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Abstract: The cost to train a basic qualified U.S. Navy fighter aircraft pilot is nearly USD 10 M. The
training includes primary, intermediate, and advanced stages, with the advanced stage involving
extensive flight training, and, thus, is very expensive as a result. Despite the screening tests in place
and early-stage attrition, 4.5% of aviators undergo attrition in this most expensive stage. Key reasons
for aviator attrition include poor flight performance, voluntary withdrawals, and medical reasons.
The reduction in late-stage attrition offers several financial and operational benefits to the U.S. Navy.
To that end, this research leverages feature extraction and machine learning techniques on the very
sparse flight test grades of student aviators to identify those with a high risk of attrition early in
training. Using about 10 years of historical U.S. Navy pilot training data, trained models accurately
predicted 50% of attrition with a 4% false positive rate. Such models could help the U.S. Navy save
nearly USD 20 M a year in attrition costs. In addition, machine learning models were trained to
recommend a suitable training aircraft type for each student aviator. These capabilities could help
better answer the need for pilots and reduce the time and cost to train them.

Keywords: pilot training; machine learning; attrition prediction; aircraft suitability; cost savings;
automation

1. Introduction and Motivation

The U.S. Navy’s Chief of Naval Air Training (CNATRA) trains nearly 1100 pilots
every year in six training pipelines (strike, helo, tilt-rotor, and others) to fly different
Navy aircraft. The six training pipelines are shown in Figure 1 [1]. Student aviators are
assigned to those pipelines based on their performance in the primary stage of training, the
needs of the Navy, students’ preferences, and the availability of training slots. During the
course of training, student aviators undergo primary, intermediate, and advanced training
stages depending on the assigned aircraft pipeline [2]. Student aviators that successfully
complete the advanced training stage receive “Wings of Gold” and become naval aviators
i.e., qualified Navy pilots.

Pilot training is expensive and includes training on both sophisticated simulators
and real aircraft, as well as the involvement of several instructors, schedulers, and oth-
ers [3]. The cost of training increases as student aviators advance through the stages and
undergo more flight training. Despite the many screenings and early-stage attrition, 4.5%
of advanced-stage aviators undergo attrition in this most expensive training stage. Reasons
for aviator attrition include flight failure, academic failure, voluntary withdrawal (Drop on
Request—DOR), and medical reasons, among others [4,5]. The distribution of reasons for
attrition in primary, intermediate, and advanced stages is shown in Figure 2. Figure 2 shows
that, except for the primary stage, flight performance-related reasons are predominant.
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Indeed, more than 50% of the attrition in the intermediate and advanced stages of training
is reported as due to reasons related to poor flight performance.

Figure 1. CNATRA’s six student navy aviator training pipelines [2].

Figure 2. Distribution of student attrition, by reason for attrition, during (a) primary, (b) intermediate,
and (c) advanced training stages.

DOR is the most observed reason for attrition in the primary training stage, with flight
failure being a close second. As illustrated in Figure 3, 90% of DOR-related attrition occurs
in the first two quarters of primary training, while 60% and 80% of the attrition in the third
and fourth quarters, respectively, are due to flight failure. Figure 3 shows that this type of
attrition represents more than 50% of estimated primary-stage attrition costs.

As illustrated in Figure 4, the cost to CNATRA and the U.S. Navy for advanced-stage
attrition is several times higher than that for those in the primary stage. This is due to
the fact that the direct cost of attrition for each student is equivalent to the sum of all the
costs of training received by the student up to that point. In addition, the amount of flight
time, as well as the cost per flight during the advanced training stage, are much greater
than during the primary training stage. Figure 4 shows the observed attrition rates and
the estimated direct cost of attrition for a strike pipeline student aviator at the primary,
intermediate, and advanced training stages [1]. In particular, it shows that, for the strike
pipeline, 4.5% of the students experience attrition in the advanced stage, where the cost
of attrition for the U.S. Navy is estimated as USD 2 M. The estimations are based on the
reported U.S. Air Force pilot training costs [6]. Accordingly, by identifying such students
during the primary stage and preventing their advanced stage attrition, the U.S. Navy
could save up to an estimated USD 1.7 M for each student accurately identified. In addition,
the late-stage attrition causes delays in meeting the U.S. Navy’s pilot needs [7].
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Figure 3. (Left): Reason for primary stage attrition by quarter; (Right): Distribution of primary stage
attrition cost by reason for attrition.

