecting the MRS effectiveness indicators, a maintenance model should be devel-
oped or chosen for the calculation. This model should reflect the features of the structural
construction of the system in terms of reliability, the presence of external manifestations of
failure, and the main signs of maintenance operations. Since any MRS necessarily includes
an inspection subsystem and a recovery subsystem, the maintenance model should con-
sider the characteristics of operations, including inspection and repair. The efficiency of
using a system for its intended purpose depends on the type of inspection. Therefore, the
maintenance model should consider the type of inspection and the degree of system repair.

Based on the literature review in Section 2, the following findings can be drawn:

(1) Performance indicators are considered at three levels of maintenance control: strategic,
tactical, and operational.

(2) An analysis of the published studies revealed that diverse types of maintenance
performance indicators exist in the literature for each level of maintenance control.

(3) At the operational stage, the most frequently used maintenance indicators are instan-
taneous availability, steady-state availability, average availability, inherent availability,
mission availability, operational reliability, long-run average profit per unit time,
long-run average cost per unit time, and average lifetime maintenance costs.

(4) To date, several classifications of maintenance performance indicators have been
developed, including, for example, such categories of indicators as equipment-related,
maintenance task-related, cost-related, and so on. However, the signs by which
indicators should be selected in each group for systems of various purposes have
not been indicated. Since a formalized approach to selecting the indicators has not
been developed, users are forced to subjectively choose suitable indicators for their
circumstances from a set of known indicators.

(5) The same effectiveness indicators were used for diverse types of maintenance, includ-
ing preventive, corrective, condition-based, predictive, and prescriptive maintenance.
Simultaneously, there is no formal classification of maintenance models that allows
an appropriate model to be objectively chosen according to certain features.

(6) There is no formalized approach to the classification of systems for selecting mainte-
nance effectiveness indicators and for the classification of the maintenance models
necessary to calculate the selected indicators.
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(7) In the existing preventive, corrective, condition-based, and predictive maintenance
models, it is assumed that failures are detected using periodic (or sequential) inspec-
tions and/or continuous condition monitoring.

(8) Prescriptive maintenance uses condition monitoring and artificial intelligence to track
a larger range of data and predict when maintenance is necessary in real-time.

In this study, we propose a classification of technical systems that allows us to select
maintenance effectiveness indicators depending on signs such as system maintainability,
failure consequences, an economic assessment of the failure consequences, and a temporary
mode of system use. This classification makes it possible to identify 13 subgroups of
indicators, including most of the known indices and some new ones.

The study also proposes a classification of maintenance models to calculate each
maintenance effectiveness indicator. The developed classification allows the selection
of a maintenance model depending on features such as the system structure in terms of
reliability, type of inspection, degree of the system’s restoration, and external manifestations
of failure. This classification makes it possible to identify one hundred and sixty-eight
subgroups of the maintenance models.

We illustrate how to determine the maintenance effectiveness indicators for a subgroup
of maintenance models, which assume that the system has a single-component structure,
that the type of inspection is similar to CBM, that the perfect repair is used, and that only
hidden failures occur in the system. We developed mathematical maintenance models for
the case of an arbitrary distribution of time-to-failure and multiple imperfect inspections,
where the probabilities of correct and incorrect decisions depend on the time of inspection
and failure occurrence. A numerical example illustrates the determination of the optimal
number of inspections for a particular stochastic degradation process in condition-based
and corrective maintenance.

The remainder of this article is organized as follows: Section 2 provides a review of
the classification of maintenance effectiveness indicators and maintenance models. The
classification of technical systems for selecting maintenance effectiveness indicators is
discussed in Section 3. Section 4 presents the classification of the maintenance models.
Section 5 develops the condition-based maintenance model and provides formulas for
calculating maintenance effectiveness indicators. In Section 6, an example of deterioration
process modeling is considered. The results are outlined in Section 7, followed by a
discussion in Section 8. Section 9 presents the conclusions and potential future work.
Abbreviations and references are provided at the end of this article.

2. Literature Review

Most studies on the evaluation of maintenance indicators deal with performance met-
rics that fall into two groups: those that show how maintenance affects a system’s overall
performance, and those that address a system’s operational reliability and availability.
The long-run average profit per unit time of using the system is representative of the first
group of indicators. Well-known representatives of the second group are achieved and
inherent availability.

The literature on the classification of maintenance effectiveness or performance indi-
cators is abundant. Reviews of the classification of maintenance performance indicators
can be found in [14–16]. In summary, the study [14] concludes that successful mainte-
nance performance indicators should concentrate on assessing total maintenance effec-
tiveness [17]. Seven categories of maintenance performance indicators that measure the
overall maintenance effectiveness were included in this study [18]. Cost-, equipment-,
and maintenance-task-related indicators are the most crucial. The study [15] examined
the development of maintenance performance measures concerning the crucial mainte-
nance organizational function and its resources, activities, and practices. According to a
study [16], lagging measures, such as maintenance cost and safety performance, dominate
the measurement of maintenance performance. Leading indicators such as maintenance
work processes are used less frequently. The findings revealed no connection between
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the indicators employed and the maintenance goals pursued. The study in [19] used the
original ELECTRE I, a multi-criteria decision-making method, to present a novel method
for selecting maintenance key performance indicators. Following evaluations based on the
key criteria, the suggested methodology generates a ranking of potential options. The study
in [20] considered three levels of maintenance control: strategic, tactical, and operational. A
set of maintenance performance indicators can be considered at each maintenance level.
This study concentrates on maintenance performance indicators that support decisions at
the operational level. The balanced scorecard is a different and comprehensive approach
to measuring maintenance performance, as suggested in this study [21]. It is based on the
idea that no single measure can accurately reflect the overall maintenance performance and
that multiple measures must be used in conjunction.

Let us consider the published indicators of maintenance effectiveness used in the
operational stage. The study in [22] used instantaneous and steady-state availability as
maintenance effectiveness indicators. The best inspection and imperfect maintenance policy
that reduces the average long-term cost rate is then obtained using availability models.
The study in [23] considered an analytical model for the steady state and instantaneous
availability of the system. The authors determined the best method to change the in-
spection interval to maximize the steady-state availability of the system. A study [24]
considered steady-state availability as a critical metric for telecommunication services in
which network functions are handled using software. To determine the lower confidence
limit of the availability of complex control systems, the study [25] presented a new avail-
ability assessment approach based on the goal-oriented method. The study [26] looked
at a continuously tested digital electronic system that could have one of three failures:
revealed, unrevealed, or intermittent. A new maintenance model for determining inherent
availability was proposed. A mathematical model to describe mission availability for a
system with bounded cumulative downtime was proposed in [27]. The suggested approach
simultaneously considers cumulative uptime and downtime as restrictions. The study [28]
considered a mathematical model to compute the operational reliability of an avionic
line-replaceable unit (LRU), the probability of LRU recovery, and the maintenance cost.
In [29], the authors considered corrective maintenance policies for scheduled imperfect
inspections. The maintenance effectiveness indicators are the average availability and
long-run average cost per unit time. A study in [30] suggested a new CBM model that uses
an energy efficiency indicator. The suggested approach encourages CBM optimization to
consider both useful output performance and maintenance costs. The study in [31] focused
on the analytical modeling of a condition-based inspection and replacement policy for a
stochastically and continuously degrading single-unit system. The developed mathemat-
ical model allows for the evaluation of the effectiveness of the maintenance policy and
minimizes the expected long-term maintenance cost per unit time. A CBM policy was
developed in the study [32] for a two-component system with stochastic and economic
dependencies. The long-term expected maintenance cost per unit time is an indicator of
maintenance effectiveness. In [33], a mathematical model of preventive maintenance with
imperfect continuous condition monitoring of wind turbine components was presented.
The derived mathematical equations allow the calculation of both the average lifetime
maintenance cost and expected maintenance cost per unit time. A study [34] proposed a
comprehensive approach for the reliability modeling and maintenance planning of par-
allel repairable systems that suffer from hidden failures. This study aimed to reduce the
expected maintenance cost per unit time by jointly determining the optimal inspection
interval and maintenance thresholds. A study [35] established maintenance policies for
a system under periodic inspections. Maintenance actions were performed for any fail-
ures that were found. Repair is imperfect. The expected variable cost rate is an indicator
of maintenance effectiveness. A study [36] examined the problem of determining the
optimal aircraft equipment maintenance intervals while minimizing maintenance costs
and assuming an Erlang distribution of time between failures. The study in [37] focused
on a technique for calculating the optimal threshold during the implementation of the
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condition-based maintenance of radio equipment. The minimum average operational costs
served as the optimization criterion. The study in [38] examined the cost-effectiveness
of applying CBM in manufacturing companies. The findings indicate that two poten-
tially important benefits of CBM include lowering the probability of maximum damage
to manufacturing machinery and of production losses, particularly in high production
volumes. The study in [39] considered a sensory-updated predictive maintenance policy
that forecasts and updates the residual life distribution of a simple manufacturing cell
using degradation models and sensor information. The overall maintenance costs are then
computed. By considering imperfect remaining useful life (RUL) prognostics based on
condition monitoring data, [40] proposed a dynamic, predictive maintenance scheduling
framework for a fleet of aircraft. This framework reduced the maintenance costs associated
with engine failures to only 7.4% of the overall maintenance costs. A study [41] examined
a production system that was regularly inspected. Manufacturing, inventory, lost sales,
repair, inspection, and maintenance costs are all included in the expected cost function.
The study [42] considered a strategic queuing model to examine how a maintenance ser-
vice provider should allocate capacity and set prices in the face of imperfect IoT-based
diagnostics, which continuously monitor various pieces of equipment using sensors. The
study in [43] investigated two maintenance strategies for wind-turbine gearboxes using
continuous temperature monitoring. The maintenance effectiveness indicator is the total
expected cost per unit time. According to a numerical analysis of the presented models,
the optimal imperfect preventive maintenance strategy was 46% more effective than the
optimal renewal strategy. A study [44] proposed a technique for managing the mainte-
nance of wind turbines using artificial intelligence approaches to reduce the overall cost.
According to the study, the electrical system, gearbox, generator, and blades account for
more than 80% of the risk factor and related downtime; as a result, they should be moni-
tored and inspected more frequently than the others. The study in [45] created a big data
analytics platform that lowers maintenance costs by optimizing the maintenance schedule
through CBM optimization and increasing the accuracy of quantifying the RUL prediction
uncertainty. The study [46] proposed a wind farm predictive maintenance approach that
considered the economic dependency among subassemblies and component-level major
and minor repairs. A simulation method was developed to assess maintenance costs. The
study in [47] proposed a reinforcement learning method to explore optimal predictive
maintenance policies that optimize production and maintenance costs. The study in [48]
determined an optimal preventive maintenance schedule that was predicted based on
the industry’s maximum availability of critical part manufacturing systems. A study [49]
developed a highly accurate RUL prediction for machinery using sensor-monitoring data.
The proposed approach provides a more accurate RUL prediction than existing data-driven
prediction methods. The study in [50] built a distributed system with artificial intelligence
assistance for applications in manufacturing plant-wide predictive maintenance based on
sensors. The study in [51] considered a sensor deployment problem to minimize main-
tenance costs. The authors developed a maintenance cost model for IoT networks that
considers thermal degradation and battery depletion. A study [52] proposed a maintenance
model for protection systems with imperfect inspections. The conditional probabilities of
correct and incorrect inspections are assumed to be constant. The maintenance effectiveness
indicator was the expected cost per regeneration cycle. Studies [53,54] have shown that
the probabilities of imperfect inspections at condition-based and predictive maintenance
are functions of the degradation model parameters and strongly depend on time. In the
study [55], the case of imperfect testing of the crack depth in a fighter wing was considered.
The study showed that flight hours have a significant impact on the probabilities of a
false positive and a false negative. The study in [56] analyzed six main components of
intelligent predictive maintenance: (1) sensor and data acquisition, (2) signal pre-processing
and feature extraction, (3) maintenance decision-making, (4) key performance indicators,
(5) maintenance scheduling optimization, and (6) feedback control and compensation. The
study [57] presented a new data-driven predictive maintenance approach that covers the
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full process, from using RUL prediction to making maintenance decisions. The mainte-
nance cost per unit time was calculated. The study in [58] proposed probabilistic models
for assessing mission success probability, system survival probability, expected number of
inspections during the mission, and total estimated losses for a system subject to imperfect
inspections. In the developed models, the probabilities of false positives and false negatives
were time-independent.

The studies [59–64] considered the application of preventive, condition-based, and
predictive maintenance techniques in the context of Industry 4.0. Among the novel mainte-
nance approaches and techniques, special attention is given to the data-driven approach,
conventional machine learning approaches, and machine prognostics for RUL estimation.
Studies [65–70] introduced prescriptive maintenance techniques that may not only predict
the condition of a machine in the future but also suggest proactively timed decisions for
certain maintenance activities such as inspection, repair, and replacement. Studies [71–76]
considered the use of knowledge-based approaches in predictive, condition-based, pre-
scriptive, and preventive maintenance.

