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Abstract: Currently, the increasing number of daily flights emphasizes the importance of air trans-
portation. Furthermore, Air Traffic Management (ATM) enables air carriers to operate safely and
efficiently through the multiple services provided. Advanced analytic solutions have demonstrated
the potential to solve complex problems in several domains, and Deep Learning (DL) has attracted
attention due to its impressive results and disruptive capabilities. The adoption of DL models in ATM
solutions enables new cognitive services that have never been considered before. The main goal of this
research is to present a comprehensive review of state-of-the-art Deep Learning (DL) solutions for Air
Traffic Management (ATM). This review focuses on describing applications, identifying opportunities,
and highlighting open challenges to foster the evolution of ATM systems. To accomplish this, we
discuss the fundamental topics of DL and ATM and categorize the contributions based on different
approaches. First, works are grouped based on the DL approach adopted. Then, future directions are
identified based on the ATM solution area. Finally, open challenges are listed for both DL applications
and ATM solutions. This article aims to support the community by identifying research problems to
be faced in the future.

Keywords: deep learning; air traffic management; survey; convolutional neural networks (CNN);
generative adversarial networks (GAN); recurrent neural network (RNN); autoenconder

1. Introduction

Currently, the increasing number of daily flights emphasizes the importance of the air
transportation system. Furthermore, Air Traffic Management (ATM) enables air carriers
to operate safely and efficiently through the multiple services provided, e.g., Air Traffic
Flow Management (ATFM), Airspace Management (ASM), and Flight Information Services
(FIS) [1,2]. Air Traffic Control (ATC) technologies have been improved over the decades,
and new technologies are needed to further enhance existing procedures and support
future demands.

Moreover, advanced analytic solutions have demonstrated their potential to solve
complex problems in several domains [3]. In this context, Deep Learning (DL) has attracted
attention due to its impressive results and disruptive capabilities [4]. The evolution of
computational power has enabled DL to be used in several contexts, and the current massive
amount of data produced by existing systems empowers new applications. New DL-based
solutions are currently under development in various domains, and efforts have been made
toward developing DL-based ATM solutions.

Although several ATM solutions rely on deterministic methods, adopting DL models
enables new cognitive services never considered before. Solutions vary from aircraft
performance (e.g., flight state, parameters, and trajectory optimization) to human factors
(e.g., fatigue assessment). In all these cases, DL can be used and further improve current
operations in terms of airspace safety and efficiency. Conversely, several challenges must
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be overcome to integrate DL solutions in airspace operations. Furthermore, it is not simple
to clearly define the challenges faced by state-of-the-art strategies and open challenges.
Finally, it is also complex to relate different Deep Learning (DL) architectures with ATM
problems to simplify identifying research gaps.

The main goal of this research is to present a comprehensive review of state-of-the-art
Deep Learning (DL) solutions for Air Traffic Management (ATM). This review focuses
on describing applications, identifying opportunities, and highlighting open challenges
to foster the evolution of ATM systems. To accomplish this, we discuss the fundamental
topics of DL and ATM and categorize the contributions based on different approaches.
First, works are grouped based on the DL approach adopted. Then, future directions are
identified based on the ATM solution area. Finally, open challenges are listed for both DL
applications and ATM solutions. This article aims to support the community by identifying
research problems to be faced in the future.

Therefore, the main contributions of this research are:

• A comprehensive review of state-of-the-art Deep Learning (DL) solutions for Air
Traffic Management (ATM);

• Future directions based on insights of single contributions and ATM solutions groups;
• An extensive list of open challenges in the context of Deep Learning (DL) applications

in ATM;
• An extensive list of open challenges from the ATM solutions standpoint.

The paper is organized as follows: Section 2 discusses aspects of Deep Learning (DL)
and Air Traffic Management (ATM). Secondly, Section 3 reviews DL application in ATM
solutions. Then, Section 3.6 presents several insights on the review and future directions
for contributions belonging to different categories. Finally, Sections 4 and 5 present several
open challenges and the conclusions of this research, respectively.

2. Background

The works reviewed in this research involve several concepts related to Air Traffic
Management (ATM) and Deep Learning (DL). This Section describes fundamental aspects
to a better understanding of the contributions reviewed.

2.1. Deep Learning (DL)

Currently, the complexity of systems and applications in several domains is increasing.
Applications need to embed some advanced reasoning to accomplish the tasks they have
been designed to. Conversely, this is complex for several reasons. In the past few years,
Deep Learning (DL) [5,6] applications have been exceptionally successful in multiple
challenging tasks, and more attention is attracted once the intelligent decision emerges
from patterns hidden in large multi-dimensional datasets.

Deep Learning (DL) can be represented by a neural network with a large number of
layers and parameters using a cascade of multiple layers of nonlinear processing units
for feature extraction and transformation [7,8]. Several domains have benefited from DL
applications, e.g., healthcare [9,10], transportation [11,12], and manufacturing [13].

Moreover, several architectures have been proposed with different goals. More archi-
tectures are under development to solve specific problems. This research considers five
of the most popular architectures: Deep Neural Networks (DNN), Convolutional Neural
Networks (CNNs), Recurrent Neural Networks (RNN), Generative Adversarial Networks
(GANs), and Autoencoders (AE).

• Feed-Forward Networks: Feed-Forward Neural networks (also referred to as Deep
Neural Networks—DNN—in this article) consists of neurons ordered into layers.
The first layer, called the input layer, the last layer, called the output layer, and
the hidden layers [14]. Neurons can be considered processing units connected to
synaptic weights. These neurons produce an output using an activation function,
which is sent to the following layer [15]. These networks are usually trained using the
back-propagation algorithm (used to compute gradients) and the Stochastic Gradient
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Descent (SGD) algorithm to optimize the weights (using the gradient computed
previously). Figure 1 illustrates a simple DNN and highlights the input, hidden, and
output layers. The number of nodes and hidden layers can change depending on the
problem faced, similar to the input vector. This architecture has been widely used and
has presented tremendous success in several initiatives.

Figure 1. Example of Deep Neural Network (DNN) [14,15].

• Convolutional Neural Networks (CNNs): Convolutional Neural Networks (CNNs)
are a category of Deep Learning (DL) models designed to process data in a grid-like
topology (e.g., time-series and image data). CNNs are usually composed of three types
of layers: convolutional, pooling, and fully connected layers [16,17]. The convolutional
layers are responsible for extracting important features. The pooling layers reduce
the resolution of features, making them robust against noise and distortion. Finally,
the fully-connected layers produce class scores from the activations [18]. Figure 2
illustrates a simple CNN model.

Figure 2. Example of Convolutional Neural Networks (CNNs) [16,18].

• Recurrent Neural Networks (RNN): Recurrent Neural Networks (RNNs) represent a
neural network architecture used to detect patterns in sequences (e.g., images, text,
or numerical time series) [19]. Important RNN features are the feedback connection
and memory, which enable activations to flow in a loop and temporal processing [20].
Figure 3 illustrates a simple example of an RNN.
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Figure 3. Example of Recurrent Neural Network (RNN) [19,20].

• Generative Adversarial Networks (GANs): This architecture is based on the com-
petition between a generation and a discriminator. In this sense, the generator uses
random noise to produce fake data while the discriminator tries to distinguish real data
from fake data. When the generator can produce data that cannot be appropriately
classified as fake by the discriminator, the model can produce realistic data [21,22].
Figure 4 illustrates a simple GAN architecture.

Figure 4. Example of Generative Adversarial Network (GAN) [21,22].

• Autoencoders (AE): This specific type of neural network was developed to encode
inputs into a compressed and meaningful representation. After this reduced version
of the provided features is produced, the model decodes it back, aiming to produce
an output as close as possible to the input [23,24]. Figure 5 illustrates a simple
AE architecture.

Figure 5. Example of Autoenconder (AE) [23,24].

2.2. Air Traffic Management (ATM)

Currently, the air transportation system connects countries and plays a major role in
society. Daily operations are safe and efficient due to the many advances in technology
and regulations. In fact, new technologies are required to further improve the National
Airspace System (NAS) operation.

Air Traffic Management (ATM) can be defined as “the dynamic, integrated manage-
ment of air traffic and airspace including air traffic services, airspace management and
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air traffic flow management [...] in collaboration with all parties and involving airborne
and ground-based functions” [25]. To maintain safety and efficiency levels, the Air Traffic
Control (ATC) guarantees smooth airspace flow through ATC services. The airspace is
divided into regions [1] and served by Air Traffic Controllers (ATCos) via Air Traffic Flow
Management (ATFM), Airspace Management (ASM), and Air Traffic Services (ATS), as
illustrated in Figure 6. These services comprise flight information service, alerting service,
air traffic advisory service, area control service, approach control service, and aerodrome
control service [1,2].

Figure 6. Overview of ATM components [1,26–28].

However, ATC faces several challenges. For example, communication [29], effi-
ciency [30], safety [31], excessive ATCo workload [32], and congestion [33]. Several stake-
holders have been working on new technologies to modernize and include new ATC
capabilities in the National Airspace System (NAS). Conversely, the increasing number of
flights demonstrates that further technological development is required.