Figure 4. Naval student aviator attrition rates and associated cumulative attrition costs for the strike
pipeline at different stages of training.

Consequently, this research aims to develop a data-driven approach informed by
machine learning techniques to predict the likelihood that a student aviator will not com-
plete training. Making such predictions, though critical, is a challenging task due to the
many factors that affect the training process, as well as the existence of different future
scenarios. Section 2 discusses previous attempts at predicting student aviator attrition.
Section 3 presents the approach proposed and its implementation as a means to address
the aforementioned research objective. Section 4 analyzes and discusses the results. Finally,
Section 5 concludes on the work conducted and discusses avenues for future work.

2. Background

While the U.S. Navy does an effective job at screening applicants for flight training
through the Aviation Selection Test Battery (ASTB), a considerable percentage of selected
applicants still undergo attrition during training for a variety of reasons. The attrition
rates for all phases of CNATRA averaged 17% for Student Naval Aviators (SNA) and 23%
for Student Naval Flight Officers (SNFO). Between 2003 and 2007, CNATRA reported
1558 cases of student attrition [4]. Studies on what factors contribute to and help predict a
student aviator’s success or risk of attrition have been ongoing for several decades [8–14].
These studies aimed to find statistical correlations between a pilot’s performance and other
measures. However, many of their findings, if implemented, would have resulted in the
rejection of many successful aviators as well [15,16]. These studies also reported on the
challenges associated with the data used to make predictions, and, in particular, the large
number of influencing features and the sparsity of the datasets [17].
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In addition to the high attrition rate is the acute shortage in pilots in both the U.S.
defense and commercial aviation sectors [18]. As a result, defense agencies in the U.S. have
been looking for solutions to reduce the time and cost to train pilots and meet the demand
quickly. The new Naval Introductory Flight Evaluation (NIFE) program’s aeronautical
adaptability screening is designed to identify concerns, such as motion sickness and anxiety,
early on to decrease DOR, which is the reason for the attrition of 40% of student aviators [19].
Still, 24% of the attrition is due to failing to meet flight competency levels and 9% is due to
academic failure.

Collecting and analyzing instructor-given scores for different flight and academic tests
and events is a feasible approach to predict the risk of attrition in later training stages. The
recent improvements in machine learning techniques, as well as their ability to understand
complex relationships between features, even in the case of missing data, make them a
great candidate for this problem [20,21]. An example of such studies includes the use
of linear regression models on U.S. Air Force pilot training data to provide guidance on
the selection of students for each class [22]. The results suggested grouping students
with similar numbers of flight-hours. Jenkins et al. [20] leveraged different traditional
and deep learning models on U.S. Air Force pilot training preliminary tests and previous
flight experience data to determine whether a candidate would successfully complete
pilot training. Results showed that ensemble tree-based approaches had a maximum
classification accuracy of 94%. Based on their findings, the authors proposed a composite
pilot selection index to be used to select candidates for pilot training.

Machine learning techniques have also been applied and evaluated on U.S. Naval pilot
training datasets. Erjevac [1] predicted the probability of success in primary stage training
using decision tree-based methods at three stages: (1) entry into flight school, (2) completion
of Initial Flight School (IFS), and (3) completion of Aviation Pre-flight Indoctrination (API).
The models were trained on students trained between 2013 and 2018 using student features
available from before the start of their training. Hence, the author suggested that the models
could be used as a screening tool to avoid selecting applicants with a low probability of
success. Another study [2] used features generated from ASTB, IFS, and API training
of nearly 15,000 student aviators to predict the success in primary, intermediate, and
advanced stages of training. The author reported that machine learning models, such
as multiple logistics, decision trees, random forests, and generalized linear models, only
explained a small amount of variation in training success or failure. It was also stated
that ASTB scores had little to no effect on predicting success in primary and advanced
training. A different study [23] looked at flight and academic test scores and collected
features of nearly 19,000 student aviators across ASTB; IFS; primary, intermediate, and
advanced training stages; and the Fleet Replacement Squadron (FRS). Many challenges to
applying machine learning algorithms were reported, including the format in which flight
and academic event data were being stored, missing data, as well as the lack of suitable
features. Finally, Phillips et al. [24] extracted correlations between highly aggregated test
score features and flight training success metrics, such as Naval Standardized Scores.