3. Classification of Systems

As noted in Section 1, the design of the system, its purpose, and its operating con-
ditions affect the choice of MRS effectiveness indicators. To classify the systems, we
characterized each of the listed generalized properties by using a minimum set of the most
significant signs.

From a maintenance perspective, the design of a system is primarily characterized
by its maintainability. According to [1], “maintainability is the ability of an item under
given conditions of use, to be retained in, or restored to, a state in which it can perform
a required function.” Items that can be repaired are compared with those that cannot be
repaired because of planned obsolescence. The division of systems into repairable and
non-repairable systems is associated with the possibility of restoring an operable state
through repair, which is ensured during the development and manufacture of the system.

We should also note that sometimes the term “repairability” is used to characterize
the ability of a system to be repaired. Maintainability and repairability are similar. The
only distinction is that while repairability is limited to active repair time, maintainability
is based on total downtime (which includes administrative time, active repair time, and
logistic time). In addition, the term “maintainability” is standard [1], while the term
“repairability” is not.

The concept of “purpose of the system” primarily relates to the functions it performs.
However, this concept includes not only the list of functions performed but also the relative
importance of these functions. These two circumstances can be characterized by qualitative
and quantitative assessments of the events that occur owing to system failure, that is, the
consequences of failure and the possibility of their quantitative assessment.

The evaluation of maintenance effectiveness is carried out using indicators that depend
on the operating time of the system in a given mode of temporary use, which may be contin-
uous or intermittent. That is why, as a sign of the classification that characterizes the mode
of operation, we chose the temporary mode of using the system for its intended purpose.

Therefore, we classified systems according to the following criteria: maintainability,
consequences of a failure, possibility of an economic assessment of the consequences of a
failure, and temporary mode of system use.

To divide a set of system types into subsets according to the listed signs, it is necessary
to select a classification system. Currently, the most common classification systems for
information objects are hierarchical and faceted [77].

A hierarchical system is used when a subordination relationship is established between
the classification signs used at levels i and (i + 1).

With a faceted classification system, we subdivide the initial set of objects into subsets
by combining the values of the independent signs (facets).
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As shown below, for the four signs under consideration, a subordination relation exists
between all features. Therefore, it is necessary to apply a hierarchical classification system
with ordinal registration of individual sign values.

We determined the values of the classification signs, established a connection between
them, and divided the initial set of systems into disjointed subsets as follows.

First classification sign. A sign of system maintainability i (i = 1: the system is repairable;
i = 2: the system is non-repairable).

When using “repairable”, we refer to the systems for which the repair is provided in
the technical documentation.

Non-repairable systems will include systems whose performance cannot be restored
owing to design features or whose restoration is not economically feasible. However, for
non-repairable systems, maintenance may be provided, including condition monitoring
and removal if necessary.

Therefore, in the first stage of the classification, the initial set of systems I0 is divided
according to sign i into the class of repairable systems I1 and the class of non-repairable
systems I2, that is,

I0 = I1∪I2 (1)

moreover I1 ∩ I2 = ∅, where ∪, ∩, and ∅ are symbols denoting the union and intersection
of subsets, and an empty subset, respectively.

Figure 1a illustrates the classification of systems by sign i.
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Second classification sign. A sign of failure’s consequences j (j = 1: the fact that the
system does not perform a safety-critical function assigned to it in a given volume, j = 2:
the fact that the system does not perform a safety-critical function assigned to it in a given
volume at an arbitrary moment of beginning the “operation mode,” j = 3: downtime of the
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system in a state of unrevealed failure when used as intended and downtime associated
with scheduled maintenance and unscheduled repair; j = 4: downtime of the system in a
state of unrevealed failure when used as intended, regardless of the downtime associated
with scheduled maintenance; j = 5: downtime of the system in a state of unrevealed failure
when used as intended and downtime associated with unscheduled system replacement).

When evaluating the consequences of a failure, the sign value of j = 1 corresponds to
the case in which the consequences affect safety. According to the European Standard ECSS-
S-ST-00-01C—-Glossary of Terms [78], “a safety-critical function is the function that, if lost
or degraded, or as a result of incorrect or inadvertent operation, can result in catastrophic or
critical consequences.” When j = 2, the system can be either in standby mode or operation
mode, and when it is in operation mode, it does not perform a safety-critical function. In
the standby mode, the system is accessible for inspection and repair. The system must
operate without failure for a predetermined time in the operating mode, where failure
affects safety. Maintenance and inspection were not performed in the operating mode.

The sign value j = 3 corresponds to the case when material damage due to a failure is
caused by both the system’s downtime in a state of unrevealed failure during operation
and by the downtime due to the restoration.

The sign value j = 4 corresponds to the case in which the material damage owing to a
failure is much greater than the losses caused by the system downtime. In this case, as a
rule, the system downtime owing to restoration work does not lead to substantial material
loss. If it is impossible to estimate material losses due to system failure, the value j = 4
corresponds to the case in which either scheduled maintenance or restoration of the system,
or both, can be carried out during time intervals when the system is not used.

The sign value j = 5 corresponds to the operation of a non-repairable system, the
consequences of which do not affect safety.

The sign values j = 2, 3, and 4 correspond to the cases of operation of repairable
systems, and when j = 1, the system can be both repairable and non-repairable.

Therefore, in the second stage of the classification, we divided class I1 into four
subclasses: I11, I12, I13, and I14, and class I2 into two subclasses: I21 and I25, that is,

I1 =
4
∪

j=1
I1j (2)

I2 = I21∪I25 (3)

Figure 1b,c illustrates the classification of systems by sign j.
Third classification sign. A sign of the economic evaluation of failure consequences k

(k = 1: economic evaluation is impossible; k = 2: economic evaluation is possible).
When the consequences of a failure can be evaluated economically, it is necessary

to use technical-economic indicators of the MRS in the form of the average operating
profit per unit of time (AOPUT) or average maintenance cost per unit of time (AMCUT).
The possibility of an economic evaluation of the consequences of failure exists only for
systems that do not affect safety, that is, for subclasses I13, I14, and I25. If, for some reason,
material damage from a system failure that belongs to one of these subclasses cannot be
quantified, then complex reliability indicators, namely inherent availability and achieved
availability, should be used as MRS effectiveness indicators. If a system failure leads to the
non-fulfillment of the assigned safety-critical functions, then the consequences of failure
cannot be evaluated. Indeed, the failure of safety-critical systems in the nuclear, chemical,
aviation, military, etc. industries may result in many casualties. Moreover, it is not known
how many victims there will be. For example, two accidents at the nuclear power plants of
Chornobyl and Fukushima killed tens of thousands of people [79,80]. The cost of the loss of
human lives cannot be estimated in such cases. Therefore, when planning and optimizing
the maintenance of safety-critical systems, criteria are used that do not include the cost of
the failure consequences. In such cases, the dominant factor in evaluating the consequences
of a failure is the inability to perform a task. As higher demands are placed on the reliability
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of safety-critical systems during their intended use, it is logical that meeting these demands
comes at a price. Therefore, when evaluating the MRS effectiveness for subclasses I11
and I12, it is recommended to utilize the “reliability-costs” criterion, which demands the
presence of two effectiveness indicators. The first identifies the operational reliability of the
system, whereas the second characterizes maintenance costs.

As indicators of reliability, we used the a posteriori probability of failure-free operation
(APFFO) for non-repairable systems and the operational probability of failure-free operation
(OPFFO) for repairable systems.

The APFFO and OPFFO can be determined both for periodic and sequential inspec-
tions. The APFFO is the conditional probability of failure-free operation of the system on
the interval (tk, t), provided that the system can be used for its intended purpose based on
the inspection results at moments t1, . . . , tk.

From the definition of APFFO, it follows that for non-repairable systems, the moments
of inspections are assigned until the system is rejected. Once the system is replaced, the
inspection schedule is restarted, beginning with the first inspection moment.

Under the OPFFO, we refer to the probability of failure-free operation of the system
over the operating time interval (tk, t), considering that at moments t1, . . . , tk, maintenance
was carried out, including inspection and restoration of systems judged as inoperable.

From the definition of OPFFO, it follows that for repairable systems, inspection times
are assigned considering the repair of rejected systems.

The definitions of the APFFO and OPFFO for systems with continuous condition
monitoring are as follows:

The APFFO is the conditional probability of the system’s failure-free operation during
the interval (0, τp), assuming that the system has not been rejected by the condition-
monitoring results, where τp is the periodicity of maintenance.

The OPFFO is the probability of failure-free operation of the system in the interval
(0, τp), considering that, at any moment, the system can be rejected as inoperable and
then restored.

Maintenance costs are characterized by unit costs (UC), that is, the average costs per
unit time of system use. Moreover, for non-repairable systems, UC includes inspection and
replacement costs, whereas, for repairable systems, UC includes inspection and repair costs.

For subclass I12, that is, for systems operating in two modes, the dominant factor
in evaluating the consequences of a failure is the fact that a safety-critical function is not
performed at an arbitrary start of the “operation mode.” As a rule, for this system subclass,
an economic assessment of the consequences of the failure is not possible. Therefore,
mission availability should be used as an indicator of maintenance effectiveness. We define
mission availability as the probability that the system will be in an operable state at any
time (except for scheduled maintenance intervals, during which the system is not used for
its intended purpose), and from that moment, will operate failure-free within a specified
interval of time.

Therefore, in the third stage of the classification, depending on the value of sign k, the
subclasses of the systems are divided into the following nine groups:

I11 = I111, I12 = I121, I13 = I131∪I132,
I14 = I141∪I142, I21 = I211, I25 = I251∪I252

(4)

At this stage of classification, maintenance effectiveness indicators can be uniquely
defined for the six groups of systems. For group I111, the effectiveness indicators were
OPFFO and UC; for group I121, mission availability; for groups I132, I142, and I252, AOPUT
or AMCUT; and for group I211, APFFO and UC. The performance indicators of groups I131,
I141, and I251 can either be inherent or achieved availability. The final choice of indicators is
made after these groups are divided into subgroups depending on the temporary mode of
the system’s use.

Figure 1b,c illustrates the classification of systems by sign k.
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Fourth classification sign. A sign of the temporary mode of system use l (l = 1: continuous
mode; l = 2: intermittent mode).

In the continuous system use mode, equipment downtime is caused by failures and
the need for scheduled maintenance. When a system is used intermittently, planned
maintenance can be performed if it is not in use.

Each group of systems I111, I211, I251, and I252 on the fourth level of classification was
divided into two subgroups:

I111 = I1111∪I1112, I211 = I2111∪I2112,
I251 = I2511∪I2512, I252 = I2521∪I2522

(5)

because the values of l do not contradict the previous signs in these groups.
For group I121, sign l = 2 because the system operates in two modes and switches to

operating mode only after an alarm signal.
For group I131, sign l = 1 because the value of sign l = 2 contradicts the value of sign

j = 3. Indeed, with the intermittent use of the system, scheduled maintenance can be carried
out at intervals in which the use of the system is not planned. Therefore, there will be no
downtime owing to the scheduled maintenance. For the same reason, for group I132, the
sign l = 1.

For groups I141 and I142, the sign l = 2 because l = 1 is incompatible with j = 4. It takes
time to repair a system when a failure is detected in a continuous mode of use.

Therefore, for groups I131, I132, I141, and I142 at the fourth stage of classification,
we obtain

I121 = I1212, I131 = I1311, I132 = I1321, I141 = I1412, I142 = I1422 (6)

Figure 1b,c illustrates the classification of systems by sign l.
During continuous use, it is necessary to consider the downtime of the system owing

to scheduled maintenance. Therefore, the achieved availability is an effective indicator for
subgroups I1311 and I2511. As mentioned previously, scheduled maintenance does not result
in downtime in intermittent usage. Therefore, the effectiveness indicator for subgroups
I1412 and I2512 is inherent availability.

Definitions of the achieved and inherent availability for repairable systems are avail-
able in many references, such as examples [81,82]. Since subgroups I2511 and I2512 include
non-repairable systems, we define the achieved and inherent availability for them.

The achieved availability of a non-repairable system is the ratio of the mathematical
expectation of the time the system is in an operable state for a certain period of operation to
the sum of the mathematical expectations of the time the system is in an operable state and
downtime owing to unrevealed failures, scheduled and unscheduled maintenance (checks
and removals).

The inherent availability of a non-repairable system is formulated in the same manner
as that of a repairable system. However, when calculating the inherent availability, because
there is no repair, only the characteristics of the operable and unrevealed failure states and
unscheduled removals are considered.

Figure 1 shows the hierarchical classification of the systems, which includes two
classes, six subclasses, nine groups, and thirteen subgroups of systems.

The corresponding maintenance effectiveness indicators are listed in Table 1. Table 1
uses the following notations: PO is the OPFFO, Cr is the UC for a repairable system, Ama
is the mission availability, Ar

a is the achieved availability for a repairable system, Wr and
Vr are the AOPUT and AMCUT for a repairable system, respectively, Ar

i is the inherent
availability for a repairable system, PA is the APFFO and Cn is the UC for a non-repairable
system, An

a is the achieved availability for a non-repairable system, An
i is the inherent

availability for a non-repairable system, and Wn and Vn are the AOPUT and AMCUT for a
non-repairable system, respectively.
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Table 1. Subgroups of technical systems and corresponding maintenance effectiveness indicators.