These technologies vary from application and the service targeted. Furthermore, four
critical ATM application-oriented research areas highlighted by SESAR [34] are:

• ATM Operations, Architecture, Performance, and Validation (OAPV): focuses on so-
lutions to enhance and enable trajectory-based operations, considering technologies
related to aircraft trajectory. It may include trajectory planning [35,36], prediction [37,38],
generation [39,40], optimization [41,42], and clustering [43,44];

• Enabling Aviation Infrastructure (EAI): includes technologies to enable more flexible
architectures. Involves ground and airborne systems that can be useful for ATM.
For example, aircraft health prediction [45], optimization [46], and management [47];

• High-Performing Airport Operations (HPAO): targets emerging technologies to im-
prove situational awareness for tower controllers. For example, it may include tempo-
ral aspects that affect the airspace operations, such are departure delay prediction [48,49]
and arrival delay prediction [50];

• Advanced Air Traffic Services (AATS): involves tools to improve departure and
arrival processes, separation management, air and ground safety, and systems to sup-
port flight planning. This area refers to solutions considering the interaction between
humans and computers and may include augmentation solutions [51,52] and behav-
ioral technologies [53]. Moreover, it also considers airspace complexity solutions [54],
e.g., initiatives related to complexity estimation [55] and reduction [56,57] are exam-
ples of solutions in this portfolio.

Therefore, this research focuses on reviewing DL efforts in these five ATM solutions
categories. Moreover, we also present an in-depth discussion on future efforts and open
challenges for each group.

In the past few years, several ATM solutions have been proposed in the literature. These pro-
posals are based on several methods and techniques, e.g., deterministic optimization [58], stochas-
tic solvers [59], and data-driven strategies [60]. Furthermore, Artificial Intelligence (AI) and
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Deep Learning (DL) present state-of-the-art performance in challenging tasks (e.g., image
classification [61]) while solving scientific problems in multiple areas. Therefore, there has been
an effort towards leveraging AI and DL capabilities to foster the development of next-gen ATM
systems. Figure 7 shows the evolution of results count provided by Google Scholar using
“ATM + Artificial Intelligence” and “ATM + Deep Learning” as search strings. This shows an
increase in the interest of AI and DL in ATM solutions.

Figure 7. Evolution of AI and DL search results in ATM in the past few years.

In this sense, the development of new solutions relies on the understanding of the
existing body of knowledge and research gaps. In this research, we focus on reviewing
multiple DL-based initiatives in ATM to support the development of future solutions.
Conversely, we focus on the identification of research opportunities while highlighting
how DL methods are used. The statistical evaluation of the performance of such methods
compared to baseline solutions is in the scope of future works.

3. Literature Review

This section presents all works reviewed categorized into five classes, matching the
architectures previously discussed: Deep Neural Networks (DNN), Convolutional Neural
Networks (CNNs), Recurrent Neural Networks (RNN), Generative Adversarial Networks
(GANs), and Autoencoders (AE). Once the review of all works is presented, we compare
the contributions in Table 1.

Each work is classified regarding the following attributes:

• Year: Describes the year in which the article was published;
• ATM Area: Categorizes the article into one of the four ATM solutions areas previously

described, i.e., OAPV, EAI, HPAO, and AATS;
• ATM System: Indicates if the solution focuses on Air Traffic Services (ATS), Airspace

Management (ASM), or Air Traffic Flow Management (ATFM);
• Flight solution: Indicates if the solution is directly applicable to one (S) or multiple

(M) aircraft;
• Deep Learning (DL) Application: Refers to the aspects of the Deep Learning (DL)

application, indicating if the authors presented details on the architecture (Arc), vali-
dation (Val), and deployment (Dp);

• Airspace Key Performance Indicator (KPI): Indicates the main target of the proposed
method regarding airspace operations. Works contributions are classified into safety
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(Sft), efficiency (Ef), and sustainability (Sus). Although some initiatives overlap multi-
ple KPIs, we intend to identify the primary focus;

• Air Traffic Controller (ATCo): Indicates if the proposed solution is intended to sup-
port the operation of ATC professionals. This attribute identifies if the solution pro-
posed considers human factors (HF—e.g., mental workload and fatigue identification)
and augmentation capabilities (Aug—e.g., indicates if the solution indents to help
professionals in the task).

3.1. Applications of Deep Neural Networks (DNN) Networks in ATM

The authors in [62] propose an Air Traffic Control (ATC) model to guide an arbitrary
number of aircraft across three-dimensional, unstructured airspace safely. This challenging
problem relies on the complex set of tasks performed by ATC due to the increasing number
of aircraft. Therefore, the authors emphasize that autonomous ATC functionalities are
necessary to support future operations. To accomplish this, graph-based deep learning
approaches are used to handle the input ordering of aircraft and the varying number of
aircraft. In the 24 h simulation experiment, the proposed method managed the airspace by
avoiding 100% of potential collisions and preventing 89.8% of potential conflicts. In addition
to this effort, the authors in [63] focus on defining which variables determine airspace
complexity based on machine learning models. In this sense, DL interpretability can play
an important role in future works [64,65].

Wang et al. [66] apply cutting-edge DL techniques to predict flight departure demand in
a strategic time horizon. This effort is intended to support MITRE’s Pacer program to improve
operators’ situation awareness of the potential for departure delays during busy periods.
To accomplish this, the authors leverage better data sources (i.e., Aviation System Performance
Metrics (ASPM) and System Wide Information Management (SWIM)) and robust forecasting
algorithms. The authors trained forecasting models with DL techniques of sequence to
sequence (seq2seq) and seq2seq with attention and showed through field demonstrations that
the Mean Squared Error (mse) can be reduced using the proposed strategy.

The authors in [67] investigate the effectiveness of the Hybrid Deep Learning (HDL)
in the departure delay severity prediction for ten major airports in the U.S. that experience
high ground and air congestion. In fact, the effectiveness of airports and airlines greatly
relies on punctuality, and HDL models have demonstrated promising results in many
complex problems. This motivated the authors to propose a strategy to analyze structured
air traffic data as a combination of a Feed-Forward Artificial Neural Network model, and a
gradient boosted tree model (XGBoost). The proposed strategy achieves a rise of 22.95% in
accuracy when compared to a pure neural network model.

In [68], the authors investigate the feasibility of machine learning methods for cost
reduction and service quality improvement in low-cost airlines (LCAs) based on the use
of predictive modeling approaches and real airline datasets. Two major problems are
faced, i.e., fuel consumption prediction and flight delay prediction. To accomplish this,
the authors use different methods, such as Random Forest, XGBoost, and Deep Neural
Network. The experiments conducted showed that the proposed approach predicts fuel
consumption and delays with high accuracy. Finally, the authors conclude that these
models are effective for the investigated airports using the information available one day
before the flight.

Bala et al. [69] evaluate the performances of Deep Feed-Forward Neural Network,
Neural Network, and Support Vector Machine models on a binary classification problem
using flight on-time data records from the United State Bureau of Transportation Statistics.
As previously discussed, flight delays impact airport and airline operations, resulting
in significant economic losses. This motivates the accurate prediction of such factors to
enable informed decision-making in the aviation industry. Conversely, it depends on
several aspects, e.g., the air transportation system complexity and airport infrastructure.
The experiments showed that the proposed strategy can be used to tackle the problem
highlighted. The authors emphasized the contribution of this initiative to the aviation
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industry and the air transportation unit concerning improving passengers’ experience
through better flight delay decision support systems.

In [70], the authors develop a flight delay prediction system based on domestic flights
inside the United States of America. The impact of delays on the airline business is
significant. Although there is an interest in increasing the predictability of such events,
this remains a major challenge currently. In order to tackle this problem, the authors use
machine learning and Deep Learning methods. The case studies demonstrated that the
models learn the cause of flight delays and cancellations and associate them with the link
between departure and arrival delays. Similarly, the authors in [71] propose a predictive
solution for fight delays based on Deep Learning (DL) and on the Levenberg--Marquardt
(LM) algorithm. The results obtained from the experiments showed that the proposed
model efficiently predicts delays.

Mas-Pujol et al. [72] propose two Deep Learning models to mimic the current proce-
dure’s behavior to help specialized ATCos detect the imbalances that will require regulation.
The flight allocation in the current ATC system is required to be time-efficient, cost-efficient,
and safe through the Demand–Capacity Balancing process. This process entails analyzing
corrective actions in the form of regulations in areas with high demand to avoid overload.
However, this procedure is complex, time-consuming, and based on ATCo’s experience.
To tackle this problem, the authors use a CNN and an RNN to demonstrate that regulation
can be predicted with over 80% accuracy for the context considered.