Overall, the research studies published so far either use early-stage training data for
screening and primary training stage success prediction or do not generate satisfactory
results for intermediate and advanced stage success prediction. Another shortcoming is
the lack of methods capable of ingesting and pre-processing primary stage flight grades
data at the flight item level without losing potentially useful information.

In this study, data pre-processing and feature extraction methods that enable the
ingestion of flight and academic grades data at any point during the primary stage training
are developed. These features are then utilized to train and test different machine learning
models to predict the outcome of primary, intermediate, and advanced training stages.
In addition, a pipeline suitability score is developed that recommends which aircraft
platform might best fit a student aviator based on their primary training test scores. Finally,
an attrition cost estimation model is developed that demonstrates that implementing these
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methods could significantly benefit CNATRA by reducing attrition costs and enabling more
effective utilization of training resources.

3. Materials and Methods

The steps followed as part of this approach aim to predict the risk of attrition and to
generate pipeline suitability scores for Naval student aviators. As such, they are typical
of a data science approach and include the identification and ingestion of relevant and
available datasets, the pre-processing and extraction of features of interest and the training
and testing of a number of machine learning models. Each of these steps are discussed in
detail below.

3.1. Datasets

The primary training stage academic and flight item grades were provided in .csv
format for nearly 8000 naval student aviators that were trained between 2012 and 2019.
The academic and flight tests given to students are dependent on the syllabus followed,
and changes to the syllabus over the years resulted in differences in the number and type
of available flight and academic graded items. Information about training outcomes for
the student aviators in primary, intermediate, and advanced stages of training was also
made available as additional .csv sheets. Each student in these tables was identified with a
unique “ID_CODE” number, which was used when merging related sheets. An overview
of the different datasets leveraged for the purpose of this work is provided in Figure 5 and
further discussed in the sections below.

Figure 5. Overview of datasets used in this research.

3.1.1. Flight Grades Data

Ten .csv sheets were related to primary stage data, which included primary stage
syllabus status, attrition reason (if any), syllabus-event names, flight hours, flight-item
grades, and the Maneuver Item File (“MIF”) data. The primary stage training included flight
events, such as “abort take-off”, “arcing”, and about 140 others, with small differences from
one syllabus to another. The 10 tables were concatenated using the student IDs. A small
number of students had been trained in more than one syllabus and were eliminated from
the analysis. The flight grades were given on a scale of 1 to 5.

3.1.2. Academic Grades Data

For each student, about 100 entries were available, each corresponding to a syllabus
event, such as C2101. In many instances, a syllabus event was repeated due to an incom-
pletion or the first instance being a warm-up event. In each entry, instructors tested and
provided grades for only one or a small number of flight-graded items. Hence, most of the
columns in each row were empty, resulting in the data being extremely sparse. To address
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this challenge, and to facilitate the use of data by machine learning models, aggregation
and feature extraction were performed which required input from subject matter experts.
Eight .csv sheets with academic test grades were available. Most students in these tables
had one row entry each with many columns filled in for each academic grade obtained.
However, academic test grades were not considered in the analysis for two reasons: (1) the
large variance in the number of grades available for each student and (2) academic failure
not being the primary reason for attrition.

3.1.3. Training Outcomes Data

Three tables with information on training outcomes at the primary, intermediate, and
advanced stages of training were available. These tables included information, such as
student ID, aircraft pipeline assigned, syllabus completion status, and Naval Standard
Scores (NSS). For the students who were unsuccessful, the reason for attrition was also
provided. For the purpose of this effort, the completion statuses (attrite or successful) from
different training stages were used to generate the targets for the attrition risk prediction
and the pipeline recommendation models. Overall, about 10,000 unique student IDs
were recorded with approximately 9000, 3000, and 6000 student IDs available in primary,
intermediate, and advanced training datasets, respectively. Among them, 2243 unique IDs
were present in both primary and intermediate datasets and 5262 unique IDs were present
in both primary and advanced datasets, as shown in Figure 6. The entries that are common
to the flight grades and outcomes datasets provide both features and targets to train the
machine learning models. However, the syllabus completion status in each training stage
is not directly used. The objective of the classification machine learning models is to
differentiate students who would complete all phases of training from those who would
not (i.e., those who do/would not finish all stages of the training). Identifying the particular
training stage at which a student would drop out is not addressed as part of this effort.
Finally, flight proficiency and skills required for different aircraft pipelines are different.
Consequently, using intermediate and advanced stage syllabus completion status as targets,
without pipeline information, is not optimal. As a result, pipeline recommender models,
which indicate the suitability of a student for a particular aircraft, were also developed.
These models are specific to each pipeline and use corresponding training completion
statuses as targets.