System Subgroup Number of a Subgroup Maintenance Effectiveness Indicators

I1111 1 PO, Cr
1

I1112 2 PO, Cr
2

I1212 3 Ama

I1311 4 Ar
a

I1321 5 Wr
1 or Vr

1

I1412 6 Ar
i

I1422 7 Wr
2 or Vr

2

I2111 8 PA, Cn
1

I2112 9 PA, Cn
2

I2511 10 An
a

I2512 11 An
i

I2521 12 Wn
1 or Vn

1

I2522 13 Wn
2 or Vn

2

The index “1” in the designation of indicators Cr, Wr, Vr, Cn, Wn, and Vn indicates
that the mode of the system use is continuous, and therefore, when calculating indicators,
it is necessary to consider losses due to downtime during scheduled maintenance and un-
scheduled repairs (for repairable systems). Index “2” in the designation of these indicators
specifies intermittent use of the system. In this case, losses owing to downtime during
scheduled maintenance were not considered.

The maintenance effectiveness indicators listed in Table 1 characterize the most signifi-
cant signs of the design, purpose, and operating conditions of the system. Therefore, they
should be considered as key indicators. When solving maintenance optimization problems,
additional indicators that specify the specifics of the situation under consideration can be
included in the number of indicators characterizing maintenance effectiveness.

Example 1. We determined the maintenance effectiveness indicators for an aircraft instrument landing
system (ILS), which is the most common radio navigation instrument approach system in aviation.

Redundant electronic systems make up modern digital avionics [83]. The onboard ILS
is an avionics system. Any avionics system usually comprises two or three identical line-
replaceable units (LRUs) [84]. Avionics LRUs have a reputation for their excellent testability
and maintainability standards. Shop-replaceable units (SRUs) are LRU interchangeable
parts. Typically, an SRU is a printed circuit board assembly that may be changed or repaired
in a workshop. ILS is therefore a repairable system (i = 1). System failures during the
descent and landing phases can lead to dangerous situations. Therefore, the ILS system was
not included in the master minimum equipment list (MMEL) [85], which listed onboard
systems in an aircraft that can be classified as having little to no effect on the safety of the
operation. Hence, the failure consequence is the nonfulfillment of the critical functions
(j = 1). Economic assessment of the consequences of failure is impossible (k = 1). The ILS
was operated in intermittent mode (l = 2) because avionics operation is associated with the
alternation of flights and stops of aircraft.

Thus, the ILS belongs to the subgroup I1112. As shown in Table 1, the maintenance
effectiveness indicators were PO and Cr

2.

Example 2. We determined the maintenance effectiveness indicators for an aircraft’s satellite
communication (SATCOM) system.
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The SATCOM system was repairable (i = 1). The SATCOM system was included in the
MMEL [85], which means that the system has little to no effect on flight safety. Hence, the
failure consequence is the downtime of the system in a state of unrevealed failure when
used as intended, regardless of the downtime associated with scheduled maintenance
(j = 4), because scheduled maintenance can be carried out during time intervals when the
system is not in flight. An economic assessment of the consequences of failure is impossible
(k = 1). The SATCOM was operated in intermittent mode (l = 2).

Thus, the SATCOM system belongs to the subgroup I1412. As shown in Table 1, the
maintenance effectiveness indicator was Ar

i .

4. Classification of Maintenance Models

This section uses hierarchical classification with the ordinal registration of individual
sign values. The classification signs include system structure in terms of reliability, type
of inspection during maintenance, degree of system restoration for the system rejected
at inspection, and external manifestations of system failure. We chose a hierarchical
classification because the first three signs have a subordination relationship.

We determined the values of classification signs and established a relationship between
them, as shown below.

First classification sign. A sign of the system structure in terms of reliability (a = 1: single-
component structure; a = 2: series structure; a = 3: parallel structure; a = 4: structure “h-out-
of-q”; a = 5: series-parallel structure; a = 6: parallel-series structure; a = 7: complex structure).

As is well known, the maintenance models depend on the system structure concerning
reliability [86–90].

When a = 1, the system is considered a single unit; that is, in the case of the rejection of
the system based on the inspection results, the entire system is subject to restoration.

When a = 2, . . . , 7, the system consists of q > 1 units, and only the units rejected
during the inspection are subject to restoration. We refer to systems with complex reliability
structures as systems whose structural functions extend past the first six values of feature
a. For instance, systems with a complex reliability structure may change the reliability
structure in different modes of operation.

Therefore, in the first stage of the classification, we divided the set of maintenance
models for inspected systems (M0) based on sign a into seven classes: M1, . . . , M7,

M0 =
7
∪

a=1
Ma (7)

where Mi ∩Mj = ∅ if i 6= j.
Figure 2a illustrates the classification of maintenance models by sign a.
Second classification sign. A sign of the type of inspection (b = 1: periodic or sequential

inspection at corrective maintenance (CM); b = 2: periodic or sequential inspection at CBM;
b = 3: periodic or sequential inspection at predictive or prescriptive maintenance; b = 4:
continuous condition monitoring at corrective, preventive, condition-based, predictive, or
prescriptive maintenance).

A corrective maintenance inspection distinguishes only between the operable and
inoperable states of a system. This type of inspection is the simplest, but it has a serious
disadvantage, the essence of which lies in the fact that CM inspection allows for detecting
defects that have accumulated in the system by the time it is carried out and does not
provide any confidence in the system’s operability in the future. From the perspective of
the system operator, the content of CM inspections falls short of fully achieving the goal of
maintenance, which is to prevent failures from occurring while the system is being used
for its intended purpose rather than simply identifying failures and fixing their effects.
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of models depending on the system’s external manifestations of failure.

Inspection at CBM is more effective because it employs both the functional failure
threshold and the replacement threshold, making it possible to reject systems that have
already failed, as well as those that may fail in the next operation interval.

An inspection at predictive maintenance includes a prognostication of the system’s
future state by comparing the predicted parameter values with the functional failure
thresholds. The use of prognosis-based inspection allows the rejection of systems that
will fail in the upcoming operation interval. This type of inspection is in line with the
potential goal of maintenance to allow only those systems that will not fail until the next
maintenance time point to operate.

Prescriptive maintenance goes beyond predictive maintenance because it generates
proactive decisions for equipment restoration based on predictive analytics. Prescriptive
maintenance can show us how particular actions on an asset or system restoration affect
the output, rather than only predicting when the equipment is likely to fail. Industrial
businesses utilize prescriptive maintenance and analytics solutions to reduce unplanned
downtimes, increase equipment reliability, and maximize profits.

According to ISO 13372 [91], “condition monitoring is detection and collection of
information and data that indicate the state of a machine.” Both intermittent and continuous
condition monitoring is possible.

Periodic monitoring in production systems is performed with the use of portable indi-
cators such as hand-held measurement equipment, acoustic emission units, and vibration
pens at specific intervals [38].

In real-time monitoring, a machine is continuously monitored, and at any time an error
is found, a warning alarm is set off. Continuous condition monitoring is used to increase
system availability or reduce maintenance costs for deteriorating systems. Sensors for
condition monitoring may use vibration, ultrasonics, thermography, fiber optics, and other
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technologies. Maintenance based on continuous condition monitoring is a potential strategy
to increase operational reliability and lower the operating costs of various deteriorating
systems [33,39,42,43,50].

Therefore, depending on the type of inspection, the class of models M1 is divided into
four subclasses M11, M12, M13, and M14 that is,

M1 =
4
∪

b=1
M1b (8)

One of the four types of inspection can be utilized for every system unit when perform-
ing maintenance on multi-unit systems. To simplify the classification, we selected from the
classes of models M2, . . . , M7 only those subclasses, Ma1, Ma2, Ma3, and Ma4 (a = 2, . . . , 7),
in which the same type of inspection was used for all units of the system.

Figure 2b illustrates the classification of maintenance models by sign b.
Third classification sign. A sign of the degree of the system’s unit restoration (c = 1:

perfect repair: after repair, the unit becomes as-good-as-new; c = 2: minimal repair: after
repair, the unit is in the pre-failure condition; c = 3: imperfect repair: after repair, the unit is
in the condition between “as-good-as-new” and its pre-failure condition).

Those units rejected due to inspection are shipped for restoration. These units can be
restored with varying degrees of correspondence to the initial state. The degree of recovery
is characterized by the reliability properties that the unit acquires after restoration.

The degree of recovery can be full, minimal, or partial. The first degree of recovery
corresponds to perfect repair. In this case, the repaired units acquire the same reliability
properties as the new units with a zero-operating time. Such restoration is a model of a prac-
tical situation in which the reliability of a unit is primarily determined by a non-repairable
element. In the second case, the repaired unit had the same reliability characteristics as the
unit that had been in use for the same amount of time without experiencing failure. This
recovery model applies to real-world scenarios, in which a unit includes many components
with similar reliability indicator values. When one failed element was replaced, the reliabil-
ity indicator readings of such a unit were comparable to those of a block with no failures.
In the third case, we describe imperfect repair as one that leaves the system in a condition
halfway between its pre-failure “as-bad-as-old” state and an “as- good-as-new” state.

Let us assume that we use the failure rate λ(t) as a reliability indicator for unit elements.
Then, the perfect repair model can be used to describe the quantitative characteristics of the
reliability of units arriving for restoration if the unit contains an element with the number j,
for which

λj(t)� λi(t) (i = 1, . . . , g, i 6= j) (9)

where λi(t) is the failure rate of the i element and g is the number of unit elements.
The minimal repair model can be used with the same failure rate of the elements in a

multi-element unit.
λi(t) = λ0(t) (i = 1, . . . , g) (10)

When using the imperfect repair model, the failure rate of the unit after repair (λimp)
is greater than that with perfect repair (λper) but less than that with minimal repair (λmin),
that is,

λper < λimp < λmin (11)

An imperfect repair model may be employed for units with several nonrepairable
components; when one of these components is replaced by a new one, the unit’s failure
rate drops but does not match that of a new one.

Therefore, in the third stage of classification, depending on the recovery model used,
the subclasses of models Ma1, Ma2, Ma3, and Ma4 (a = 1, . . . , 7) were divided into the
following groups:

Mab =
3
∪

c=1
Mabc (a = 1, . . . , 7 and b = 1, . . . , 4 ) (12)
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Figure 2c illustrates the classification of maintenance models by sign c.
Fourth classification sign. A sign of external manifestations of failure (d = 1: only hidden

failures occur in the system; d = 2: both hidden and evident failures occur in the system).
The external manifestations of system failure directly affect the feasibility and efficiency

of inspection. If there are only hidden failures, the inspection efficiency will be the largest
because only by its results will it be possible to determine the technical condition of
the system and thereby decide whether the system should be allowed to be used in the
upcoming operating time interval. If only evident failures occur in the system, it is not
advisable to inspect it, because it does not provide any additional information about the
system’s condition. In this case, failure was evident to the technical staff. Therefore,
maintenance includes detecting the failure location and repairing failed parts of the system.
We did not consider this case separately.

When both hidden and evident failures occur in the system, the inspection efficiency
depends on the ratio of the reliability characteristics of the system to these failures.

Sign d does not depend on signs a, b, and c. Therefore, each of the groups obtained at
the third stage of the classification was subdivided at the fourth stage into two subgroups
as follows:

Mabc = Mabc1∪Mabc2 (a = 1, . . . , 7, b = 1, . . . , 4 and c = 1, 2, 3 ) (13)

Figure 2d illustrates the classification of maintenance models by sign d.
Figure 2a–d shows the hierarchical classification of the maintenance models for the

inspected systems, including seven classes, twenty-eight subclasses, eighty-four groups,
and one hundred and sixty-eight subgroups.

The operation and maintenance processes of any system can be represented as a
sequence of changes in its various states. Therefore, we define system behavior using a
stochastic process L(t), where t > 0, with a finite space of states:

S =
m
∪

i=1
Si (14)

where m is the number of the system states.
Process L(t) changes only in jumps, where each jump is caused by a system transition

to one of the possible states. The operable state is denoted by S1. State S2 corresponds to an
inoperable state, that is, the presence of a failure in the system. States S3, . . . , Sm are related
to different types of inspections and repairs (or removal).

For the convenience of the subsequent presentation, from one hundred and sixty-eight
subgroups of maintenance models, we formed two classes of models that differed in the
value of sign c.

At c = 1, the unit rejected during the inspection at time tk (k = 1, 2, . . . ) is replaced
by a new operable unit with zero operating time. Since the unit is renewed with such a
replacement, process L(t), t > 0, is regenerative:

L(t) =



L1(t) when 0 < t ≤ C(1)
0

L2

(
t− C(1)

0

)
when C(1)

0 < t ≤ C(1)
0 + C(2)

0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Li

(
t−

i−1
∑

ν=1
C(ν)

0

)
when

i−1
∑

ν=1
C(ν)

0 < t ≤
i

∑
ν=1

C(ν)
0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(15)

where C(ν)
0 (ν = 1, 2, . . .) is the ν random cycle of system regeneration.