Chakrabarty [73] focuses on the flight arrival delay prediction for flights operated by
American Airlines, predicting possible arrival delays of the flight using machine learning
approaches. In fact, flight delays result in airline companies operating commercial flights
incurring losses, and new methods to avoid them are needed. The experiments conducted
showed that the Gradient Boosting Classifier model achieves maximum accuracy of 85.73%.
Finally, the author indicates that using Machine Learning-Deep Learning Hybrid Models
tuned with Grid Search to achieve better model performance is in the scope of future works.

The authors in [74] examine requirements to be deployed different techniques opera-
tionally in an ATM system, exploring aspects of such as verification, regulatory certification,
and end-user acceptance. The success of AI solutions motivates their application in aviation
systems. In this research, the authors consider a novel cognitive Human–Machine Interface
(HMI) configured through machine learning. The authors highlight that the increasing
levels of automation and autonomy are expected to include certification requirements,
and a discussion is conducted regarding how ATM systems can be accommodated into
the existing certification framework for aviation systems. This research brings important
insights into the application of how ML and DL can be part of ATM systems and presents
future directions that converge with DL research topics (e.g., explainability).

In [75], the authors propose a DL method to construct an aircraft network and utilize
the complexity indices to characterize it. As the basic unit of the airspace system is the Air
Traffic Control Sector (ATCS) is the basic unit of the airspace system, identifying congestion
in such areas enables decision support for strategic planning and daily operations. The ex-
isting approaches focus on the static structure and the dynamic operational features, which
has motivated the authors to develop a more flexible strategy. In this sense, congestion
identification becomes the complexity of the aircraft network and is detected by a Deep
Active Learning (DAL) model. The experiments showed that this approach outperforms
existing mainstream methods in the four objective evaluation indices.

Facing air transportation delays as an outcome of local airport dynamics and the global
propagation process, the authors propose a method to assess airport identifiability in [76].
The focus of this research is to demonstrate how DL models can recognize airports with
high precision and that delays are more dependent on each airport’s characteristics than
the global air transportation system’s effects. As a natural result, identifiability is higher
for large and highly connected airports. Finally, the authors highlight that the proposed
approach is superior to the mainstream approaches in multiple aspects.
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Boggavarapu et al. [77] present a delay estimation DL model trained using the air
traffic and weather data obtained from the U.S. Bureau of Transportation Statistics and
NOAA—National Oceanic and atmospheric administration. Facing flight delays as a
major challenge in the air transportation system, the authors acknowledge that delays are
influenced by several factors. In fact, this complexity hardens the accurate prediction of
delays in different scenarios. To tackle this problem, a Gated Recurrent Unit (GRU) network
is adopted due to the recurrent and time-series nature of the dataset. The experiments
performed showed that the proposed approach is effective in estimating departure delays
based on a case study focusing on the Chicago airport.

In [78], the authors address to provide an overview of the state of the art for ap-
plying DL to the aircraft design, dynamics, and control field. Several DL solutions have
been proposed in this context, focusing on an information-rich, data-driven approach.
Two main groups are considered: own-ship aircraft modeling, including proposals that
have been/can be implemented online for the aircraft design/dynamics/control, and other
airplane research works, DL-based solutions for offline monitoring of the aircraft operation.
The authors describe several efforts throughout the paper and point out several open
challenges to be addressed in future works.

The authors in [79] present a DL-based approach to augment the job of both ground
controllers and pilots. The current challenges faced in the aviation industry (e.g., profes-
sional shortage) represent a concern for aeronautic enterprises and regulators, given the
increasing number of annual flights. In this context, the Single Pilot Operations concept
relies on automation in several layers of the air transportation system. The authors use
Meteorological Terminal Air Reports to create a model based capable of determining the
approach trajectory of an aircraft thirty minutes before the landing time. The experiments
performed were conducted on aircraft trajectories from Toulouse to Seville, demonstrating
that the proposed strategy achieves over 90% accuracy in the prediction task.

In [80], the authors’ Machine Learning (ML) and Artificial Intelligence (AI) methods
are proposed to control and predict the state of air traffic. ATC plays a pivotal role in society
and acts in safety-critical scenarios. Therefore, there is a mental workload experienced by
Air Traffic Controllers (ATCos) that needs to be maintained at low levels. The proposed
strategy, based on different statistical methods (e.g., neural network), presents high accuracy
prediction compared to other statistical algorithms with over 95% accuracy. In fact, this
contribution emphasizes that DL techniques can be used to build up multiple prediction
services to support the ATC operation.

The authors in [81] present a survey and a DL-based model of real-time aircraft
tracking systems. This problem is a current challenging issue in the literature for several
reasons, e.g., the need for an accurate and complete data transfer from aviation to ground
systems. Conversely, aircraft tracking becomes difficult due to data loss caused by telemetry
or data acquisition. In this context, the authors present a survey of aircraft tracking systems,
categorizing works into three classes (i.e., mathematical, machine learning-based, and Deep
Learning-based). After that, a real-time Deep Learning-based Aircraft Tracking (DeepAT)
system that enables real-time tracking of an aircraft is introduced. DeepAT offers promising
results in the experiments performed to prevent data loss in different applications.

3.2. Applications of Convolutional Neural Networks (CNN) in ATM

In [82], the authors propose an advanced Bayesian Deep Learning method for aircraft
trajectory prediction considering weather impacts. Trajectory prediction is a challenge, but
a required aspect of the next-generation National Air Transportation System (NATS), and
reliable prediction models must consider uncertainties from various sources. Then, the
authors introduce a deterministic trajectory prediction model with classical deep learning
methods to handle both spatial and temporal information. Moreover, multiple layers are
used, e.g., CNN, RNN, and fully connected layers. The experiments showed a significant
reduction in prediction variance compared to existing methods.
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The authors in [83] propose a Hybrid Deep Neural Network (HDNN) for active
hazard identification of Auxiliary Power Units (APU) in civil aircraft. This method is
based on a multi-time window Convolutional Neural Network–Bidirectional Long Short-
Term Memory (CNN-BiLSTM) neural network, and integrates three models with different
time window sizes in parallel. Hence, this combination can automatically extract features
to represent the system state and learn the time-based patterns in the time series data.
The authors also state that this strategy has the most stable identification performance for
data with imbalanced samples in comparison to others present in the literature.

In [84], the authors introduce an automatic image-based aircraft defect detection using
a pre-trained Convolutional Neural Network (CNN) for feature extraction and the Support
Vector Machine (SVM) method with a linear kernel in the classification step. Throughout the
paper, the author highlights that this initiative intends to support regular maintenance
using visual and nondestructive Inspection (NDI) and a detailed description of the images
used and how the classification process works. The experiments showed that the proposed
method is accurate (96%) and presents high performance even in simple hardware.

The authors in [85] present a generalizable efficient tree-based matching algorithm to
build feature maps from meteorological datasets (i.e., wind, temperature, and convective
weather). This effort is focused on aviation efficiency and targets reliable 4D aircraft trajectory
prediction. In this sense, the authors propose an end-to-end convolutional recurrent neural
network that consists of a Long Short-Term Memory (LSTM) encoder network and a mixture
density LSTM decoder network. Then, to enable high-dimension weather representation
learning, the authors include convolutional layers into the pipeline. The case studies showed
that the learned filters successfully locate convective weather and generalize the weather-
related features using real operational data (flights from IAH to BOS).

Xie et al. [86] propose an end-to-end Sector Operation Complexity (SOC) learning
framework based on deep CNN. This study is motivated by the lack of approaches that
do not rely on hand-crafted factors. Indeed, these factors require specialized background
and might limit the evaluation performance of the model. Then, the authors propose a
Multichannel Traffic Scenario Image (MTSI) to represent the overall air traffic scenario
by splitting the airspace into a two-dimension grid map, extracting high-level features,
and learning the SOC pattern with the support of CNN. The experiments showed that the
proposed strategy can effectively extract traffic complexity information from MTSIs.

The authors in [87] introduce two flight delay prediction models based on CNN
employing fusion of meteorological data to predict flight delays. The first model is the
Dual-channel Convolutional Neural Network (DCNN) based on the ResNet, whereas the
second refers to the Squeeze and Excitation-Densely Connected Convolutional Network
(SE-DenseNet), which is a combination of SENet and DenseNet. The main idea is to rely
on flight and meteorological data fusion with efficient feature recalibration procedures.
The experiments demonstrated that the accuracy of the model can be enhanced by the pro-
posed strategy, and the two networks introduced in this paper can improve the prediction
process, reaching 92.1% and 93.19%.

The authors in [88] focus on generating individual-sensitive resolution advisories for
air traffic conflicts. The authors’ goal is to increase the acceptance of workload-alleviating
automation in air traffic control by adapting advisories to different controller strategies.
In fact, this personalization is reached using a CNN model trained on individual controller
data. A human-in-the-loop experiment was performed to generate datasets of conflict
geometries and controller resolutions, and the results demonstrated that this strategy can
predict command type, direction, and magnitude. An unfolding contribution is presented
in [89], focusing on performing an exploratory investigation into conformal and individual-
sensitive automation for Air Traffic Control (ATC) based on CNNs. There have been several
challenges regarding ATC augmentation and automation related to a lack of trust and
acceptance. The authors investigate automation from the personalization standpoint to
individual controllers. This approach relies on combining visual features and a tailored
CNN trained on individual controller data collection from human-in-the-loop simulations.
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The results achieved showed that the proposed approach can predict command type,
direction, and magnitude.