Figure 6. Venn diagram showing the number of students’ data available in cumulative
outcome tables.

3.2. Data Cleansing and Features Extraction

The datasets originated from different sources and required standardization and
cleaning. The data have both numeric and nominal features, spelling errors, and multiple
formatting styles, which were standardized. For example, some entries in the advanced
stage syllabus track are “Adv_Stk”, while some are “ADV_STK”. One-hot integer encoding
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was used for categorical features. Through exploratory data analysis, such corrections were
made, and outliers and erroneous inputs were removed.

The data that would be available for a student aviator at different points in training
were identified along with the corresponding target(s) for prediction. At any selected
point during training, a set of features and a target provide the data necessary to train a
supervised machine learning model.

• For the attrition prediction models: the syllabus completion status, which takes
two values, “Complete” or “Attrite”, according to whether a student successfully
completed all stages of training or not was used as the target.

• For the pipeline recommender models: each machine learning model pertained to
one aircraft pipeline. For a selected aircraft pipeline, the student aviators that were
successful were given a positive label and all other students were given a negative
label, indicating that they were not suitable for that pipeline. Models trained using
data labeled in this way would try to mimic the current selection process.

Overall, 85% of the 90 million cells in the concatenated flight grades table (600,000 rows
and 140 columns) were empty. As a result, an aggregation and feature extraction strategy
was needed so as to not lose key information. It is expected that a grade given by an
instructor for a flight-graded item is indicative of the proficiency for that maneuver/skill,
such as landing, take-off, headwork, and nearly 140 others. Following inputs from subject
matter experts, the data were aggregated according to flight-graded items to capture
maneuver/skill-specific proficiency levels as observed by flight instructors.

In particular, statistical features were generated from the multiple non-zero entries in
each column for each student aviator. Five features, average, count, minimum, maximum,
and trend over time, were calculated and stored for the flight-graded items type columns.
Other features, such as total flight hours, number of days in training, the total number
of events, and failure rate, among others, were extracted from other columns, as shown
in Figure 7. Overall, this resulted in about 700 features for each of the 7465 student
aviators in the primary flight grades datasets. Still, 10% of the cells were empty, which
can be accommodated by some machine learning models. The reduction in empty cells
by aggregation and feature extraction processes is shown in Figure 8, where white areas
represent empty cells. Further, columns with only one unique value were eliminated and
empty cells were filled in with the mean values of the corresponding columns.

Figure 7. Prediction targets and SME-guided features extracted from flight-graded items.

Feature datasets were also generated utilizing flight grades available only from the first
quarter and up to the second and third quarters of primary training. The split into different
quarters was performed based on the average number of events required by each student
aviator to successfully complete primary-stage training. This allows for a more continuous
attrition risk monitoring. The potential cost savings achieved through accurate attrition
prediction are also more precisely calculated because attrition during Q-3 or Q-4 (third or
fourth quarter) of the primary stage is more expensive than attrition during Q-1 or Q-2. For
example, machine learning models estimating the risk of attrition between the end of Q-1
and the end of the advanced training stage were trained using only Q-1 grades. Machine
learning models were also trained with all of the primary flight grade data and additional
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pipeline information from intermediate and advanced stages, when available, to estimate
the risk of attrition. Flight grades from the intermediate and advanced stages, if available,
should be used for the end of intermediate and advanced stages models to predict attrition
in the advanced stage and the Fleet Replacement Squadron (FRS) stage, respectively. The
different models and the timeline at which they are to be used are depicted in Figure 9.
Table 1 summarizes the data which were available and leveraged as part of this effort, along
with the targets that the models would predict at the different training timelines.

Figure 8. Qualitative depiction of reduction in data sparsity through aggregation and feature extrac-
tion. White spaces indicate empty cells.

Figure 9. Depiction of the different machine learning models and when they would be leveraged.

Table 1. Data available at different stages of training and ML models used.