Since the initial process L1(t) and the i process Li

(
t−∑i−1

ν=1 C(ν)
0

)
are stochastically

equivalent, the regenerative process L(t) is synchronous [92]. Therefore, the mathematical
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expectation of the regeneration cycle C(ν)
0 is the same for each ν (ν = 1, 2, . . .); we designate

it as E(C0).
For the regenerative process L(t) of changing the system states, the fraction of time

the system is in Si (i = 1, . . . , m) is equal to the ratio of the mathematical expectation of the
time the system is in state Si during a regeneration cycle to the mathematical expectation of
the regeneration cycle [93]. We used this regenerative process property when developing
models of maintenance effectiveness indicators at c = 1.

When c = 2 and 3, the system operation and maintenance are considered during the
operating time Tul > 0, where Tul is the useful life of the system or the assigned useful life.
The technical condition of the unit was not renewed when it was replaced at time tk (k = 1,
2 . . . , tk < Tul). It is assumed, however, that once the operating time exceeds Tul, the unit is
replaced with a new unit with zero operating time. Therefore, it is also possible to construct
a synchronous regenerative process L(t), t > 0, with a deterministic regeneration cycle Tul
by setting the following:

L(t) =


L1(t) when 0 < t ≤ Tul
L2(t− Tul) when Tul < t ≤ 2Tul
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Li[t− (i− 1)Tul ] when (i− 1)Tul < t ≤ iTul
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(16)

Since at c = 2 and c = 3, the process L(t) is also synchronous, we can consider the
models of maintenance effectiveness indicators during the regeneration cycle (0, Tul).

5. Example of Developing Maintenance Model

We determined the maintenance effectiveness indicators in Table 1 for the subgroup of
maintenance models M1211, assuming that the system has a single-component structure
(a = 1), the type of inspection is similar to CBM (b = 2), the perfect repair is used (c = 1), and
only hidden failures occur in the system (d = 1).

We began by building a maintenance model by defining the stochastic process L(t),
as follows [94]:

L(t) =



S1, if the system is in an operable state and used for its intended purpose at time t,
S2, if the system is in an inoperable state (hidden failure) at time t and used for its intended purpose,
S3, if the system is not used for its intended purpose because of a scheduled inspection at time t,
S4, if the system is not used for its intended purpose because of preventive repair at time t,
S5, if the system is not used for its intended purpose because of corrective repair at time t.

We denote through Ts
i (i = 1, . . . , 5) the amount of time the system spent in state Si.

Time Ts
i is a random variable with the expected mean time E

(
Ts

i
)
. Since process L(t) is

regenerative, the average duration of the regeneration cycle is

E(C0) =
5

∑
i=1

E(Ts
i ) (17)

5.1. Correct and Incorrect Decisions at CBM Inspections

In this subsection, we describe events such as true positive, false positive, true negative,
and false negative that may arise from imperfect inspection during CBM.

To determine the expected mean times E
(
Ts

1
)
, . . . , E

(
Ts

5
)
, we need to know the condi-

tional probabilities of the correct and incorrect decisions made when conducting a CBM
inspection. We suppose that a gradual failure of the system occurs at time η, where
tk < η ≤ tk+1 (k = 0, . . . , N). Figure 3 shows the location of inspection times t1, . . . , tN and
the gradual failure at time η in a finite interval (0, T).
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To determine the probabilities of the correct and incorrect decisions, we assume that
the system state parameter X(t), which is a nonstationary stochastic process with continuous
time, completely identifies the system condition. If the value of the system state parameter
exceeds the functional failure threshold FT, then the system enters a failed state. If there is
a measurement error (or noise) Y(tn), n = 1, . . . , N, then the measurement result Z(tn) is
related to the true value X(tn) as follows:

Z(tn) = Φ[X(tn), Y(tn)] (18)

where Φ(·) is a function of random variables X and Y.
The following decision rule is introduced when inspecting the system at time tn. If

z(tn) < RTn, the system is judged to be operable over the time interval (tn, tn+1), and if
z(tn) ≥ RTn, the system is judged to be inoperable over the time interval (tn, tn+1) and is
excluded from the operation, where RTn (RTn < FT) is the replacement threshold at time tn.
Since RTn < FT, this decision rule aims to reject systems that can fail over the time interval
between the inspections.

Using the introduced decision rule, two repair or replacement strategies are possible.
If RTn ≤ Z(tn) < FT, then the preventive repair or replacement of the system is performed
at time tn. If Z(tn) ≥ FT, the corrective repair or replacement of the system is performed at
time tn.

The decision rule above compares the parameter values that determine the system
state with those of replacement thresholds. This rule does not allow one to associate the
time to failure with the probabilities of the correct and incorrect decisions based on the
inspection results because the measurement result is located on the space (vertical) axis
but not on the time (horizontal) axis. Therefore, with this decision rule, it is impossible to
properly introduce the conditional probabilities of correct and incorrect decisions into the
mathematical model of maintenance.

We introduced three random variables associated with the functional failure threshold
FT and replacement threshold RTn (n = 1, . . . , N) to consider the decision rule at CBM
inspection on the time axis. We denote the random time to system failure by H with the
probability density function (PDF)ω(η). Let Hn be a random time of the system operation
until it exceeds the replacement threshold RTn by the parameter X(t), and let H∗n denote a
random assessment of Hn based on the results of the inspection at time tn. The lowest roots of
the following stochastic equations are used to define the random variables H, Hn, and H∗n:

X(t)− FT = 0 (19)

X(t)− RTn = 0 (20)

Z(tn)− RTn = 0 (21)

The definition of the random variable H∗n involves the following:

H∗n =

{
tn, if Z(tn) ≥ RTn (n = 1, . . . , N)
> tn, if Z(tn) < RTn

(22)

Based on (22), the decision rule presented previously can now be expressed as follows:
at time point tn, the system is judged to be operable over the time interval (tn, tn+1) if
η∗n > tn; alternatively (if η∗n ≤ tn), the system is judged to be inoperable over the time
interval (tn, tn+1), where η∗n is the realization of the random variable H∗n for the system.
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According to (18) and (21), H∗n is implied to be a function of the random variables X(tn),
Y(tn), and the replacement threshold RTn. When Y(tn) is present in (21), the measurement
error of the time to failure at inspection time tn appears to be random in nature, and is
defined as follows:

∆n = H∗n −H (n = 1, . . . , N) (23)

The random variables H (0 < H < ∞) and ∆n (−∞ < ∆n < ∞) exhibit an additive
relationship. Consequently, the random variable H∗n is specified to have a continuous range
of values between−∞ and +∞. When inspecting the system at time tn, a mismatch between
the solutions of (19) and (21) causes one of the following mutually exclusive events to occur:

Λ1
(
t1, tn

)
=

[
H > tn+1∩

(
n
∩

i=1
H∗i > ti

)]
(24)

Λ2
(
t1, tn

)
=

[
H > tn+1∩H∗n ≤ tn∩

(
n−1
∩

i=1
H∗i > ti

)]
(25)

Λ3
(
t1, tn

)
=

[
tn < H ≤ tn+1∩

(
n
∩

i=1
H∗i > ti

)]
(26)

Λ4
(
t1, tn

)
=

[
tn < H ≤ tn+1∩H∗n ≤ tn∩

(
n−1
∩

i=1
H∗i > ti

)]
(27)

Λ5
(
t1, tn

)
=

[
H ≤ tn∩

(
n
∩

i=1
H∗i > ti

)]
(28)

Λ6
(
t1, tn

)
=

[
H ≤ tn∩H∗n ≤ tn∩

(
n−1
∩

i=1
H∗i > ti

)]
(29)

where Λ1(t1, . . . , tn) is the joint occurrence of the following events: the system is operable
over the time interval (tn, tn+1) and is judged as operable at inspection times t1, . . . , tn;
Λ2(t1, . . . , tn) is the joint occurrence of the following events: the system is operable over the
time interval (tn, tn+1), judged as operable at inspection times (t1,tn−1), and is judged as
inoperable over the time interval (tn, tn+1) at inspection time tn; Λ3(t1, . . . , tn) is the joint
occurrence of the following events: the system is operable at inspection time tn, fails within
interval (tn,tn+1), and is judged as operable at inspection times t1, . . . , tn; Λ4(t1, . . . , tn)
is the joint occurrence of the following events: the system is operable at inspection time
tn, fails during interval (tn,tn+1), judged as operable at inspection times t1, . . . , tn−1, and
is judged as inoperable at inspection time tn; Λ5(t1, . . . , tn) is the joint occurrence of the
following events: the system has failed until inspection time tn and has been judged as
operable at inspection times t1, . . . , tn; and Λ6(t1, . . . , tn) is the joint occurrence of the
following events: the system has failed until inspection time tn, judged as operable at
inspection times t1, . . . , tn−1 and inoperable at time tn.

As shown in (24)–(29), the system can a priori be in one of three states when inspecting
the system operability over the time interval (tn, tn+1) at time tn: operable with probability
P(tn+1), operable at time tn but inoperable over the time interval (tn, tn+1) with probabil-
ity P(tn) − P(tn+1), and inoperable with probability 1 − P(tn), where P(t) is the system
reliability function.

It is evident that the time axis is used to formulate events (24)–(29). We will utilize
(24)–(29) in the future to assess operational reliability and maintenance effectiveness indi-
cators because reliability indicators are usually developed in relation to events occurring
on the time axis.

Equations (26) and (27) show that with regard to the system operability over the time
interval (tn,tn+1), the event Λ3(t1, . . . , tn) corresponds to an incorrect decision, whereas
the event Λ4(t1, . . . , tn) corresponds to the correct decision. When the event Λ3(t1, . . . , tn)
occurs, an inoperable system is erroneously allowed to be used over time interval (tn,tn+1).
Note that in the case of CM inspection at time tn, events Λ3(t1, . . . , tn) and Λ4(t1, . . . , tn)
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match correct and incorrect decisions, respectively. This is the fundamental difference
between the CBM and CM inspections. Therefore, CM inspection does not allow the
rejection of potentially unreliable systems.

Furthermore, event Λ2(t1, . . . , tn) is called a “false negative” (false alarm) at time tn,
and events Λ3(t1, . . . , tn) and Λ5(t1, . . . , tn) are called “false positive 1” and “false positive
2”, respectively, at time tn. The events Λ1(t1, . . . , tn), Λ4(t1, . . . , tn), and Λ6(t1, . . . , tn)
represent the correct decisions made during a CBM inspection at time tn; we refer to these
events as “true positive”, “true negative 1”, and “true negative 2,”, respectively. Table 2
lists the actual system conditions and the decisions made when conducting CBM inspection
at time tn.

Table 2. Contingency table showing the distribution of actual system conditions in rows and decisions
in columns.

Actual System Condition

Decision

Positive
H*

n > tn

Negative
H*

n ≤ tn

Positive
(Operable over interval (tn, tn+1))

H > tn+1

True positive False negative

Negative 1
(Operable at time tn but inoperable

over interval (tn, tn+1))
tn < H ≤ tn+1

False positive 1 True negative 1

Negative 2
(Inoperable at time tn)

H ≤ tn

False positive 2 True negative 2

5.2. The Probabilities of Correct and Incorrect Decisions at CBM Inspections

In this subsection, we develop a general mathematical model to calculate the probabil-
ities of correct and incorrect decisions at multiple CBM inspections and an arbitrary time
to system failure. We also derive, on the time axis, general equations for calculating the
conditional probabilities of true positive, false positive, true negative 1, false negative 1,
true negative 2, and false negative 2 at multiple CBM inspections, which will be further
incorporated into CBM mathematical maintenance models.

Calculating the probabilities of events (24)–(29) comes down to determining the
probability that the random point {H, H∗1 , . . . , H∗n } will fall inside the (n + 1)-dimensional
region produced by the limits of variation of each random variable and be equal to the
(n + 1)-fold integral over this region.

We denote the joint PDF of the random variables {H, H∗1 , . . . , H∗n} as ω0
(
η, η∗1 , . . . , η∗n

)
.

Event Λ1(t1, . . . , tn) corresponds to the (n + 1)-dimensional region with the following limits:
tn+1 < H < ∞ and ti < H∗i < ∞, i = 1, . . . , n.

By integrating PDF ω0
(
η, η∗1 , . . . , η∗n

)
within the specified region, we determine the

probability of event Λ1(t1, . . . , tn).

P[Λ1(t1, . . . , tn)] =

∞∫
tn+1

∞∫
tn

. . .
∞∫

t1

ω0(ϑ, u1, . . . , un)du1 . . . dundϑ (30)
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Event Λ2(t1, . . . , tn) corresponds to the (n + 1)-dimensional region with the limits:
tn+1 < H < ∞, −∞ < H∗n ≤ tn, and ti < H∗i < ∞, i = 1, . . . , n − 1. Integrating PDF
ω0
(
η, η∗1 , . . . , η∗n

)
within the limits, we obtain the probability of event Λ2(t1, . . . , tn).