In [90], the authors present a hybrid RNN-CNN cascade architecture to predict C-
ATC capacity regulations for en-route traffic. The authors investigate three different Air
Traffic Management (ATM) frameworks to improve the cost-efficiency for flow and network
Management considering facing the detection of regulations. To accomplish this, two Deep
Learning models are combined, creating a different hybrid model. This combination comprises
a Recurrent Neural Network (RNN) and a Convolutional Neural Network (CNN) to extract
the overall airspace characteristics and process artificial images of the airspace configuration.
The experiments used historical data from two of the most regulated European regions and
showed that a cascade architecture presents average accuracy of 88.45%.

The authors in [91] propose a neural network structure combining CNN and LSTM
to classify hypersonic aircraft flight trajectories. In the past few years, there has been an
increase in interest in supersonic and hypersonic due to their high speed and complex
maneuvering mode. Thus, the classification process compensates for their shortcomings of
insensitivity to temporal and spatial characteristics and can effectively classify two kinds of
hypersonic glide vehicles. The classification experiments demonstrated that the proposed
model has good performance under the condition of introducing observation noise.

A CNN-based multi-feature predictive model (MF-CNN) is proposed in [92] to pre-
dict network-scale traffic flow with multiple spatiotemporal features and external factors.
In today’s air traffic system, traffic flow prediction is paramount for many applications,
e.g., traffic control and route guidance. Conversely, it is not simple to identify important
features using traditional data-driven traffic flow prediction models (e.g., periodicity and
weather). Therefore, the authors classify traffic features into temporal continuity as short-
term features and daily periodicity, and weekly periodicity as long-term features. After
that, they are mapped into three 2D spaces. In this process, CNNs learn high-level spa-
tiotemporal features and provide them to the logistic regression layer for final prediction.
The experiments showed that the MF-CNN model improves the predictive performance
compared to the five baseline models.

In [93], the authors expand previous work on thunderstorm forecasting [94] by ap-
plying CNNs to exploit the spatial characteristics embedded in weather data. In fact,
thunderstorms can disrupt Air Traffic Management (ATM) procedures, causing a complex
state of operation within the airspace system. Currently, it is still a challenge to have precise
forecasts, hardening strategic planning. Then, the authors focus on deep learning as it has
provided promising results in different scenarios. The learning task is formulated as a
binary-classification problem based on satellite data. The experiments compared different
Deep Learning (DL) architectures, e.g., a fully Convolutional Neural Network (FCN), a
CNN-based encoder–decoder, a UNet, a pyramid-scene parsing network (PSPNet), and
Multi-Layer Perceptron (MLP). The results indicate that CNN-based architectures improve
the performance of point-prediction models and can be used to increase the prediction lead
time of thunderstorms.

In [95], the authors present a novel processing paradigm to integrate multilingual
speech recognition for robust speech recognition in Air Traffic Control (ATC). This refers
to a single framework using an Acoustic Model (AM), a Pronunciation Model (PM), and
a Language Model (LM). The process works as follows: the AM converts ATC speech
into phoneme-based text sequences, the PM translates these sequences into a word-based
sequence, and the LM corrects both phonemes- and word-based errors in the decoding
results. The AM includes a CNN and an RNN considering the spatial and temporal
dependences of the speech features. The authors used large amounts of real Chinese and
English ATC recordings and achieved a 3.95% label error rate.

Rahman et al. [96] converted trajectory data into images, which size does not depend on
the number of planes, and developed a multi-label conflict resolution model called ACRnet.
This model uses a CNN to classify the obtained images. To solve aircraft conflicts, Air Traffic
Controllers (ATCos) interact with flight crews observing several parameters (e.g., positioning,



Aerospace 2023, 10, 358 12 of 30

speed, direction, and weather), hardening the task with the currently congested airspace.
In this sense, supportive systems can help ATCos in their tasks. The experiments conducted
demonstrated that ACRnet achieves high accuracy for two aircraft and three aircraft.

Liu et al. [97] introduce a recurrent 3D CNN (R-3DCNN) to consider the spatial and
temporal air traffic transitions comprehensively for Air Traffic Flow (ATF) prediction. The au-
thors employ a new data representation called Traffic Situation Graphics (TSG)—generated
by splitting the 3D earth space with fixed grid maps and flight levels—to illustrate traffic
flow situations in a single instant. Then, the 3D CNN and LSTM extract high-level features
(spatial and temporal) from a TSG sequence, assuming that inputs are determined by com-
bining the traffic situations on different flight levels with areas affected by other real-time
factors. The evaluation demonstrated that the proposed strategy can obtain accurate and
stable prediction results of ATF prediction with distribution on different flight levels.

The authors in [98] present an effort to identify flight states based on CNN. To this end,
a novel one-dimension CNN is introduced to automatically extract useful features from
the structural vibration of a recently fabricated self-sensing wing through wind-tunnel
experiments. In fact, it is challenging to identify the flight state from the complex vibration
signals with high accuracy. To accomplish this, the authors decomposed the obtained
signals into various sub-signals with different frequency bands and formed the best possible
combination for multichannel inputs of the CNN. The two case studies showed that the
proposed approach can achieve high identification accuracy and robustness, providing
new perspectives on self-awareness toward the next generation of intelligent air vehicles.

3.3. Applications of Recurrent Neural Networks (RNN) in ATM

The authors in [99] propose a short-term wind speed prediction framework for bridge
traffic control under strong winds. The goal is to improve the estimation accuracy for
the timeframe of traffic control during a typhoon. The authors use a hybrid modeling of
wind speed at the bridge and a Time-Shifted Data Correction (TSDC) method. The hybrid
modeling considers two available data types (i.e., structural health monitoring and regional
specialized meteorological center—RSMC) using training features based on the maximum
sustained winds of a typhoon. Throughout the paper, a graphical and in-depth description
of all steps is presented and, as a numerical example, typhoons from 2020 were used as
test data to demonstrate the improvement in prediction performance via the use of hybrid
modeling and the TSDC method. This initiative describes an approach that can be used in
several aspects of Air Traffic Management (ATM) in future works.

The authors in [100] introduce a four-dimensional flight trajectory prediction model
based on a Long Short-Term Memory (LSTM) network to maintain the long-term features
and manage to predict accurate trajectories. Several factors contribute to stable and safe air
traffic, especially during the climbing and descending phases. In this sense, technologies
and equipment must present precise information in each flight phase to ensure fluidity and
safety. Conversely, strong external interference or blind zones present potential risks to these
operations. Throughout the paper, several aspects are described in detail, and the authors
adopt a clear and graphical approach to introduce their contributions. Finally, the experiments
conducted showed that the proposed system is able to provide timely decision support.

Ref. [101] proposes a combination of convolutional layers into Long Short-Time Mem-
ory (LSTM) cells to predict the aircraft trajectory based on the weather condition and flight
plan. Convective weather avoidance is vital in safe operations, and it is also a primary
objective of the next-generation air traffic management system. Therefore, the authors
use history flight track data, the last on-file flight plan, and the time-dependent convec-
tive weather map over the period from 1 November 2018 to 5 February 2019. The flights
investigated had JFK-LAX as the city pair. The experiments conducted showed that the
proposed approach can reduce the deviation compared to the last on-file flight plan in
47.0% of the predicted flight tracks. Similarly, the authors in [102] propose a strategy to
predict Air Traffic Flow and Capacity Management (ATFCM) weather regulations using a
time-distributed Recurrent Neural Network.
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In [103], the authors propose a trajectory prediction model based on a dual-self-
attentive (DSA)-temporal convolutional network (TCN)-bidirectional gated recurrent unit
(BiGRU) neural network. The main idea is that TCN provides highly stable training,
high parallelism, and a flexible perceptual domain, whereas the self-attentive mechanism
can focus on features that contribute the most to the output. Then, the BiGRU network
discovers connections between features and outputs of the trajectory sequence, optimized
by a Bayesian algorithm. Experiments demonstrated that the DSA-TCN-BiGRU model
based on Bayesian hyperparameter optimization outperforms other models present in the
literature. Similarly, Shi et al. [104] propose a flight trajectory prediction model based on a
Long Short-Term Memory (LSTM) network. This approach can accurately predict flight
trajectories in both 3D and 4D spaces. The authors also point out that multi-modal data
(e.g., audio and video) can be included in the process in future works.

The authors propose a 4D trajectory prediction hybrid architecture based on a combi-
nation of Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM)
in [105]. Considering a 4D trajectory as a multi-dimensional time series with plentiful
spatial-temporal features with a high degree of complexity and uncertainty, providing
accurate solutions is complex. In the training process, the authors use real Automatic
Dependent Surveillance-Broadcast (ADS-B) historical trajectory data and compare the pro-
posed method with a single LSTM model and Feed-Forward (FF) model on the same data
set. Experiments showed that the trajectory prediction accuracy of the proposed strategy is
superior to a single model.