Timeline PRI
Grades

PRI
Syllabus

PRI
Outcome

INT
Syllabus

INT
Outcome

ADV
Syllabus Targets

During PRI Yes Yes

Attrition
Risk,
Pipeline
Suitability

End of PRI Yes Yes Yes

Attrition
Risk,
Pipeline
Suitability

During INT Yes Yes Yes Yes
Attrition
Risk
Predictor

End of INT Yes Yes Yes Yes Yes
Attrition
Risk
Predictor

During
ADV Yes Yes Yes Yes Yes Yes

Attrition
Risk
Predictor
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3.3. Training Machine Learning Models

The attrition risk prediction is approached as a binary supervised classification prob-
lem, with the probability of a positive classification (0 to 1) being used as the attrition risk
score. In binary classification problems, class imbalance can be a challenge. Class imbalance
refers to a significant difference in the number of positive class labels (student attrition)
and negative class labels (successful students) as targets. The attrition rates in each of
the three (primary, intermediate, and advanced) training stages varied between 3% and
8% in the provided datasets. Since machine learning models perform better with close to
equal distribution of class labels, advanced sampling strategies, such as adaptive-synthetic
(ADASYN) oversampling [25] and random undersampling (RUS) [26], were used in dif-
ferent models to reduce the class imbalance. Similarly, the pipeline recommender models
were also framed as binary supervised classification problems, and undersampling and
oversampling techniques were tested.

Many different types of machine learning classification models can be used to demon-
strate the aforementioned approach and objectives. The results for relatively simple classi-
fiers for advanced models, combined with sampling techniques, are generated and reported
in this paper. Tested models include logistic regression, support vector machines (SVM),
K-nearest neighbors (k-NN), decision trees, random forests, gradient boosting, XGBoost,
light gradient boosting machines, and multi-layer perceptrons (MLP). A five-fold data
split that randomly allocates 80% of the data to train the models and 20% to test them
was implemented. To evaluate and compare the performance of the models, performance
metrics that not only consider the accurate identification of students who will drop out
(true positives) but also penalize false positives are needed. If a policy of proactive removal
of students with a high risk of attrition is implemented, a false positive prediction would
lead to additional costs equal to that needed to retrain another student to the same stage
who would go on to be successful. In order to more precisely calculate the savings and
additional costs due to accurate attrition prediction or false positives, true positive and
false positive metrics were further classified based on when the attrition occurred or when
proactive removal would have been implemented. Cost savings and additional costs were
calculated for each model’s predictions based on the estimated cost of training a student
aviator in different stages of training. Other more direct machine learning model perfor-
mance metrics, such as Area Under the Receiver Operating Characteristic Curve (AUROC),
F1 score, and Matthews Correlation Coefficient (MCC), were also calculated and reported.

The ROC (Receiver Operating Characteristic) curve is a graphical representation of
the trade-off between the true positive rate (TPR) and false positive rate (FPR) of a binary
classifier, as the classification threshold is varied. The AUROC is the area under this curve,
ranging from 0 to 1, where a value of 0.5 indicates random guessing and a value of 1.0
indicates perfect discrimination between positive and negative classes.

F1 scores range from 0 to 1, and it is a harmonic mean of precision and recall, two
metrics that measure different aspects of the performance of a binary classifier. Precision
is the proportion of true positives among all the instances that are predicted as positive.
Recall is the proportion of true positives among all the instances that are actually positive.
The F1 score combines these two metrics to provide a single score that balances the trade-off
between precision and recall.

MCC is also a performance metric used to evaluate the performance of binary classifica-
tion models. The MCC metric considers all four possible outcomes of a binary classification
problem, including true positives, true negatives, false positives, and false negatives. MCC
ranges from −1 to +1, where a value of −1 indicates total disagreement between the pre-
dicted and true labels, 0 indicates no better performance than random guessing, and +1
indicates perfect agreement between the predicted and true labels. MCC is less sensitive to
class imbalance than other metrics, such as accuracy and F1 score, and it can be a better
metric to use when the classes are imbalanced.

Other data split ratios, such as 70–30, 60–40, and 50–50, were also utilized. Oversam-
pling and undersampling techniques were utilized to generate training datasets with 10%,
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25%, and even 50% (equal distribution) positive class labels. Only the training data were
sampled so that evaluation is performed only on real instances to generate true performance
metrics. After evaluating the trained models on some initial datasets, the top-performing
machine learning algorithms were identified and further utilized. These included XGBoost,
random forests, gradient boosting, and light gradient-boosting machines.