P[Λ2(t1, . . . , tn)] =

∞∫
tn+1

tn∫
−∞

∞∫
tn−1

. . .
∞∫

t1

ω0(ϑ, u1, . . . , un)du1 . . . dundϑ (31)

Event Λ3(t1, . . . , tn) corresponds to the (n + 1)-dimensional region with the following
limits: tn < H ≤ tn+1 and ti < H∗i < ∞, i = 1, . . . , n. By integrating PDF ω0

(
η, η∗1 , . . . , η∗n

)
within the indicated limits, we obtain the probability of event Λ3(t1, . . . , tn).

P[Λ3(t1, . . . , tn)] =

tn+1∫
tn

∞∫
tn

. . .
∞∫

t1

ω0(ϑ, u1, . . . , un)du1 . . . dundϑ (32)

Event Λ4(t1, . . . , tn) corresponds to the (n + 1)-dimensional region with the limits:
tn < H ≤ tn+1, −∞ < H∗n ≤ tn, and ti < H∗i < ∞, i = 1, . . . , n − 1. Integrating PDF
ω0
(
η, η∗1 , . . . , η∗n

)
within the limits, we obtain the probability of event Λ4(t1, . . . , tn).

P[Λ4(t1, . . . , tn)] =

tn+1∫
tn

tn∫
−∞

∞∫
tn−1

. . .
∞∫

t1

ω0(ϑ, u1, . . . , un)du1 . . . dundϑ (33)

Event Λ5(t1, . . . , tn) corresponds to the (n + 1)-dimensional region with the following
limits: 0 < H ≤ tn and ti < H∗i < ∞, i = 1, . . . , n. By integrating PDF ω0

(
η, η∗1 , . . . , η∗n

)
within the specified region, we determine the probability of event Λ5(t1, . . . , tn).

P[Λ5(t1, . . . , tn)] =

tn∫
0

∞∫
tn

. . .
∞∫

t1

ω0(ϑ, u1, . . . , un)du1 . . . dundϑ (34)

Event Λ6(t1, . . . , tn) corresponds to the (n + 1)-dimensional region with the limits:
0 < H ≤ tn, −∞ < H∗n ≤ tn, and ti < H∗i < ∞, i = 1, . . . , n − 1. Integrating PDF
ω0
(
η, η∗1 , . . . , η∗n

)
within the limits, we obtain the probability of event Λ6(t1, . . . , tn).

P[Λ6(t1, . . . , tn)] =

tn∫
0

tn∫
−∞

∞∫
tn−1

. . .
∞∫

t1

ω0(ϑ, u1, . . . , un)du1 . . . dundϑ (35)

As we can observe from (30)–(35), the joint PDF ω0
(
η, η∗1 , . . . , η∗n

)
of random variables

{H, H∗1 , . . . , H∗n} must be known in order to determine the probabilities of correct and
incorrect decisions made when conducting CBM inspections. We denote the conditional
PDF of random variables ∆1, . . . , ∆n as ψ0(δ1, . . . , δn|η) provided that H = η. Following
the multiplication theorem of PDFs, we represent PDF ω0

(
η, η∗1 , . . . , η∗n

)
as follows [94]:

ω0(η, η∗1 , . . . , η∗n) = ω(η)ϕ(η∗1 , . . . , η∗n|η ) (36)

where ϕ(η1, . . . , ηn|η) is the conditional PDF of random variables H∗1 , . . . , H∗n, provided
that H = η.

In the case of H = η, the random variables H∗1 , . . . , H∗n are defined as H∗1 = η + ∆1, . . . ,
H∗n = η + ∆n.

The following equality is true because of the additive relationship between random
variables H and ∆i (i = 1, . . . , n):

ϕ(η∗1 , . . . , η∗n|η ) = ψ0(η
∗
1 − η, . . . , η∗n − η|η ) (37)
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We obtain the following expression for the multidimensional PDF by substituting
(37) into (36).

ω0(η, η∗1 , . . . , η∗n) = ω(η)ψ0(η
∗
1 − η, . . . , η∗n − η|η ) (38)

It is feasible to simplify (30)–(35) using (38). Inputting (38) into (30) gives the following.

P[Λ1(t1, . . . , tn)] =

∞∫
tn+1

ω(ϑ)

∞∫
tn

. . .
∞∫

t1

ψ0(u1 − ϑ, . . . , un − ϑ|ϑ )du1 . . . dundϑ (39)

Considering that ξi = ui − ϑ in (39), we arrive at:

P[Λ1(t1, . . . , tn)] =

∞∫
tn+1

ω(ϑ)

∞∫
tn−ϑ

. . .
∞∫

t1−ϑ

ψ0(ξ1, . . . , ξn|ϑ )dξ1 . . . dξndϑ (40)

By changing the variables in (31) to (35), we obtain:

P[Λ2(t1, . . . , tn)] =

∞∫
tn+1

ω(ϑ)

tn−ϑ∫
−∞

∞∫
tn−1−ϑ

. . .
∞∫

t1−ϑ

ψ0(ξ1, . . . , ξn|ϑ )dξ1 . . . dξndϑ (41)

P[Λ3(t1, . . . , tn)] =

tn+1∫
tn

ω(ϑ)

∞∫
tn−ϑ

. . .
∞∫

t1−ϑ

ψ0(ξ1, . . . , ξn|ϑ )dξ1 . . . dξndϑ (42)

P[Λ4(t1, . . . , tn)] =

tn+1∫
tn

ω(ϑ)

tn−ϑ∫
−∞

∞∫
tn−1−ϑ

. . .
∞∫

t1−ϑ

ψ0(ξ1, . . . , ξn|ϑ )dξ1 . . . dξndϑ (43)

P[Λ5(t1, . . . , tn)] =

tn∫
0

ω(ϑ)

∞∫
tn−ϑ

. . .
∞∫

t1−ϑ

ψ0(ξ1, . . . , ξn|ϑ )dξ1 . . . dξndϑ (44)

P[Λ6(t1, . . . , tn)] =

tn∫
0

ω(ϑ)

tn−ϑ∫
−∞

∞∫
tn−1−ϑ

. . .
∞∫

t1−ϑ

ψ0(ξ1, . . . , ξn|ϑ )dξ1 . . . dξndϑ (45)

As can be seen from (40) to (45), it is necessary to know the PDF ω(η) and ψ0(δ1, . . . , δn|η)
to calculate the probabilities of correct and incorrect decisions made when conducting
CBM inspections. Another thing to keep in mind is that formulas (40)–(45) are generalized,
meaning that they may be applied to any stochastic deterioration process X(t).

For brevity, we introduce the following notation for the probabilities P[Λ1(t1, . . . , tn)], . . . ,
P[Λ6(t1, . . . , tn)]:

PTP(t1, . . . , tn) = P[Λ1(t1, . . . , tn)], PFN(t1, . . . , tn) = P[Λ2(t1, . . . , tn)]
PFP,1(t1, . . . , tn) = P[Λ3(t1, . . . , tn)], PTN,1(t1, . . . , tn) = P[Λ4(t1, . . . , tn)]
PFP,2(t1, . . . , tn) = P[Λ5(t1, . . . , tn)] , PTN,2(t1, . . . , tn) = P[Λ6(t1, . . . , tn)]

(46)

where TP, FN, FP, and TN represent the true positive, false negative, false positive, and true
negative, respectively.

We use the time axis depicted in Figure 3 to derive the conditional probabilities of
correct and incorrect decisions.

When performing a CBM inspection at time tn (n = 1, . . . , k − 1), the conditional
probability of a “true positive” is defined as follows.

PTP(t1, . . . , tn|η ) = P
(

n
∩

i=1
H∗i > ti|H = η

)
(47)
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When running a CBM inspection at time tn (n = 1, . . . , k− 1), the conditional proba-
bility of a “false negative” is defined as follows.

PFN(t1, . . . , tn|η ) = P
(

n−1
∩

i=1
H∗i > ti∩H∗n ≤ tn|H = η

)
(48)

When doing a CBM inspection at time tk (k = 1, . . . , N), the conditional probability of
a “false positive 1” event is defined as follows.

PFP,1(t1, . . . , tk|η ) = P
(

k
∩

n=1
H∗n > tn|H = η

)
(49)

When conducting a CBM inspection at time tk (k = 1, . . . , N), the conditional proba-
bility of a “true negative 1” occurrence is described as follows.

PTN,1(t1, . . . , tk|η ) = P
(

k−1
∩

n=1
H∗n > tn∩H∗k ≤ tk|H = η

)
(50)

When performing a CBM inspection at time tj (j = k + 1, . . . , N), the conditional
probability of a “false positive 2” event can be defined as follows.

PFP,2
(
t1, . . . , tj|η

)
= P

(
j
∩

i=1
H∗i > ti|H = η

)
(51)

When running a CBM inspection at time tj (j = k + 1, . . . , N), the conditional proba-
bility of a “true negative 2” event can be defined as follows.

PTN,2
(
t1, . . . , tj|η

)
= P

(
j−1
∩

i=1
H∗i > ti∩H∗j ≤ tj|H = η

)
(52)

The calculation of each of the conditional probabilities (47)–(52) is equivalent to taking
the n-fold integral over this region from the PDF ψ0(δ1, . . . , δn|η), which is equivalent to
calculating the probability of hitting the random point {∆1, . . . , ∆n} in the n-dimensional
region formed by the limits of variation of each random variable.

The conditional probability of the “true positive” at time tn (n = 1, . . . , k − 1) is
given by

PTP(t1, . . . , tn|η ) =
∞∫

tn−ϑ

. . .
∞∫

t1−ϑ

ψ0(ξ1, . . . , ξn|ϑ )dξ1 . . . dξn (53)

The conditional probability of the “false negative” at time tn (n = 1, . . . , k − 1) is
determined as:

PFN(t1, . . . , tn|η ) =
tn−ϑ∫
−∞

∞∫
tn−1−ϑ

. . .
∞∫

t1−ϑ

ψ0(ξ1, . . . , ξn|ϑ )dξ1 . . . dξn (54)

The conditional probability of the “false positive 1” at time tk (k = 1, . . . , N) is set as:

PFP,1(t1, . . . , tk|η ) =
∞∫

tk−ϑ

. . .
∞∫

t1−ϑ

ψ0(ξ1, . . . , ξn|ϑ )dξ1 . . . dξn (55)

The conditional probability of the “true negative 1” at time tk (k = 1, . . . , N) is given
by:

PTN,1(t1, . . . , tk|η ) =
tk−ϑ∫
−∞

∞∫
tk−1−ϑ

. . .
∞∫

t1−ϑ

ψ0(ξ1, . . . , ξn|ϑ )dξ1 . . . dξn (56)
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The conditional probability of the “false positive 2” at time tj (j = k + 1, . . . , N) is
determined as:

PFP,2
(
t1, . . . , tj|η

)
=

∞∫
tj−ϑ

. . .
∞∫

t1−ϑ

ψ0(ξ1, . . . , ξn|ϑ )dξ1 . . . dξn (57)

The conditional probability of the “true negative 2” at time tj (j = k + 1, . . . , N) is
given by:

PTN,2(t1, . . . , tk|η ) =
tj−ϑ∫
−∞

∞∫
tj−1−ϑ

. . .
∞∫

t1−ϑ

ψ0(ξ1, . . . , ξn|ϑ )dξ1 . . . dξn (58)

5.3. Mean Times for the System to Stay in Different States

In this subsection, we derive equations for the expected mean times of the system
staying in the states E

(
Ts

1
)
, . . . , E

(
Ts

5
)
. Firstly, we determine the conditional mathematical

expectations of the amount of time the system spends in each state. Then, by using the for-
mula for the total mathematical expectation of a continuous random variable, we will find
the mathematical expectation of how long the system will remain in state Si(i = 1, . . . , 5).

Given that H = η, we can use Figure 3 to calculate the conditional mathematical
expectation of the amount of time the system spends in the state S1.

E(Ts
1 |η ) =


k−1
∑

n=1
tnPFN(t1, . . . , tn|η ) + tkPTN,1(t1, . . . , tk|η )+

ηPFP,1(t1, . . . , tk|η ), if tk < η ≤ tk+1 (k = 0, . . . , N)
N
∑

k=1
tkPFN(t1, . . . , tk|η )+TPTP(t1, . . . , tN |η ), if η > T

(59)

According to the time-location of CBM inspections in Figure 3, the conditional mathe-
matical expectation of the amount of time the system will spend in the state S2 provided
that H = η is as follows:

E(Ts
2 |η ) =


N
∑

j=k+1

(
tj − η

)
PTN,2

(
t1, . . . , tj|η

)
+ (T − η)PFP,2(t1, . . . , tN |η ), if tk < η ≤ tk+1 (k = 0, . . . , N − 1)

(T − η)PFP,1(t1, . . . , tN |η ), if tN < η ≤ T
0, if η > T

(60)

The conditional mathematical expectation of the time spent by the system in the state
S3 under the condition that H = η is equal to:

E(Ts
3 |η ) =


tins

[
k−1
∑

n=1
nPFN(t1, . . . , tn|η ) + kPTN,1(t1, . . . , tk|η )+

N
∑

j=k+1
jPTN,2

(
t1, . . . , tj|η

)
+ NPFP,2(t1, . . . , tN |η )

]
,

if tk < η ≤ tk+1 (k = 0, . . . , N)

tins

[
N
∑

k=1
kPFN(t1, . . . , tk|η ) + NPTP(t1, . . . , tN |η )

]
, if η > T

(61)

where tins is the average duration of a CBM inspection.
Based on Figure 3, we estimate the conditional mathematical expectation of the amount

of time the system will spend in state S4 provided that H = η.