In [106], the authors use an improved GRU network to study the time series of traffic
flows. The LSTM short-term traffic flow prediction based on the flow series is investigated
as a more complex version of the GRU model in this case. In this sense, an improved GRU
with bidirectional positive and negative feedback (called the Bi-GRU) is used to complete
the short-term traffic flow prediction leveraged by the Rectified Adaptive (RAdam) model in
the optimization process. Finally, the experiment conducted demonstrated the effectiveness
of the proposed method regarding short-term traffic flow prediction. This contribution can
be further extended and applied to air transportation in different flight phases and regions.

The authors in [107] propose a model based on the Social Long Short-Term Memory
(S-LSTM) network to predict multi-aircraft trajectory. Facing trajectory prediction as a
paramount feature in future operations, several efforts have been made to enhance such
estimations. Therefore, the authors focus on building a model for each aircraft and use
a pooling layer to integrate the hidden states of the associated aircraft. The experiments
considered aircraft trajectories in the Northern California terminal area as the experimen-
tal data and showed that the proposed S-LSTM model presents fewer prediction errors
compared with the mainstream trajectory prediction models. Moreover, the authors also
emphasize the importance of considering aircraft interaction as a factor in predicting
trajectories accurately.

In [108], the authors introduce the Airport Traffic Flow Prediction Network (ATFPNet),
a DL-based framework to capture spatial-temporal dependencies of the historical airport
traffic flow in multiple-step situational arrival flow prediction. To accomplish this, the
authors rely on a special semantic graph built on the flight schedule to represent the
airport network. Moreover, the graph convolution operator and the GRU are combined to
extract transition patterns of airport traffic flow. The experiments used a real-world airport
traffic flow dataset and showed that the ATFPNet outperforms other baselines on different
prediction horizons, achieving up to a 17% MAE improvement.

Zhao et al. [109] introduce a Deep Long Short-Term Memory (D-LSTM) model for
aircraft trajectory prediction tailored to complex flight environments. In Trajectory-Based
Operations (TBO), several predictive capabilities are necessary for safe and efficient opera-
tions. Conversely, trajectory prediction is a major challenge and airspace complexity can
compromise estimation accuracy. In fact, the current state-of-the-art forecasting methods
are difficult to be applied in actual operation and management. Therefore, the authors use
multi-dimensional features of aircraft trajectory, testing the proposed strategy with real
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flight data (ADS-B). The experiments showed that this strategy presents prediction accuracy
more than existing methods in different flight phases. In addition to this contribution, the
authors in [110] use Recurrent Neural Networks (RNN) to predict air traffic density in ATC
sectors, while the authors in [111] propose a strategy to predict air traffic congested areas
using LSTM networks.

Ref. [112] studies the problem of estimating aircraft onboard parameters using ground
surveillance available parameters. The authors adopt an LSTM model and Flight Data Records
to estimate target parameters upon three aspects: fuel flow rate, flap configuration, and landing
gear position. In fact, this effort fosters ATM awareness regarding aircraft behaviors, enabling
the evaluation of system performance in terms of safety and efficiency. Future works are
also pointed out by the authors, e.g., enhanced flap and landing gear setting prediction with
airspeed information. The insights of this paper highlights that predictive capabilities related
to aircraft performance can support informed decisions by ATC.

3.4. Applications of Generative Adversarial Networks (GANs) in ATM

Wu et al. [113] propose a long-term 4D trajectory prediction model based on Generative
Adversarial Network (GAN). The authors use three deep generative models based on one-
dimensional convolution neural network (Conv1D-GAN), a two-dimensional convolution
neural network (Conv2D-GAN), and long short-term memory neural network (LSTM-
GAN). Although 4D trajectory prediction is a capability required for future ATM systems,
it represents a complex problem due to several factors. Using this model combination, this
paper trains and tests a predictive solution using historical 4D trajectory data from Beijing to
Chengdu, China. The experiments conducted showed that the proposed strategy presents
promising results and that the Conv1D-GAN is the most suitable generative adversarial
network for long-term aircraft trajectory prediction.

In [114], a Conditional Generative Adversarial Network (CGAN) approach is proposed
for weather-related aircraft trajectory prediction problems. Furthermore, the generator
network focuses on weather feature extraction and includes two convolutional layers.
Then, the features are provided to a single-layer long short-term network to output the
generated trajectory. The discriminator network tries to discriminate the inputs from the
ground truth dataset and the generated trajectory. The experiments were conducted based
on the data obtained from Sherlock Data Warehouse (SDW), and the results suggest that
the proposed strategy outperforms other proposals present in the literature.

Aksoy et al. [115] present a hybrid methodology to generalize the flight trajectories
and decide whether they are abnormal or not. The first approach relies on considering
the time-based features of the trajectories. This is composed of LSTM autoencoders to
rapidly predict the class of the flight, inherently considering the time-based features of a
flight trajectory. The second approach on a more pattern strategy through a Generative
Adversarial Network (GAN), which generates realistic samples. Flight trajectories are dif-
ferent even when following patterns that are flown previously and optimized for different
conditions. These patterns can be influenced by several factors (e.g., airspace utilization,
controllers’ cognitive complexity, weather, and NOTAMs). The obtained results showed
that this approach can classify anomalies in trajectories.

The authors in [116] consider multiple operational aircraft taxi-speed factors (e.g., sur-
rounding traffic on the ground and target take-off time) and adopt the Generative Adversarial
Imitation Learning (GAIL) algorithm for modeling. The main goal is to enable the model to
learn and reproduce the ground movement patterns in a real-world dataset under different
circumstances. The contributions of this research are very valuable to the ATM community
since it is difficult to predict the spatio-temporal component of aircraft-taxi trajectory. Fur-
thermore, this initiative supports the ATM decision-making process. The proposed strategy
outperforms all the baseline models by a significant margin. For example, it achieves up to
97.1% for arrivals and 88.3% for departures concerning Spatial Completion (SC).

In [117], the authors develop a method for using Generative Adversarial Networks
(GANs) to generate condition monitoring data of aircraft engines. To accomplish this, an
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algorithm for generating monitoring data to extend a sample of aircraft engine condition
monitoring data is proposed. Monitoring costs and difficulties represent an obstacle in today’s
operations since little condition monitoring data exists. This hardens data-driven approaches
to aircraft engine maintenance. The experiments conducted showed that, based on the
condition monitoring parameters recorded for a CF6-80C2A5 engine, the proposed strategy
was able to generate data within a reasonable range. A complementary approach regarding
data generation is presented in [118], in which the authors evaluated the performance of
synthetically generated snow radar images based on modified cycle-consistent adversarial
networks. In fact, this approach can be used in different ATM applications.

Hu et al. [119] propose a short-term aircraft Trajectory Prediction (TP) framework
called TPGAN. The primary goal of this effort is to predict multi-horizon trajectories in a
single step using the Conditional Generative Adversarial Network (CGAN). Regarding the
trajectory prediction capabilities, existing works usually perform the multi-horizon TP
task iteratively, suffering from error accumulation problems. The authors employ the
generator to output the predictions, whereas the discriminator learns the discriminative
features between ground truth and predictions and applies the generative adversarial
training strategy to optimize the proposed framework. The experiments used a dataset
collected from real-world ATC systems and demonstrated that the proposed strategy
achieves significant performance improvements compared to an LSTM-based baseline.

Guo et al. [120] present a novel anomaly detection model based on Improved Gen-
erative Adversarial Networks and long short-term memory networks (IGAN-LSTM) to
detect anomalies in ADS-B Systems. To accomplish this, IGAN enhances the generator
architecture by upgrading the commonly used encoder architecture to encoder-decoder-
encoder architecture. Then, encoding losses are used to determine whether a data sample
is anomalous or not, and LSTM networks are used to model ADS-B data with temporal
dependence. The experiments performed showed that the proposed approach outperforms
other baseline methods from the literature.

Huang et al. [121] propose a novel method called Improved Wasserstein Skip-Connection
GAN (IWGAN). The main goal is to integrate the Wasserstein-GAN (WGAN) and
SkipGANomaly models to distinguish normal and abnormal images, which is called the Im-
proved Wasserstein Skip-Connection GAN (IWGAN). The challenge of not having relatively
sufficient datasets in the airport field hardens the training of DL models in different ATM
applications. Since GANs can learn the latent vector space of all images, the authors adopt a
GAN variant with autoencoders to create a hybrid model for detecting anomalies and hazards
in the airport environment. The experiments showed that the proposed model is efficient
in solving the problem faced in this research. In addition to this initiative, Zhang et al. [122]
propose an image-based aircraft type recognition approach based on Conditional Generative
Adversarial Networks (GANs).