Pipeline recommender models were demonstrated to identify strike-pipeline-suitable
students from among all student aviators. This is one of the key pipelines in which the U.S.
Navy and others face an acute shortage, and is also one of the most demanding pipelines.
Currently, an NSS score of 50 is used as a cut-off to qualify for the strike pipeline and the
available slots are filled in the descending order of these scores. To train strike pipeline
recommender/suitability models, all students were given a negative label except those
that were selected for and were successful in the strike pipeline. Recommender models for
other pipelines can also be similarly trained but were outside the scope of this effort. These
models can be trained with all of the primary training stage data or flight grades data only
up to the end of Q-1, Q-2, or Q-3. This depends on where continuous tracking of these
estimates is the most useful, or how early CNATRA would like to be informed about the
number of students suitable for the strike or other pipelines. Based on the suitability scores
between 0 and 1, student aviators can be ranked according to the probability of success in
that pipeline and selected in that order instead of the NSS values.

3.4. Attrition Costs Modeling and Savings Estimation

The cost of attrition at each of the primary stage quarters, intermediate, and advanced
training was estimated from the literature [1,6] for the strike pipeline (Figure 4). The
cost savings achieved by proactively removing high-attrition risk student aviators for
different scenarios were also calculated using data pertaining to these past students. The
magnitude of the savings depends on the earliest time a machine learning model predicted
this outcome and when the attrition actually occurred.

First, annual attrition costs to the U.S. Navy were estimated assuming 1100 students in
training, which is approximately the annual throughput of the U.S. Navy’s pilot training [1].
Different aircraft (F-35, F-18, P3-P8, tilt rotors, and others) cost different amounts to be
trained on. The average cost to train aviators in different pipelines (including FRS stage)
was estimated to be USD 6 M [6]. The cost of intermediate and advanced training was
approximated accordingly. The attrition costs were then estimated as approximately USD
100 M per year, using the observed attrition rates in primary (by quarter), intermediate,
and advanced training stages.

Potential cost savings to the U.S. Navy were estimated by utilizing machine learning
models’ true positive and false positive performance metrics for each quarter in the primary,
intermediate, and advanced stages. For example, suppose the end of primary stage attrition
was predicted at the end of the first quarter of primary training. In that case, the direct
cost savings are equal to the cost of providing training to a student aviator in the second,
third, and fourth quarters of the primary stage. Each primary stage quarter was assumed
to require an equal amount of resources. We assume that equal cost provides a conservative
cost savings estimate as, in reality, later parts of primary training require more flight hours
than earlier parts. For intermediate and advanced stages, the exact information on when a
student aviator left the training program is not available and is assumed to be at the end of
those stages. An Excel-based cost savings calculator, shown in Figure 10, was developed
where a machine learning model’s performance metrics can be input. This sheet calculates
the cost savings due to true positive predictions, added costs due to false positives, and
the net cost–benefit or loss. Using this tool, at each decision point in time, the model
with the best performance metrics and, hence, with the most cost–benefit, if any, is chosen
as the best one. After all such models’ results are entered, the cost savings per training
stage, as well as the net benefit, are calculated. One of the limitations of our approach is
that two machine learning models utilized subsequently could identify the same student
correctly or incorrectly as having a high risk of attrition. This could lead to inaccurate



Aerospace 2023, 10, 379 11 of 19

test results if multiple machine learning models are consecutively utilized for a specific
training stage. In this work, the reported results demonstrate that the number of machine
learning models utilized is small, and the error in aggregate classification results and the
cost savings estimation is also low.

Figure 10. Attrition cost modeling and savings estimation excel tool with sample results.

4. Results and Discussion

This section presents and discusses the results for both attrition prediction and pipeline
suitability prediction. It then presents cost savings estimates resulting from proactively
removing high-attrition risk students.

4.1. Attrition Prediction Results

Results are generated to demonstrate the feasibility of identifying likely unsuccessful
student aviators using the proposed approach at different stages of training. Performance
metrics for different machine learning models utilizing only Q-1 primary stage flight grades
data to predict attrition in Q-2, Q-3, or Q-4 on test data is shown in Table 2. For instance,
the gradient boosting model (GradBoost) has a false positive rate of 1.08% and true positive
rates of 27.63%, 35.29%, and 43.75% for Q-2, Q-3, and Q-4, respectively. The model correctly
identified 25 out of 66 flying-related attrition and 5 out of 23 DORs that occurred in those
three quarters. Evaluation metrics MCC, F1, and AUROC, were, respectively, 0.41, 0.42,
and 0.87.