E(Ts
4 |η ) =


tPR

[
k−1
∑

n=1
PFN(t1, . . . , tn|η )+PTN,1(t1, . . . , tk|η )

]
, if tk < η ≤ tk+1 (k = 1, . . . , N)

tPR

[
N
∑

k=1
PFN(t1, . . . , tk|η )+PTP(t1, . . . , tN |η )

]
, if η > T

(62)
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where tPR is the average length of time of a preventive repair.
According to the study of the time axis in Figure 3, the conditional mathematical

expectation of the length of time the system will spend in state S5 provided that H = η
is as follows:

E(Ts
5 |η ) =

 tCR

[
N
∑

j=k+1
PTN,2

(
t1, . . . , tj|η

)
+PFP,2(t1, . . . , tN |η )

]
, if tk < η ≤ tk+1 (k = 0, . . . , N)

0, if η > T
(63)

where tCR is the average length of time of a corrective repair.
Using a modified version of the formula for the total mathematical expectation of a

continuous random variable, we can calculate the mathematical expectation of how long
the system will remain in state Si(i = 1, . . . , 5).

E(Ts
i ) =

N

∑
k=0

tk+1∫
tk

E(Ts
i |tk < η ≤ tk+1 )ω(η)dη +

∞∫
T

E(Ts
i |η > T )ω(η)dη, i = 1, . . . , 5 (64)

When we apply (64) to (59)–(63), we obtain the following:
The mathematical expectation of time spent by the system in state S1.

E
(
Ts

1
)
=

N
∑

k=0

tk+1∫
tk

[
k−1
∑

n=1
tnPFN(t1, . . . , tn|η ) + tkPTN,1(t1, . . . , tk|η )+ ηPFP,1(t1, . . . , tk|η )]ω(η)dη+

∞∫
T

[
N
∑

k=1
tkPFN(t1, . . . , tk|η ) + TPTP(t1, . . . , tN |η )

]
ω(η)dη

(65)

The mathematical expectation of time spent by the system in state S2.

E(Ts
2) =

N−1
∑

k=0

tk+1∫
tk

[
N
∑

j=k+1

(
tj − η

)
PTN,2

(
t1, . . . , tj|η

)
+ (T − η)PFP,2(t1, . . . , tN |η )

]
ω(η)dη+

T∫
tN

(T − η)PFP,1(t1, . . . , tN |η )ω(η)dη

(66)

The mathematical expectation of time spent by the system in state S3.

E
(
Ts

3
)
= tins

N
∑

k=0

tk+1∫
tk

[
k−1
∑

n=1
nPFN(t1, . . . , tn|η )+kPTN,1(t1, . . . , tk|η )+

N
∑

j=k+1
jPTN,2

(
t1, . . . , tj|η

)
+ NPFP,2(t1, . . . , tN |η )

]
ω(η)dη+

tins

∞∫
T

[
N
∑

k=1
kPFN(t1, . . . , tk|η )+ NPTP(t1, . . . , tN |η )]ω(η)dη

(67)

The mathematical expectation of time spent by the system in state S4.

E
(
Ts

4
)
= tPR

N
∑

k=1

tk+1∫
tk

[
k−1
∑

n=1
PFN(t1, . . . , tn|η )+PTN,1(t1, . . . , tk|η )

]
ω(η)dη+

tPR

∞∫
T

[
N
∑

k=1
PFN(t1, . . . , tk|η )+PTP(t1, . . . , tN |η )

]
ω(η)dη

(68)

The mathematical expectation of time spent by the system in state S5.

E(Ts
5) = tCR

N

∑
k=0

tk+1∫
tk

[
N

∑
j=k+1

PTN,2
(
t1, . . . , tj|η

)
+ PFP,2(t1, . . . , tN |η )

]
ω(η)dη (69)
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5.4. Maintenance Effectiveness Indicators

Let us determine the maintenance effectiveness indicators presented in Table 1. When
deriving formulas, we employ the property of the regenerative stochastic process L(t)
of changing the system states according to which fraction of time the system is in state
Si (i = 1, . . . , 5) is equal to the ratio of the time the system spends in state Si during a
regeneration cycle to the mathematical expectation of the regeneration cycle.

As shown in Table 1, for the subgroup I1111, the maintenance effectiveness indi-
cators are P0 and Cr

1. For the finite operating time interval (0, T), we determined the
OPFFO as follows:

P0(tk, t) =
k

∑
j=0

PR
(
tj
)

T−tj∫
0

ω(η)dη

T−tj∫
t−tj

PTP
(
tj+1 − tj, . . . , tk − tj|η

)
ω(η)dη, if t ≥ tk (70)

PR
(
tj
)
= PPR

(
tj
)
+ PCR

(
tj
)

(71)

PPR
(
tj
)
=

j−1

∑
ν=0

PR(tν)
T−tν∫

0
ω(η)dη

T−tν∫
tj+1−tν

PFN
(
tν+1 − tν, . . . , tj − tν|η

)
ω(η)dη (72)

PCR
(
tj
)
= 1− PPR

(
tj
)
−

j−1
∑

ν=0

PR(tν)
T−tν∫

0
ω(η)dη

{ tj−tν∫
0

PFP,2
(
tν+1 − tν, . . . , tj − tν|η

)
ω(η)dη+

tj+1−tν∫
tj−tν

PFP,1
(
tν+1 − tν, . . . , tj − tν|η

)
ω(η)dη+

T−tν∫
tj+1−tν

PTP
(
tν+1 − tν, . . . , tj − tν|η

)
ω(η)dη


(73)

where PR
(
tj
)

is the probability of system repair at time tj and PPR
(
tj
)

and PCR
(
tj
)

are
the probabilities of preventive and corrective repair at time tj, respectively.

Since a CBM inspection typically takes far less time than the interval between inspec-
tions, we neglect the CBM inspection duration in (70).

We begin with the proof of (71). The following events are introduced: ΓPR
(
tj
)

and
ΓCR

(
tj
)

are the preventive and corrective system repair events, respectively, and Γ
(
tj
)

is the
system repair event at time tj after the j inspection. If one of the events ΓPR

(
tj
)

or ΓCR
(
tj
)

occurs, system repair will occur at time tj. Consequently,

Γ
(
tj
)
= ΓPR

(
tj
)
+ ΓCR

(
tj
)

(74)

Events ΓPR
(
tj
)

and ΓCR
(
tj
)

are mutually exclusive because they are based on incom-
patible events (25), (27), and (29). Therefore, by applying the addition theorem of probability
to (74), we obtain (71).

We write the following probabilistic definitions of indicators P0(tk, t), PPR
(
tj
)
, and

PCR
(
tj
)

to prove (70), (72), and (73), respectively:

P0(tk, t) = P
{

k
∪

j=0

[
Γ
(
tj
)
∩
(
t− tj < H ≤ T − tj

)
∩
(

k
∩

i=j+1
H∗i > ti − tj

)]}
(75)

PPR
(
tj
)
= P

{
j−1
∪

ν=0

[
Γ(tν) ∩

(
tj+1 − tν < H ≤ T − tν ∩ H∗j ≤ tj − tν

)
∩
(

j−1
∩

i=ν+1
H∗i > ti − tν

)]}
(76)

PCR
(
tj
)
= 1− PPR

(
tj
)
− P

{
j−1
∪

ν=0

[
Γ(tν)∩

(
j
∩

i=ν+1
H∗i > ti − tν

)]}
(77)
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Given that inspections are scheduled across a finite time horizon (0, T), and considering
that the system’s most recent repair occurs at time tj, the random variable H exists in the
range (0, T − tj) with the conditional PDF:

ω
(
η
∣∣0 < H ≤ T − tj

)
= ω(η)

/ T−tj∫
0

ω(ϑ)dϑ (78)

Let us prove (70). Assume that the most recent restoration of the system occurs at tj and
system failure occurs in the time interval from η to η + dη. Consequently, the conditional
probability of such an event occurring, provided that during previous inspections the
system was correctly judged to be operable, is equal to:

P
{

η < H ≤ η + dη

∣∣∣∣ k
∩

i=j+1
H∗i > ti − tj

}
= ω

(
η
∣∣0 < H ≤ T − tj

)
dη (79)

The formulated event’s unconditional probability is as follows:

P
{

η < H ≤ η + dη∩
(

k
∩

i=j+1
H∗i > ti − tj

)}
= PTP

(
tj+1 − tj, . . . , tk − tj+1|η

)
ω
(
η
∣∣0 < H ≤ T − tj

)
dη (80)

We calculate the probability of the event:

t− tj < H ≤ T − tj∩
(

k
∩

i=j+1
H∗i > ti − tj

)
(81)

by integrating (80) over the range of the random variable H.

P
{

t− tj < H ≤ T − tj∩
(

k
∩

i=j+1
H∗i > ti − tj

)}
=

T−tj∫
t−tj

PTP
(
tj+1 − tj, . . . , tk − tj|η

)
×

ω
(
η
∣∣0 < H ≤ T − tj

)
dη

(82)

Equation (82) takes the following form when considering (78).

P
{

t− tj < H ≤ T − tj∩
(

k
∩

i=j+1
H∗i > ti − tj

)}
=

1
T−tj∫

0
ω(η)dη

T−tj∫
t−tj

PTP
(
tj+1 − tj, . . . , tk − tj|η

)
ω(η)dη (83)

We determine the joint probability of system recovery at time tj and event (81) using
the probability multiplication theorem.

P
{

Γ
(
tj
)
∩
[

t− tj < H ≤ T − tj∩
(

k
∩

i=j+1
H∗i > ti − tj

)]}
=

PR
(
tj
)

T−tj∫
0

ω(η)dη

T−tj∫
t−tj

PTP
(
tk − tj, . . . , tk − tj|η

)
ω(η)dη (84)

Since the system can be repaired at any of the moments t0, . . . , tk, the system is as-
good-as-new after repair, the events Γ(t0), . . . , Γ(tk) are independent, then the sum of the
probabilities (84) with the change in j from 0 to k yields (70), where PR(t0) = P[Γ(t0)] = 1.

The proof of formulas (72) and (73) are similar.
The UC for subgroup I1111 is determined as follows:

Cr
1 = [(Cins + Cdt)E(Ts

3) + (CPR + Cdt)E(Ts
4)+ (CCR + Cdt)E(Ts

5)]

/
5

∑
i=1

E(Ts
i ) (85)
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where Cins is the average cost of CBM inspection per unit time, Cdt is the average cost of
downtime per unit time, CPR is the average cost of preventive repair per unit time, and CCR
is the average cost of corrective repair per unit time.

As shown in Table 1, P0 and Cr
2 were maintenance effectiveness indicators for the

subgroup I1112. OPFFO was determined in the same manner as that for subgroup I1111. As
a result of excluding E(Ts

3) from the regeneration cycle and Cdt = 0 for the cost component
associated with scheduled CBM inspections, owing to the intermittent nature of the system’s
functioning, (85) reduces to:

Cr
2 = [CinsE(Ts

3) + (CPR + Cdt)E(Ts
4)+ (CCR + Cdt)E(Ts

5)]

/
5

∑
i = 1
i 6= 3

E(Ts
i ) (86)

Since we use the probabilities of PPR
(
tj
)

and PCR
(
tj
)

when determining the OPFFO,
indicators (85) and (86) can also be calculated using the following formulas:

Cr
1 =

N
(
C∗ins + C∗dt

)
+

N
∑

j=1

[(
C∗PR + C∗dt

)
PPR

(
tj
)
+
(
C∗CR + C∗dt

)
PCR

(
tj
)]

T
(87)

Cr
2 =

NC∗ins +
N
∑

j=1

[(
C∗PR + C∗dt

)
PPR

(
tj
)
+
(
C∗CR + C∗dt

)
PCR

(
tj
)]

T
(88)

where C∗ins, C∗dt, C∗PR, and C∗CR are the average cost of CBM inspection, the average cost
of downtime, the average cost of preventive repair, and the average cost of corrective
repair, respectively.

The mission availability Ama is the maintenance effectiveness indicator for subgroup I1212.
Let Ama(kτ, ρ) represent the instantaneous mission availability, that is, the probability

that the system will be operable at time kτ + Π (k = 0, . . . , N) and operate without failure
for a predetermined amount of time ρ beginning at moment kτ + Π, where 0 < Π ≤ τ − ρ
and ρ represent the duration of the mission.