The authors in [123] focus on evaluating aircraft trajectory generation methods and
propose a common baseline to compare literature and new methods to generate air traffic
trajectories. In fact, state-of-the-art methods to generate individual trajectories can lack
realism concerning common situations implemented by ATCos. Conversely, data-driven
approaches excel at imitating operational practice but may not be simple to implement
due to aircraft performance limitations. Therefore, the authors present an extensive set of
metrics to evaluate the quality of generated trajectories and point out as future directions
the use of this framework to objectively assess trajectory generation performance (e.g., using
GANs). An effort correlated with this approach is presented in [124], in which the authors
explore the use of generative data models to learn real approach flight path probability
distributions through the use of GANs.

Lang et al. [125] propose a fault prediction of aircraft engine based on data aug-
mentation technology. Predicting the Remaining Useful Life (RUL) of the equipment by
constructing models using historical data is challenging since the data is difficult to obtain.
One possible way to solve this problem is to develop models based on data augmentation.
To accomplish this, the authors use a GAN to study the distribution of the original dataset
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and to generate a new training set. The original and the new datasets are combined to train
a Convolutional Neural Network and Long Short-Term Memory Network (CNN-LSTM)
prediction model. The case studies demonstrate that the proposed GAN-CNN-LSTM model
can effectively predict the RUL compared with the existing methods.

3.5. Applications of Autoencoders in ATM

In [126], the authors propose Deep Learning (DL) techniques to model Air Traffic
Controllers’ (ATCos) reactions in resolving conflicts. The authors focus on the Air Traffic
Controllers’ (ATCos) reaction prediction problem for Conflict Detection and Resolution
(CD&R). DL methods that can model ATCOs’ timely reactions are presented and evaluated
in real-world data sets. Throughout the paper, the authors describe all contributions in a
graphical and in-depth manner. The experiments conducted showed that the proposed
approach presents very high accuracy in such a detection problem. Finally, multiple future
directions are pointed out in this research. In fact, the authors in [127] present a correlated
contribution but propose a method to analyze flight trajectories, detect unusual flight behav-
iors, and infer ATC actions. The authors in [128] focus on evaluating pilots’ fatigue status
using the Deep Contractive Autoencoder Network. The authors propose a fatigue evalua-
tion index to compute the power spectrum of relative rhythms from electroencephalogram
(EEG) signals.

A novel multivariate anomaly detection model called Contextual Auto-Encoder (CAE)
is proposed in [129]. The main goal is to use the baseline of a regular LSTM-based au-
toencoder combined with several decoders to gather data on a specific flight phase (e.g.,
climbing, cruising, or descending) in training. Although ADS-B supports the tracking of
the high number of aircraft in the air, it also introduces cybersecurity concerns that must
be mitigated. To tackle this problem, a dataset was created using real-life anomalies and
realistically crafted trajectory modifications, with which the CAE, alongside three anomaly
detection models from the literature, were evaluated. Experimental results showed that
CAE achieves better results in both accuracy and speed of detection. In addition to this con-
tribution, the authors in [130] focus on focus on detecting anomalies in real-time for flight
testing. To this end, the authors propose an approach based on fine-tuned autoencoder to
extract generic underlying features, followed by a stacked LSTM.

Ref. [131] proposes a novel engine fault detection method based on original Aircraft
Communications Addressing and Reporting System (ACARS) data is proposed. The au-
thors divide all variables into separated groups according to their correlations and use
an improved convolutional denoising autoencoder to extract the features of each group.
All extracted features are then fused to form feature vectors to enable fault sample iden-
tification. The evaluation process showed that this method is efficient in fault detection
and robustness while maintaining low computational and time costs. Furthermore, Fer-
nandez et al. [132] performed descriptive and predictive analyses to detect anomalies,
i.e., Flight Data Monitoring (FDM) unknown hazards, during the approach phase.

Corrado et al. [133] introduce a novel framework based on DL methods using autoen-
coders to identify anomalies in terminal airspace operations. The primary goal is to leverage
historical aircraft trajectory data combined with weather and traffic metrics to build an
anomaly detection capability. To accomplish this, data from multiple sources (e.g., aircraft
trajectory, weather, traffic/congestion) is used to train the models and demonstrated on
six months of arriving flight data collected for San Francisco International Airport that the
proposed strategy has the potential to aid air traffic controllers.

In [134], a new deep stacked autoencoders networks method is proposed to predict
flight delay based on the relationship of time and space. In fact, the stacked autoencoder
approach derives the characteristics of flight delay information from massive data and
optimizes all the networks’ parameters with the backpropagation method. Throughout the
article, the authors describe the contributions and the results achieved in detail (e.g., for
different periods in the future). Results demonstrate that the prediction accuracy with deep
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stacked autoencoders is above 90%. Finally, several future works can be identified from
this initiative based on the use of autoencoders to improve prediction performance.

Wu et al. [135] design a feature association algorithm to solve the ATM systems
security situation awareness via a Deep-Related Sparse Autoencoder (DRSAE) model.
In safe and efficient operations, it is pivotal that security situational awareness information
is provided to the air traffic management (ATM) system with an integrated air-ground
structure. However, there are problems that can impact the process of situation awareness
feature extraction. In this sense, the authors design and compare the DRSAE model with
other feature extraction models (e.g., Principal Component Analysis—PCA, Autoencoder—
AE, and Sparse Autoencoder—SAE). The results obtained showed that the DRSAE model
is robust in feature extraction of the ATM system, presenting strong expression ability.

The authors in [136] propose a Convolutional Variational Auto-Encoder (CVAE) for
anomaly detection in high-dimensional time-series flight data. Currently, the current
approach for identifying vulnerabilities in NAS operations leverages domain expertise,
which works well when the system has a well-defined operating condition. Conversely,
highly complex scenarios can be faced in the airspace, and state-of-the-art machine learning
models usually rely on supervised learning. In many cases, labeling data requires spe-
cialized expertise that is time-consuming and, therefore, largely impractical. Motivated
by these challenges, the authors validate the proposed approach on Yahoo’s benchmark
data and on a case study of identifying anomalies in commercial flights’ take-offs. The re-
sults showed that CVAE outperforms both classic and deep learning-based approaches in
detecting anomalies.

Zeng et al. [137] and Olive et al. [138] focus on the use of autoencoders to cluster
trajectories. The former work proposes a trajectory clustering method based on Deep
Autoencoder (DAE) and Gaussian mixture model (GMM) to identify the prevailing traf-
fic flow patterns in the terminal airspace, whereas the latter explores the application of
deep trajectory clustering based on autoencoders to the problem of flow identification.
Both efforts face a challenging problem for ATM systems since trajectories might change
substantially if unexpected events happen (e.g., weather-related events). In addition to this
effort, the authors in [139] propose a framework for predicting air traffic situations as a
sequence of images using an autoencoder with convolutional Long Short-Term Memory
(ConvLSTM).

Table 1. Comparison of works that use Deep Learning (DL) in ATM solutions.

ATC System
Flight

Solution
DL Application

Airspace
KPI

ATCo
Model Paper Year

ATM
Area

ATS ASM ATFM S M Arc Val Dp Sft Ef Sus HF Aug

Malekzadeh et al. [84] 2017 EAI

Liu et al. [85] 2018 OAPV

Yang et al. [92] 2019 AATS

Liu et al. [97] 2019 AATS

Chen et al. [98] 2019 EAI

Van et al. [88] 2019 AATS

Qu et al. [87] 2020 HPAO

Van et al. [89] 2020 AATS

Lin et al. [95] 2020 AATS

Pang et al. [82] 2021 OAPV

Zeng et al. [91] 2021 OAPV

Xie et al. [86] 2021 AATS

Di et al. [83] 2022 EAI

Mas et al. [90] 2022 AATS

Jardines et al. [93] 2022 AATS

CNN

Rahman et al. [96] 2022 AATS
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Table 1. Cont.

ATC System
Flight

Solution
DL Application

Airspace
KPI

ATCo
Model Paper Year

ATM
Area

ATS ASM ATFM S M Arc Val Dp Sft Ef Sus HF Aug

Horiguchi et al. [68] 2017 HPAO

Kistan et al. [74] 2018 AATS

Boggavarapu
et al. [77] 2019 HPAO

Chakrabarty et al. [73] 2019 HPAO

Mollinga et al. [62] 2020 AATS

Wang et al. [66] 2020 AATS

Mas et al. [72] 2020 AATS

Yazdi et al. [71] 2020 HPAO

Jimenez et al. [79] 2020 OAPV

Cheevachaipimol
et al. [67] 2021 HPAO

Bala et al. [69] 2021 HPAO

Dong et al. [78] 2021 EAI

Gholami et al. [70] 2022 HPAO

Tan et al. [75] 2022 AATS

Ivanoska et al. [76] 2022 HPAO

Sangeetha et al. [80] 2022 AATS

Çakıcı et al. [81] 2022 OAPV

DNN

Perez et al. [63] 2022 AATS

Shi et al. [104] 2018 OAPV

Pang et al. [101] 2019 OAPV

Zhao et al. [109] 2019 OAPV

Shi et al. [100] 2020 OAPV

Ma et al. [105] 2020 OAPV

Jarry et al. [112] 2020 EAI

Shi et al. [111] 2021 AATS

Shu et al. [106] 2021 AATS

Xu et al. [107] 2021 OAPV

Yan et al. [108] 2021 AATS

Mas et al. [102] 2021 AATS

Lim et al. [99] 2022 AATS

Huang et al. [103] 2022 OAPV

RNN

Asirvadam et al. [110] 2022 AATS

Guo et al. [120] 2021 OAPV

Olive et al. [123] 2021 OAPV

Lang et al. [125] 2021 EAI

Jarry et al. [124] 2021 OAPV

Wu et al. [113] 2022 OAPV

Hu et al. [119] 2022 OAPV

GAN

Huang et al. [121] 2023 AATS
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Table 1. Cont.