Table 2. Performance of ML models identifying primary stage attrition using PRI Q-1 data.

Model FPR (%) Q2 TPR
(%)

Q3 TPR
(%)

Q4 TPR
(%)

Flight
Attr.
Id’ed

DOR
Attr.
Id’ed

MCC F1 AUROC

Ad
BagOS 5.35 36.84 35.29 37.50 26/66 8/23 0.31 0.36 0.83

XG
Boost 1.08 36.84 41.18 62.5 33/66 7/23 0.51 0.52 0.87

Log Reg 5.52 39.47 35.29 43.758 27/66 7/23 0.29 0.35 0.79

RF 1.02 22.37 41.18 43.75 23/66 4/23 0.39 0.39 0.87

Grad
Boost 1.08 27.63 35.29 43.75 25/66 5/23 0.41 0.42 0.87

LGBM 0.80 22.37 41.18 31.25 23/66 5/23 0.39 0.38 0.89

MLP 3.19 35.53 23.53 43.75 27/66 6/23 0.32 0.37 0.79

The Receiver Operator Characteristic (ROC) curves for four models selected from the
above table are shown in Figure 11.
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Figure 11. Performance of different machine learning models in identifying primary stage attrition.

Similarly different machine learning models are evaluated to identify students that
experienced attrition in either the intermediate or advanced stage after successfully complet-
ing primary training. ROC curves for different models are shown in Figure 12. Again, XG
Boost models seem to perform the best with an AUROC value of 0.92. Further, the weight
hyper-parameter given to the positive class labels (attrition class) in the XG Boost model
was varied, as shown in Figure 13, to determine the most optimal value. Results showed
that a value between 1 and 25 led to improved AUROC values. For each positive or negative
prediction, the probability of a positive prediction can also be simultaneously generated.

Figure 12. Performance of different machine learning models to identify students that experienced
attrition in intermediate or advanced stage.
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Figure 13. Effect of positive class weights in XG Boost models identifying intermediate and advanced
stage attrition.

Feature importance ranks, as generated by random forest models, are shown in
Figure 14. The top 10 features that contribute the most to identifying attrition in the
intermediate or advanced stage are depicted.

Figure 14. Top 10 features utilized to estimate attrition risk.

4.2. Pipeline Recommender Model Results

A number of models were trained to identify successful student aviators, at the end
of primary training, who would be successful in the strike pipeline. The performance of
those models against different performance metrics is summarized in Table 3. In addition,
the ROC curves for the XG Boost, logistic regression, random forest, and LGBM models
are provided in Figure 15. Figure 16 shows the normalized count of students according to
their predicted strike pipeline suitability scores (probability) compared to their target labels.
The large distance between the two populations in the figure indicates that the models
are performing well. It is important to note here that even the best-performing models
classified some non-strike pipeline students as suitable for it. Some of these predictions
may be due to the students’ preferences or the unavailability of strike pipeline slots during
their transition to intermediate or advanced training. The others may be due to improper
assignments that are expected to increase attrition rates in the later stages.
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Table 3. ML models performance in estimating strike pipeline suitability.

S. No Model TPR
(%)

FNR
(%)

TNR
(%)

FPR
(%) MCC F1 Recall Precision Accuracy AUROC

0 RF 85.80 14.20 81.53 18.47 57.94 66.34 85.80 54.08 82.40 91.20

1 AdBoost 86.44 13.56 82.17 17.83 59.22 67.32 86.44 55.13 83.04 91.42

2 XG
Boost 78.23 21.77 89.61 10.39 63.70 71.37 78.23 65.61 87.31 91.32

3 LGBM 80.76 19.24 87.21 12.79 61.83 69.85 80.76 61.54 85.91 91.49

Figure 15. AUROC of pipeline suitability model.

Figure 16. Pipeline probability score.

Similarly to the attrition models, the top 10 features utilized by random forest models
to classify a suitable strike pipeline student from others were identified. They are repre-
sented in Figure 17. These features could help guide instructors to concentrate on more
important flight skills for students in primary training.
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Figure 17. Top 10 features to identify successful strike students.