We assume that Π is a random variable with a uniform distribution in the interval
from kτ to (k + 1)τ – ρ with the PDF.

f (π) = 1/(τ − ρ) (89)

Concerning instantaneous mission availability, the following formula holds:

Ama(kτ, ρ) =
1

τ − ρ

k

∑
j=0

PR(jτ)

τ−ρ∫
0

∞∫
(k−j)τ+π+ρ

PTP[τ, . . . , (k− j)τ|ϑ ]ω(ϑ)dπ (90)

The instantaneous mission availability can be defined as the probability that the interval
of a failure-free system operation (Π, Π + ρ) falls entirely within one of the intervals between
CBM inspections [kτ, (k + 1)τ], k = 0, . . . , N, considering that at any moment tj (j = 0, . . . , N)
the system can be recovered with probability PR(jτ), where PR(0) = 1. Therefore, the system
will operate failure-free in the interval [(k− j)τ + Π, (k− j)τ + Π + ρ] if the last system re-
covery occurs at the moment jτ (j = 0, . . . , k), by the results of CBM inspections at instants
(j + 1)τ, . . . , kτ the system is judged as operable, and H > (k− j)τ + Π + ρ, i.e.,

A =
k
∪

j=0

{
Γ(jτ)∩(H > (k− j)τ+ Π + ρ)∩

(
k
∩

i=j+1
H∗i > (i− j)τ

)}
(91)
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We determine the probability of the event (91) by applying the probability addition
theorem and considering (89):

P(A) = Ama(kτ, ρ) =
k

∑
j=0

PR(jτ)P[(k− j)τ + ρ] (92)

where

P[(k− j)τ + ρ] =
1

τ − ρ

τ−ρ∫
0

∞∫
(k−j)τ+π+]ρ

PTP[τ, . . . , (k− j)τ|ϑ ]ω(ϑ)dϑdπ (93)

Substituting (93) into (92) gives (90).
We determined the steady-state mission availability in the case of an infinite mainte-

nance planning time.
For the mission availability the following formula holds:

Ama(ρ) =
τ/(τ − ρ)

5
∑

i = 1
i 6= 3

E
(
Ts

i
) ∞

∑
k=0

τ−ρ∫
0

∞∫
kτ+π+ρ

PTP(τ, . . . , kτ|ϑ )ω(ϑ)dϑdπ (94)

To prove (94), we express the probability Ama(kτ, ρ) using the renewal density func-
tion and then proceed to the limit.

Ama(ρ) = lim
k→∞

Ama(kτ, ρ) (95)

Since system recovery is only possible at discrete moments of time kτ (k = 0, 1, 2, . . . ),
we express the renewal density function through the δ-function:

h(x) =
k

∑
j=0

PR(jτ)δ(x− jτ) (96)

Using (96), we present (92) in the integral form.

Ama(kτ, ρ) =

kτ∫
0

P(kτ − x + ρ)h(x)dx (97)

Furthermore, because the function P(kτ − x + ρ) is not negative, it has limited varia-
tion on the semi-axis (0, ∞) and satisfies the following inequality:

∞∫
0

P(t)dt ≤
∞∫

0

[1− F(t)]dt < ∞ (98)

Subsequently, according to Smith’s theorem in the case of a lattice random variable [95],
we have:

lim
k→∞

kτ∫
0

P(kτ− x + ρ)h(x)dx =
τ

α

∞

∑
k=0

P(kτ+ ρ) (99)

where F(t) is the unreliability function and α is the average time between system recoveries.
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From (93), it follows that:

P(kτ + ρ) =
1

τ − ρ

τ−ρ∫
0

∞∫
kτ+π+ρ

PTP(τ, . . . , kτ|ϑ )ω(ϑ)dϑdπ (100)

Since the system is used in intermittent mode (l = 2):

α =
5

∑
i = 1
i 6= 3

E(Ts
i ) (101)

Substituting (100) and (101) into (99), we obtain (94).
For subgroup I1311, the achieved availability Ar

a is the maintenance effectiveness
indicator. We determined the achieved availability using the well-known properties of
regenerative processes:

Ar
a = E(Ts

1)

/
5

∑
i=1

E(Ts
i ) (102)

For subgroup I1321, the maintenance effectiveness indicator can be either AOPUT or
AMCUT, which we determined as follows:

Wr
1 =

[
Cpro f E(Ts

1)− Cu f E(Ts
2)− (Cins + Cdt)E(Ts

3) − (CPR + Cdt)E(Ts
4)− (CCR + Cdt)E(Ts

5)]

/
5

∑
i=1

E(Ts
i ) (103)

Vr
1 =

[
Cu f E(Ts

2) + (Cins + Cdt)E(Ts
3) + (CPR + Cdt)E(Ts

4) +(CCR + Cdt)E(Ts
5)]

/
5

∑
i=1

E(Ts
i ) (104)

where Cprof is the average profit from using the system per unit time and Cuf is the
average loss due to the system being in a hidden failure state per unit time.

For subgroup I1412, we determined the inherent availability as follows:

Ar
i =



E
(
Ts

1
)/ 5

∑
i = 1
i 6= 3

E
(
Ts

i
)
, if only CBM inspections can be carried out during time intervals when the system is not used

E
(
Ts

1
)/ 2

∑
i=1

E
(
Ts

i
)

, if both CBM inspections and preventive and corrective repair can be carried out during

time intervals when the system is not used

(105)

For subgroup I1422, the maintenance effectiveness indicators were AOPUT and AM-
CUT; however, because the mode of operation was intermittent, Cdt = 0 for the cost compo-
nent associated with scheduled CBM inspections.

Wr
2 =

Cpro f E
(
Ts

1
)
− Cu f E(Ts

2)− CinsE
(
Ts

3
)
− (CPR + Cdt)E

(
Ts

4
)
− (CPR + Cdt)E

(
Ts

5
)

5
∑

i = 1
i 6= 3

E
(
Ts

i
) (106)

Vr
2 =

[
Cu f E(Ts

2) + CinsE(Ts
3) + (CPR + Cdt)E(Ts

4) +(CPR + Cdt)E(Ts
5)]

/
5

∑
i = 1
i 6= 3

E(Ts
i ) (107)

For subgroup I2111, the maintenance effectiveness indicators were APFFO (PA) and
UC for a non-repairable system

(
Cn

1
)
. As in Section 3, under the APFFO, we understand

the conditional probability of failure-free operation of the system on the interval (tk, t),
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provided that, according to the results of the CBM inspections at moments t1, . . . , tk, the
system was judged as operable.

According to the given definition, we write the mathematical expression of the APFFO
as follows:

PA(tk, t) = P
{

H > t
∣∣∣∣ k
∩

i=1
H∗i > ti

}
, t ≥ tk (108)

The following equation holds for the APFFO:

PA(tk, t) =

∞∫
t

ω(ϑ)
∞∫

t1−ϑ

. . .
∞∫

tk−ϑ

ψ0(u1, . . . , uk|ϑ)du1 . . . dukdϑ

∞∫
0

ω(ϑ)
∞∫

t1−ϑ

. . .
∞∫

tk−ϑ

ψ0(u1, . . . , uk|ϑ)du1 . . . dukdϑ

, t ≥ tk (109)

Let us prove (109). Denote the following events:

Ξ1 = H > t, Ξ2 = Ξ1 = H ≤ t, Θ =
k
∩

i=1
H∗i > ti (110)

Then, we can present the APFFO by the Bayes formula:

PA(tk, t) =
P(Θ∩Ξ1)

P(Θ∩Ξ1) + P(Θ∩Ξ2)
(111)

By integrating PDF (38) within appropriate limits, we determine the following probabilities:

P(Θ∩Ξ1) =

∞∫
t

ω(ϑ)

∞∫
t1−ϑ

. . .
∞∫

tk−ϑ

ψ0(u1, . . . , uk|ϑ)du1 . . . dukdϑ (112)

P(Θ∩Ξ2) =

t∫
0

ω(ϑ)

∞∫
t1−ϑ

. . .
∞∫

tk−ϑ

ψ0(u1, . . . , uk|ϑ)du1 . . . dukdϑ (113)

Substituting (112) and (113) into (111) yields (109).
In the interval (tk, t), APFFO changes from the maximum value PA(tk, tk) at t = tk to

the minimum value PA(tk, tk+1) at t = tk+1.
The UC for a non-repairable system is determined as follows:

Cn
1 =

{
(Cins + Cdt)E

(
Ts

3
)
+
(
Crep + Cdt

)[
E
(
Ts

4
)
+ E

(
Ts

5
)]}

5
∑

i=1
E
(
Ts

i
) (114)

where Crep is the cost per unit time to replace the system judged as inoperable by CBM inspection.
It should be noted that when using formula (114), we should set tPR = tCR = trep in

formulas (68) and (69), where trep is the replacement time of the system judged as inoperable
at a CBM inspection.

For subgroup I2112, the maintenance effectiveness indicators were APFFO (PA) and
UC for a non-repairable system operating in intermittent mode (Cn

2 ).
The APFFO is determined by (109), provided that the CBM inspection time is much

less than the interval between inspections.
We determine the UC as follows.

Cn
2 =

{
CinsE

(
Ts

3
)
+
(
Crep + Cdt

)[
E
(
Ts

4
)
+ E

(
Ts

5
)]}

5
∑

i = 1
i 6= 3

E
(
Ts

i
) (115)
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Comparing (114) and (115), we observe that, in (115), the downtime cost Cdt = 0
for the cost component that is associated with scheduled CBM inspections owing to the
intermittent mode of the system operation.

For subgroup I2511, the maintenance effectiveness indicator was the achieved avail-
ability of a non-repairable system (An

a ). It is determined by (102); however, in (68) and (69),
tPR = tCR = trep.

For subgroup I2512, the maintenance effectiveness indicator was the inherent availabil-
ity of a non-repairable system

(
An

i
)
. We determined An

i using formula (105) if, in formulas
(68) and (69), tPR = tCR = trep.

For subgroup I2521, the maintenance effectiveness indicator can be either AOPUT or
AMCUT for a non-repairable system if, in formulas (68) and (69), tPR = tCR = trep.

Wn
1 =

Cpro f E
(
Ts

1
)
− Cu f E(Ts

2)− (Cins + Cdt)E
(
Ts

3
)
−
(
Crep + Cdt

)[
E
(
Ts

4
)
+ E

(
Ts

5
)]

5
∑

i=1
E
(
Ts

i
) (116)

Vn
1 =

Cu f E(Ts
2) + (Cins + Cdt)E

(
Ts

3
)
+
(
Crep + Cdt

)[
E
(
Ts

4
)
+ E

(
Ts

5
)]

5
∑

i=1
E
(
Ts

i
) (117)

For subgroup I2522, the maintenance effectiveness indicator is also AOPUT or AMCUT;
however, owing to the intermittent mode of operation, Cdt = 0, for the cost component that
is associated with scheduled CBM inspections, and the regeneration cycle does not include
the time of CBM inspections; that is:

Wn
2 =

Cpro f E
(
Ts

1
)
− Cu f E(Ts

2)− CinsE
(
Ts

3
)
−
(
Crep + Cdt

)[
E
(
Ts

4
)
+ E

(
Ts

5
)]

5
∑

i = 1
i 6= 3

E
(
Ts

i
) (118)

Vn
2 =

Cu f E(Ts
2) + CinsE

(
Ts

3
)
+
(
Crep + Cdt

)[
E
(
Ts

4
)
+ E

(
Ts

5
)]

5
∑

i = 1
i 6= 3

E
(
Ts

i
) (119)

5.5. Optimal Inspection Schedule and Replacement Thresholds

Various criteria can be used to frame the challenge of determining the optimal in-
spection schedule and replacement thresholds throughout a finite period of the system
operation. Some examples of optimization criteria are maximum availability, minimum
possible average system operation costs over the interval (0, T), provision of the necessary
level of OPFFO with the lowest possible average maintenance costs over the interval (0, T),
and the maximum level of OPFFO while limiting the average maintenance costs over the
interval (0, T).