ATC System
Flight

Solution
DL Application

Airspace
KPI

ATCo
Model Paper Year

ATM
Area

ATS ASM ATFM S M Arc Val Dp Sft Ef Sus HF Aug

Olive et al. [127] 2018 AATS

Chen et al. [134] 2018 HPAO

Xuyun et al. [131] 2019 EAI

Fernandez et al. [132] 2019 EAI

Que et al. [130] 2019 EAI

Wu et al. [128] 2019 AATS

Memarzadeh
et al. [136] 2020 Aircraft

Olive et al. [138] 2020 OAPV

Corrado et al. [133] 2021 AATS

Zeng et al. [137] 2021 OAPV

Kim et al. [139] 2021 AATS

Bastas et al. [126] 2022 AATS

Chevrot et al. [129] 2022 OAPV

AE

Wu et al. [135] 2022 AATS

3.6. Further Insights: Opportunities

This section presents an analysis of the works reviewed. First, a discussion on the
publications and their respective keywords is conducted. Then, a granular analysis of the
future direction of different ATM solutions is presented.

3.7. Paper Count and Keywords

In the past few years, several papers have been published in the context of DL and
ATM. This research focuses on presenting state-of-the-art solutions published in the past
few years. Figures 8 and 9 illustrate the paper count by year and by ATM area. Most of
the papers analyzed have been published in the past few years in high-impact venues.
In fact, the trend in the data highlights that we can expect new solutions in the next few
years. Moreover, AATS and OAPV solutions are the topics of most of the papers published.
However, EAI and HPAO solutions are also present.

Although there are clear categories for these solutions, they focus on different problems.
Thus, Figure 10 illustrates the word cloud produced by the combination of keywords of
all papers analyzed. Terms such as “Deep Learning”, “prediction”, and “trajectory” are
clearly present in several papers. Some other words such as “speech” and “DCNN” are
only present in a few articles.

Figure 8. Paper count by year.
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Figure 9. Paper count by ATM solution areas.

Figure 10. Word cloud of keywords.

3.8. ATM Solutions

The papers reviewed have been categorized according to their main contribution.
Here, we group works by ATM areas and present their future direction, either highlighted
by the authors or gathered from the text. These insights are listed in Table 2.

Several future directions are identified for OAPV, including the optimization of models,
including more features, temporal dependencies, and applications in different domains.
These are the direct unfolding of the works analyzed, and these directions highlight that
robust and accurate trajectory-based solutions can benefit from these initiatives.

Regarding AATS, several future directions are identified. Conversely, some aspects
are pointed out by different authors, e.g., the consideration of the airspace state (e.g., sector
density) to optimize model performance and the use of realistic scenarios to simplify future
deployments. The efforts made toward fatigue and workload detection and estimation are
applicable to several ATM systems. Data diversity is also highlighted as a primary goal for
future works. Finally, disruptive events are also suggested for future endeavors.

Moreover, important insights are presented in the reviewed HPAO papers, and the use
of more data and further optimization of models are described in most of them as future
directions. Some mention their applications in different domains (e.g., aircraft maintenance),
and there is a clear demand for contributions in rare and disruptive conditions (e.g., weather).
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Finally, EAI works emphasize the need for more data, cross-domain applications, and
further development of the proposed models. The consideration of complexity factors (e.g.,
sector density) is also a concern.

Table 2. Future directions for different ATM areas.

ATM
Area Paper Year Model Future Directions

Yang et al. [92] 2019 CNN Flow prediction in severe and rare weather conditions

Liu et al. [97] 2019 CNN Application of proposal in a real scenario

Van et al. [88] 2019 CNN
Automatic generation of training data

consisting of solution space diagram (SSD)
images and conflict resolutions

Xie et al. [86] 2021 CNN Application of visual-based techniques in other ATM solutions

Jardines et al. [93] 2022 CNN Investigate temporal relationships in weather data

Rahman et al. [96] 2022 CNN Inclusion of airspace information to improve conflict resolution

Wang et al. [66] 2020 DNN Application of different DL methods to improve performance

Tan et al. [75] 2022 DNN Use of Deep Active Learning in other ATM solutions

Perez et al. [63] 2022 DNN Application of proposal in different sector types

Shi et al. [111] 2021 RNN Quantification of the uncertainty in the predictions

Shu et al. [106] 2021 RNN Consideration of special events (e.g., weather and
large activities)

Yan et al. [108] 2021 RNN
Use of other factors to improve prediction accuracy

(e.g., weather information, ATC information,
the influence of international flights, and dynamic

traffic movements on the network.

Mas et al. [102] 2021 RNN Implementation of visual framework to apply theoretical
regulations and create feedback to re-train the existing model.

Lim et al. [99] 2022 RNN Analysis of severe weather impacts on airports

Asirvadam
et al. [110] 2022 RNN Airspace optimization considering workload,

weather and unplanned traffic

Zhang et al. [122] 2018 GAN Unsupervised classification method to remove the need for
data labeled with type information

Rahnemoonfar
et al. [118] 2020 GAN Simulation of other ATM systems (e.g., audio)

Huang et al. [121] 2023 GAN Use of attention model mechanisms

Corrado et al. [133] 2021 AE Hyperparameter Optimization

Kim et al. [139] 2021 AE Inclusion of altitude in the proposed method

Wu et al. [135] 2022 AE Use of more advanced classifiers

Van et al. [89] 2020 CNN Model Optimization

Lin et al. [95] 2020 CNN Increase data diversity

Mas et al. [90] 2022 CNN Inclusion of additional input features to improve performance

Mollinga et al. [62] 2020 DNN Inclusion of stochastic variables like weather,
addition of waypoints, and change the simulation approach

Mas et al. [72] 2020 DNN Use of an hybrid DL model

Sangeetha
et al. [80] 2022 DNN Consideration of rare events (e.g., weather-based events)

Pham et al. [116] 2021 GAN Implementation of a multi-agent environment

Olive et al. [127] 2018 AE Consideration of more evolved structures of networks

Wu et al. [128] 2019 AE Application of similar strategies considering ATC professionals

AATS

Bastas et al. [126] 2022 AE Improvements of predictions regarding
low-level ATCOs’ conflict resolution actions

Liu et al. [85] 2018 CNN Extension of proposed algorithm to more features (e.g.,
ATM initiatives)

Pang et al. [82] 2021 CNN Consideration of rare events (e.g., weather-based events)

Zeng et al. [91] 2021 CNN Approaches to handle loss of
information from data normalization.

Jimenez et al. [79] 2020 DNN Use of a more extensive dataset

Çakıcı et al. [81] 2022 DNN Data sharing approaches considering aircraft and ATC

Shi et al. [104] 2018 RNN Use of multi-modal data, including images, audios and videos

OAPV

Pang et al. [101] 2019 RNN Consideration of rare events (e.g., weather-based events)
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Table 2. Cont.

ATM
Area Paper Year Model Future Directions

Zhao et al. [109] 2019 RNN Application of D-LSTM to trajectory
information prediction in high density airspace

Shi et al. [100] 2020 RNN Inclusion of of multi-modal data
OAPV

Ma et al. [105] 2020 RNN Models for long-term 4D trajectory prediction

Xu et al. [107] 2021 RNN Integration of meteorological conditions to achieve
more accurate and stable trajectory prediction

Huang et al. [103] 2022 RNN Models that use the combination of weather, control, and
other uncertainties.

Pang et al. [114] 2020 GAN Development of models to improve the prediction performance

Aksoy et al. [115] 2021 GAN Consideration of rare events (e.g., weather-based events)

Guo et al. [120] 2021 GAN Inclusion of new features to to further
improve the performance of the proposed model

Olive et al. [123] 2021 GAN Application of the proposed method to
compare data-driven trajectory generation models

Jarry et al. [124] 2021 GAN Analysis of tailored network architectures and learning

Wu et al. [113] 2022 GAN Application of the propose method for short-term
trajectory prediction and air traffic state estimation.

Hu et al. [119] 2022 GAN To adopt this approach in other ATM solutions

Olive et al. [138] 2020 AE Impact assess of clustering losses on the performance of
reconstruction-based anomaly detection methods.