4.3. Potential Cost Savings Estimation

Potential cost savings through proactive removal of high attrition-risk students are
estimated using the tool described in Section 3.4. After testing different models, the
estimations shown are made using the models that give the greatest cost–benefit at each
decision stage. It was observed that only models at three different instances during training
resulted in cost savings greater than the additional costs related to false positive removals.
The three models include one at end of Q-1, one at the end of Q-2, and the last one
operated at the beginning of intermediate training, which also included the training pipeline
information. The false positive and true positive rates for different future training stages
for these three models are shown in Figure 18. For example, the end of Q-1 model wrongly
classified 2% of its active student population as having a high risk of attrition. This same
model identified 43%, 50%, and 55% of those that experienced attrition during the second,
third, and fourth quarters of primary training, respectively. It also identified 14% of students
that experienced attrition in the advanced training.

Figure 18. True and false positive rate of selected ML models for the most cost benefit.

Utilizing these three models, the estimated potential cost savings to the U.S. Navy was
USD 29 M per year, which corresponded to a 26% reduction in attrition costs. This assumed
1100 student aviators at the beginning of primary training and using strike pipeline training
costs. Considering other aircraft pipelines and lower average costs, the savings could
still be nearly USD 20 M per year. To generate more precise estimates, student aviators
that would be removed as a result of a certain machine learning model’s predictions
should not be considered in subsequent predictions. Information on the exact training
costs of each training stage for the different pipelines, along with the usual number of
students in each pipeline, would also improve the cost savings estimations. Results are
indicated in Figure 19, which also shows True Positive Rate (TPR) savings, False Positive
Rate (FPR) costs, and net benefit for each utilized model. The number of correctly identified
and wrongly identified students are also reported for the test dataset. Overall, out of
160 students that experienced attrition in all the considered training stages, 81 (51%) were
correctly identified and 47 (4%) would have been wrongly eliminated from training. It is
important to note here that instructor-given grades and attrition decisions include human
subjectivity, which make highly-accurate classification of students impossible. Additionally,
the objective is not to identify all the students that would experience attrition, but to closely
quantify the risk of attrition, which then can guide decision-makers to make such decisions.
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Figure 19. Cost savings generated and classification results produced by each selected model and net
potential cost savings.

5. Conclusions and Future Work

This work demonstrated the feasibility of extracting useful features from primary
training flight item grades and applying machine learning techniques to identify U.S. naval
student aviators with a high risk of attrition in primary, intermediate, and advanced stages
of training. Using historical data, 50% of those that experienced attrition in later stages were
identified with only a 4% false positive rate. These results indicate that a 26% reduction in
attrition costs for the U.S. Navy could be achieved by implementing a policy of proactive
removal of all students identified to experience attrition. Alternatively, only students with
very high attrition risk could be removed, while those with moderate risk could be provided
with additional resources to improve their chances of success. The performance of the
models could be improved by incorporating additional information, such as primary stage
academic grades, students’ pipeline preferences, pipeline slots availability, intermediate
and advanced stage flight, and academic grades, and by optimizing the hyper-parameters
of the machine learning models considered. Furthermore, feature selection approaches
could be investigated that would allow for a smaller feature set and the implementation of
other machine learning algorithms. In particular, wrapper methods (e.g., BorutaSHAP [27],
Powershap [28], etc.) could be considered and benchmarked. Each machine learning
prediction could also be supplemented by explanations [29] that can aid in implementing
student-customized training activities. Potential cost savings estimation could also be
improved by eliminating student aviators identified to have a high risk of attrition from
subsequent predictions, and by using more accurate training costs for each pipeline and
training stage.

In addition to attrition prediction, trained machine learning models were demon-
strated to successfully identify student aviators suitable for the strike pipeline. This could
be similarly achieved for other pipelines. Students could be rank-ordered according to their
probabilities of success, as provided by the machine learning models. These ranks could
help allocate students, especially when training slots are limited for one or more pipelines.
Automated pipeline recommendations and rankings could help reduce the burden on
flight instructors and reduce mismatches. This would further reduce attrition rates in
intermediate and advanced training. These recommendations would also be beneficial
when a student aviator chooses or is required, to change pipelines during intermediate or
advanced training.
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This research demonstrated the strong potential and benefits of implementing data-
driven techniques, such as the ones discussed herein to improve U.S. naval pilot training
operations. However, before actively deploying and trusting their results, thorough testing
and shadow real-time implementation may be needed.
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