The criterion of the maximum achieved availability is formulated as follows:

Ar
a

(
topt
1 , . . . , topt

N , RTopt
1 , . . . , RTopt

N

)
= max

RT1,...,RTN∩t1,...,tN
Ar

a(t1, . . . , tN , RT1, . . . , RTN) (120)

where topt
1 , . . . , topt

N are the optimal inspection instants over the interval (0, T) and RTopt
1 , . . . , RTopt

N
are the optimal replacement thresholds at instants topt

1 , . . . , topt
N

We present the criterion for the minimum AMCUT over the interval (0, T) as follows:

Vr
l

(
topt
1 , . . . , topt

N , RTopt
1 , . . . , RTopt

N

)
= min

RT1,...,RTN∩t1,...,tN
Vr

l (t1, . . . , tN , RT1, . . . , RTN) (121)
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where l = 1 for the continuous mode and l = 2 for the intermittent mode of operation.
Since the two indicators evaluate the effectiveness of safety-critical systems, we can

formulate two optimization criteria for the subgroups of systems I1111, I1112, I2111, and I2112.
For example, the average maintenance cost of Cr

l (l = 1, 2) can be reduced by specifying the
lowest permissible OPFFO P∗0 for subgroups I1111 and I1112. In this case, the optimization
criterion has the following form: Cr

l

(
topt
1 , . . . , topt

N , RTopt
1 , . . . , RTopt

N

)
= min

RT1,...,RTN∩t1,...,tN
Cr

l (t1, . . . , tN , RT1, . . . , RTN)

P0

(
topt
k , topt

k+1

)
≥ P∗0 , k = 0, . . . , N

(122)

If the maximum allowed average maintenance cost Cr∗
l is specified, the optimization

criterion is as follows: topt
1 , . . . , topt

N ∩RTopt
1 , . . . , RTopt

N ⇒ max
RT1,...,RTN∩t1,...,tN

P0(tk, tk+1)(k = 0, . . . , N)

Cr
l

(
topt
1 , . . . , topt

N , RTopt
1 , . . . , RTopt

N

)
≤ Cr∗

l

(123)

We can simplify criteria (120)–(123) for the case of a periodic inspection schedule and
determine an optimal threshold RTopt for all checking moments instead of the optimal
replacement threshold for each inspection instant. For example, the optimization criterion
(120) in this case can be expressed as:

Ar
a
(
τopt, RTopt) = max

τ,RT
{Ar

a(τ, RT)} (124)

where τ is the periodicity of the CBM inspections and τopt is the optimal periodicity
of inspections.

6. Example of Deterioration Process Modeling

The PDF ψ0(δ1, . . . , δn|η) of the stochastic deterioration process of the system state
must be determined to calculate the probabilities of correct and incorrect decisions included
in the maintenance effectiveness indicators. Equations (40)–(45) and (53)–(58) are valid for
any deterioration process; however, the PDF ψ0(δ1, . . . , δn|η) must be determined for a
specific deterioration process.

We assume that the following monotone stochastic function characterizes the degrada-
tion of the system:

X(t) = A0 + A1tµ (125)

where A0 is the initial random value of the system state parameter X(t) with values ranging
from 0 to FT, A1 is the random deterioration rate of the system state parameter specified in
the range from 0 to ∞, and µ is the time exponent.

We derive the following equation for the conditional PDF of random variables ∆1, . . . , ∆n
under the condition that H = η, assuming an additive relationship between random variables
X(tn) and Y(tn) in (18) and using the approach described in [4]:

ψ0(δ1, . . . , δn|η ) = µ

FT∫
0

f (a0)ω(η|a0 )

(
FT − a0

η

)n n

∏
i=1

∣∣∣∣∣
(

δi + η

η

)µ−1
∣∣∣∣∣Ω
[

RTi − a0 − (FT − a0)

(
δi + η

η

)µ] da0

ω(η)
(126)

where f (a0) is the PDF of random variable A0, ω(η|a0) is the conditional PDF of
random variable H provided that A0 = a0, and Ω(yi) is the PDF of the random measurement
error Y(ti), i = 1, . . . , n.

If A0 = a0 = constant, then:

ψ0(δ1, . . . , δn|η ) = µ

(
FT − a0

η

)n n

∏
i=1

∣∣∣∣∣
(

δi + η

η

)µ−1
∣∣∣∣∣Ω
[

RTi − a0 − (FT − a0)

(
δi + η

η

)µ]
(127)
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Using the Gaussian PDF of the measurement error Y(ti), we obtain

- from (126):

ψ0(δ1, . . . , δn|η ) = µ

(
1

σy
√

2π

)n FT∫
0

f (a0)ω(η|a0 )
(

FT−a0
η

)n n
∏
i=1

∣∣∣∣( δi+η
η

)µ−1
∣∣∣∣ exp

{
− 1

2σ2
y
[RTi − a0−

(FT − a0)
(

δi+η
η

)µ]2
}

da0
ω(η)

(128)

- from (127):

ψ0(δ1, . . . , δn|η ) = µ

(
1

σy
√

2π

)n(
FT − a0

η

)n n

∏
i=1

∣∣∣∣∣
(

δi + η

η

)µ−1
∣∣∣∣∣ exp

{
− 1

2σ2
y
[RTi − a0− (FT − a0)

(
δi + η

η

)µ]2
}

(129)

where σy is the standard deviation of the random measurement error Y(ti), i = 1, . . . , n.
When A0 = a0 = constant and A1 is a normal random variable with PDF f (a1), the PDF

of time-to-failure is given by [96]:

ω(η) =
µσ2

A1η2µ−1[mA1ηµ + (FT − a0 −mA1ηµ)]
√

2π
(
σ2

A1η2µ
)1.5 ∞∫

0
f (a1)da1

exp

[
− (FT − a0 −mA1ηµ)2

2σ2
A1η2µ

]
(130)

7. Results

Radar systems emit electromagnetic waves, also known as radio waves. The waves
are reflected by most objects, enabling the radar system to detect them. To achieve the best
possible outcome, it is imperative to ensure that the radar transmitter generates a signal
with precisely the right amount of power and specific characteristics. The radar transmitter
power supply plays a critical role in its performance. To ensure that the radar system meets
the necessary performance standards, it is vital to maintain a stable power supply.

Let us define a subgroup of systems to which the power supply of the radar transmitter
belongs. The power supply unit can be repaired, indicating a system maintainability sign
of i = 1. The power supply is in continuous operation, displaying a temporary system use
mode with the sign l = 1. Failures in the power supply, scheduled maintenance, and un-
scheduled repairs can all result in downtime. Therefore, the sign of failure’s consequences
is j = 3. And, finally, it is not possible to make an economic evaluation of the failure’s
consequences (k = 1). Thus, we can associate the radar power supply with subgroup I1311,
as presented in Table 1. According to this table, the achieved availability is the maintenance
effectiveness metric.

In the next step, we need to identify a specific subgroup of maintenance models,
which is essential for determining the achieved availability. If a power supply failure is
detected, it is turned off and shipped for repair. Instead, a spare power supply is connected
resulting in a value of the classification sign a = 1. According to regulations, CBM with
regular inspections must be conducted, resulting in a value of the classification sign b = 2.
During the repair process, the power supply unit will be fully restored in a repair shop,
resulting in a value of the classification sign c = 1. Determining power supply failure
requires an instrumental inspection, which leads to the value of the sign being d = 1. Thus,
the maintenance model falls under subgroup M1211.

The output voltage of the power supply for the radar transmitter represents the system
state parameter [97]. If the output voltage is less than 25 kV, the power supply is operable,
that is FT = 25 kV. The parameters of the random process (125) are as follows: a0 = 19.92 kV,
mA1 = 0.01 kV/h, σA1 = 0.0043 kV/h, and µ = 0.9. Assume that the random measurement
error of the system state parameter has a normal distribution with a standard deviation of
σy = 0.5 kV and a zero mathematical expectation.

The following data were used to calculate the achieved availability: T =1000 h,
tins = 3 h, tPR = 5 h, and tCR = 10 h.
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Consider the case of a periodic inspection schedule with an optimal threshold RTopt

for all inspection instants. In this case, the optimization criterion corresponds to (124).
When calculating mean times (65)–(69), we set tn = nτ, tk = kτ, tj = jτ, and tN = Nτ.
Figure 4 shows the dependence of the achieved availability on the number of inspec-

tions in the interval (0, T). By solving the problem (124), we obtain the following solution:
RTopt = 23.5 kV, τopt = 200 h, Nopt = 4, and Ar

a
(
τopt, RTopt) = 0.976.
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For CM inspections, that is, at RT = FT = 25 kV, the following solution is optimal:
Nopt = 9, τopt = 100 h, and Ar

a
(
τopt, FT

)
= 0.94. Thus, the use of the optimal replacement

threshold RTopt < FT substantially increases the achieved availability and reduces the
number of inspections by more than half. It should be noted that the unavailability when
using CBM inspections is 2.5-fold less than when using CM inspections.

A further increase in the achieved availability is possible using criterion (120), which
assumes a sequential schedule of inspections with an optimal replacement threshold value
for each inspection moment.

8. Discussion

Section 1 highlighted the categorization of maintenance performance indicators, which
include equipment-related, maintenance task-related, and cost-related indicators. Never-
theless, it is imperative to have a guide for selecting suitable indicators for systems with
varying purposes, objectives, and limitations. The article presents significant findings on
the classification of systems that aim to select maintenance effectiveness indicators and
classify maintenance models for the indicator calculation. Through a four-sign system
classification with 11 different values, the study identified 13 subgroups with unique main-
tenance effectiveness indicators. Additionally, the classification of maintenance models
resulted in the identification of 168 subgroups that varied in 16 values of 4 signs. The
classifications presented in the article address two problems at once. Notably, we developed
a new mathematical model of condition-based maintenance with inspections at discrete
times for 1 subgroup out of 168, which enables the calculation of maintenance effectiveness
indicators for all 13 system subgroups.

It should be noted that there is a fundamental difference between the developed
classifications and previously published ones. The literature review [14] classified the
key performance indicators into maintenance process and maintenance result indicators.
The maintenance results group includes three categories of indicators: equipment effec-
tiveness, maintenance cost-effectiveness, and safety and environmental indicators. The
classification of systems developed in this article outlines 13 subgroups, each with its own
set of maintenance effectiveness indicators that can also be categorized into the same three
categories as in [14]. However, unlike [14], the classification developed in the article makes
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it possible to clearly define for which systems indicators are intended. Thus, our article
presents a unique classification of technical systems for selecting maintenance effective-
ness indicators during the operational phase. While the well-known literature review [15]
touched on various aspects of maintenance tasks, resources, metrics, and measurements
in manufacturing companies, it did not include our categorization of systems that aim
to choose maintenance effectiveness indicators during the operational phase. The con-
tribution of this article fills this gap in the literature and provides valuable insights for
maintenance professionals. Reference [16] conducted a survey in the Belgian industry to
investigate the utilization of maintenance performance indicators. The study’s objective
was to determine how frequently different indicators are used. Interestingly, the results
showed no correlation between the indicators used and the maintenance goals pursued. In
contrast to [16], we propose an approach to selecting maintenance effectiveness indicators
based on system classification according to specific signs. The study in [18] examined a
multi-criteria model for measuring maintenance performance, which included three levels
of performance indicators for industrial equipment: plant level, system level, and item
level. While the study provides a list of indicators for each level, ranging from 16 to 26, it
fails to specify the criteria for selecting indicators within each group. It is crucial to note
that the model proposed in [18] is not a classification of systems aimed at the selection of
maintenance indicators.

It is worth mentioning that the CBM model we developed is distinct from previous
studies. Many mathematical models for CBM have a flawed assumption of perfect in-
spections, which results in an error-free determination of the system’s condition [30–32].
When utilizing CBM mathematical models with imperfect inspections, it is commonly
assumed that the probabilities of correct and incorrect decisions remain constant and are
not influenced by the degradation process parameters or time [2,52]. When dealing with
CBM mathematical models that have non-constant probabilities of correct and incorrect
decisions, it is important to note that these probabilities are not influenced by the timing
of failure occurrence [98]. Incorporating them into maintenance models can be a difficult
and even potentially inaccurate endeavor. We have presented a new decision rule for CBM
inspection that differs from previous studies. Our approach considers the decision-making
on the time axis, which helps determine the conditional probabilities of a true positive, false
negative, false positive, and true negative in relation to a moment of failure occurrence. The
proposed approach allows us to correctly insert the probabilities of correct and incorrect
decisions into CBM models.

9. Conclusions

Novel classifications of systems for selecting maintenance effectiveness indicators,
and the mathematical models used to calculate them, have been developed. The proposed
system classification substantially facilitated the selection of appropriate maintenance
indicators during the operational stage. This enabled us to select indicators based on the
values of specified features. The proposed classification of maintenance models enables the
systematization of existing models and the development of new models depending on the
set of classification signs. The joint use of system and maintenance model classifications
can significantly simplify the process of assessing the maintenance effectiveness of systems
for various purposes. For the first time, we developed general mathematical models for
calculating CBM effectiveness indicators, and criteria for the joint determination of an
optimum inspection schedule and replacement thresholds for all classified systems.

In the future, we plan to apply the proposed approach to develop mathematical
models for the other subgroups of the one hundred and sixty-eight classified maintenance
models in this study with different signs of the system structure in terms of reliability, type
of inspection, degree of system restoration, and external manifestations of system failure.
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Abbreviations
The following abbreviations exist in the manuscript:
AMCUT Average maintenance cost per unit of time
AOPUT Average operating profit per unit of time
APFFO A posteriori probability of failure-free operation
CBM Condition-based maintenance
CM Corrective maintenance
FN False negative
FP False positive
ILS Instrument landing system
ISO International Organization for Standardization
LRU Line-replaceable unit
MRS Maintenance and repair system
OM Object of maintenance
OPFFO Operational probability of failure-free operation
RUL Remaining useful life
SATCOM Satellite communication
TN True negative
TP True positive
UC Unit costs
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