Zeng et al. [137] 2021 AE Use of the proposed model to assist trajectory
prediction solutions

OAPV

Chevrot et al. [129] 2022 AE To adopt this approach in other domains

Malekzadeh et al.
[84] 2017 CNN Use of other DNN architecture for this

application

Chen et al. [98] 2019 CNN Consideration of rare events (e.g., weather-based events)

Di et al. [83] 2022 CNN Consideration of rare events (e.g., weather-based events)

Dong et al. [78] 2021 DNN Data Collection, Labeling, and transfer Learning

Jarry et al. [112] 2020 RNN Enhancing flap and landing
gear setting prediction with airspeed information

Fu et al. [117] 2019 GAN To adopt this approach in other ATM solutions

Lang et al. [125] 2021 GAN To adopt this approach in other ATM solutions

Xuyun et al. [131] 2019 AE Use of more com prehensive fault cases to locate the
fault source

Fernandez
et al. [132] 2019 AE Consideration of other airspace aspects (e.g., sector desity)

EAI

Que et al. [130] 2019 AE Automate rapid development of efficient
anomaly detection on FPGAs for various applications

Qu et al. [87] 2020 CNN Use of new models to improve results

Horiguchi
et al. [68] 2017 DNN Inclusion of reservation data in the analysis

Boggavarapu
et al. [77] 2019 DNN Use of more airport data

Chakrabarty
et al. [73] 2019 DNN Use of advanced preprocessing and sampling techniques

Yazdi et al. [71] 2020 DNN Consideration of rare events (e.g., weather-based events)

Cheevachaipimol
et al. [67] 2021 DNN Use of other methods to handle imbalanced data

Bala et al. [69] 2021 DNN Use of DNN in aircraft maintenance

Gholami et al. [70] 2022 DNN Consideration of rare events (e.g., weather-based events)

Ivanoska et al. [76] 2022 DNN Consideration of other aspects in flights (e.g., aircraft usage)

HPAO

Chen et al. [134] 2018 AE Consideration of rare events (e.g., weather-based events)

4. Open Challenges

This Section discusses several possible directions for future works based on the insights
of this review. These open challenges are presented from two perspectives: Deep Learning
(DL) applications and ATM solutions.

4.1. Deep Learning (DL) Applications

• Interpretability: Understanding the decision made by the DL models is paramount
for safe and efficient operations. Hence, the proposal of strategies to explain the
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decision made in the full ATM system spectrum is a challenging but necessary step
for future operations;

• Sustainability: From all works analyzed in this research, none of them are focused on
sustainability services for future ATM systems. The use of DL techniques to foster the
development of a new strategy is critical for future operations;

• Cybersecurity: Data are shared throughout the airspace systems in today’s operations,
and future applications will require even more data. In this sense, it is critical that new
solutions use advanced techniques (e.g., DL) to detect and mitigate cybersecurity threats;

• Urban Air Mobility (UAM): Several of the points discussed in this research are also
applicable to new transportation paradigms, e.g., UAM. For example, DL can enable
the development of trajectory-based solutions tailored to the UAM environment.
In fact, lessons learned in the National Airspace System (NAS) can provide insightful
directions for UAM applications [140,141];

• Deployment: Few of the works reviewed in this research focus on the deployment of such
solutions. Besides the complexity that developing a DL application involves, deployment
is also challenging and requires coordination with several stakeholders. Indeed, solutions
to simplify the deployment of such methods are part of the open challenges.

4.2. ATM Solutions

Figure 11 illustrates the open challenges in ATM solutions and directions to apply ad-
vanced methods to enhance the airspace operation. All challenges identified are discussed
in detail based on their respective classification.

Figure 11. Open challenges: ATM solutions.

4.2.1. Advanced Air Traffic Services (AATS)

• Temporal effects: Throughout the daily operations, the airspace state changes several
times. However, there is an intrinsic temporal dependence in the evolution of the
airspace state. In this sense, initiatives can focus on identifying temporal connections
to improve the complexity prediction capabilities;

• Integrated Analysis: The complex airspace ecosystem entails various systems operat-
ing simultaneously. In this sense, an open challenge refers to using global resources
and information to understand how complexity is impacted and, ultimately, develop
more accurate complexity-based solutions;

• Disruption Management: The consideration of rare but disruptive events is vital in
the assessment and development of new complexity-based solutions. Therefore, new
capabilities for predicting rare events are part of the future ATM solutions portfolio.

• Data Collection: Building up datasets for training models is a complex challenge due
to several factors. The development of new techniques to easily collect data without
compromising the operation will produce valuable resources for new applications;
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• Integrated Augmentation: Although some initiatives focus on supporting profes-
sionals in the ATM system, they are commonly separated and not part of the same
portfolio. The development of a scalable and integrated approach to be used as a
baseline across the ATM system is an open challenge;

• Training Frameworks: The inclusion of new technologies into the National Airspace
System (NAS) requires several phases of testing and certification. In this sense, propos-
ing new training approaches to simplify the use of these new technologies is necessary.

4.2.2. High-Performing Airport Operations (HPAO)

• Airport Data Collection: Although following the same rules, airports operate dif-
ferently due to several factors (e.g., size, number of gates, and number of flights).
Collecting internal data to improve the airport performance is a pillar for future
solutions, and the development of a new data collection strategy is essential;

• Data Sampling: The current difficulty faced in collecting the data demands methods
to generate realistic samples. In this case, there is a need for new sampling methods
that cover the characteristics of the airport operation;

• Disruption Management: The impacts of disruption in delays is difficult to predict
due to the minimal number of occurrences in history. Future solutions are required to
handle this imbalanced environment and accurately predict such events.

4.2.3. ATM Operations, Architecture, Performance, and Validation (OAPV)

• New Aircraft Concepts: There are some companies working on the production of
supersonic aircraft that will be integrated into the NAS in the near future. Then, new
trajectory prediction services are required to attend to the new flight configurations
and capabilities (both in terms of performance and regulations);

• Multi-Modal Analysis: Trajectory-based solutions are integrated into a complex
ecosystem composed of several subsystems. In this sense, using data from different
sources and configurations (e.g., audio and video) represents another open challenge;

• Disruption Management: Rare events are difficult to predict accurately. The develop-
ment of new methods capable of estimating when disruptive events happen and how
they affect the aircraft trajectory needs investigation.

4.2.4. Enabling Aviation Infrastructure (EAI)

• Data Collection: For several reasons, collecting data from aircraft (e.g., engines) is a
complex task. Therefore, the development of new software and hardware technologies
for data collection will improve the results obtained by the existing and future ATM
solutions;

• Integrated Health Analysis: The complex ecosystem composed of several subsys-
tems that surround the aircraft can provide information for in-flight decision-making.
In this sense, integrating the in-flight solutions with the ecosystem can yield valuable
resources and is in the scope of future works;

• New Aircraft Concepts: As new aircraft operate in the NAS (e.g., supersonic aircraft),
flight parameters are expected to differ. Then, adjusting the existing solutions for such
an environment is pivotal for efficient operations.

4.2.5. Integrated Solutions (IS)

• Collaborative Decision: Considering that local actions can change the global airspace
mesh, solutions to enable safe, rapid, and efficient collaborative decision-making
represent a significant advancement in today’s technologies. However, reaching this
flawless collaboration is not simple, as it represents a research field in ATM systems.

• DL Orchestration: The use of DL solutions in several areas of ATC can improve efficiency.
However, enabling these separated entities to communicate and share resources (e.g.,
parameters and outputs) can provide a smooth integration experience. However, the
orchestration of such systems is complex and represents an open challenge.
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• Knowledge sharing: Data belonging to different organizations is not always shared
due to several reasons (e.g., privacy). Then, new privacy-preserving techniques
(e.g., privacy-preserving transfer learning) can overcome this obstacle and enable DL
applications to be more accurate without compromising privacy.

5. Conclusions

Currently, the increasing number of daily flights offers new travel connections and
simplifies global transportation. In this context, Air Traffic Management (ATM) enables air
carriers to operate safely and efficiently through the multiple services provided. The timely
success of advanced analytic solutions has demonstrated their potential to solve complex
problems in several domains, including Air Traffic Management (ATM). Although there
are several contributions in the literature, it is not simple to define the challenges faced by
state-of-the-art strategies and open challenges due to a lack of comprehensive and extensive
analysis of such contributions.

Therefore, this research presented a comprehensive review of state-of-the-art Deep
Learning (DL) solutions for Air Traffic Management (ATM). Several topics were discussed,
focusing on applications, opportunities, and open challenges to foster the evolution of
ATM systems. Several areas of ATM applications were considered, and the state-of-the-art
solutions were classified, analyzed, and compared from different perspectives. Finally, an
extensive discussion on the open challenges was conducted to highlight the current DL-
based solutions demanded in current and future ATM contexts. This article provided the
reader with a clear picture of the current DL-ATM landscape and the main directions for
future works. Finally, there are several aspects to be considered in future directions, e.g., an
analysis of solutions based on other Artificial Intelligence (AI) methods (e.g., optimization)
and solutions for specific flight missions (e.g., Search and Rescue—SAR).
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