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Abstract: In recent years, the emergence of large-scale pre-trained language models has made transfer
learning possible in natural language processing, which overturns the traditional model architecture
based on recurrent neural networks (RNN). In this study, we constructed a multi-intention recognition
model, Ernie-Gram_Bidirectional Gate Recurrent Unit (BiGRU)_Attention (EBA), for air traffic control
(ATC). Firstly, the Ernie-Gram pre-training model is used as the bottom layer of the overall architecture
to implement the encoding of text information. The BiGRU module that follows is used for further
feature extraction of the encoded information. Secondly, as keyword information is very important in
Chinese radiotelephony communications, the attention layer after the BiIGRU module is added to
realize the extraction of keyword information. Finally, two fully connected layers (FC) are used for
feature vector fusion and outputting intention classification vector, respectively. We experimentally
compare the effects of two different tokenizer tools, the BERT tokenizer tool and Jieba tokenizer tool,
on the final performance of the Bert model. The experimental results reveal that although the Jieba
tokenizer tool has considered word information, the effect of the Jieba tokenizer tool is not as good
as that of the BERT tokenizer tool. The final model’s accuracy is 98.2% in the intention recognition
dataset of the ATC instructions, which is 2.7% higher than the Bert benchmark model and 0.7-3.1%
higher than other improved models based on BERT.

Keywords: transfer learning; multi-intention recognition; Ernie-Gram_BiGRU_Attention; air traffic

control; tokenizer

1. Introduction

The International Civil Aviation Organization (ICAO) states in Doc 4444 PANS-ATM
that the primary purpose of ATC is to prevent collisions between aircraft, prevent collisions
between aircraft in the maneuvering area and obstructions in that area, and expedite and
maintain an orderly flow of air traffic. To achieve this objective, ATC instructions are issued
to aircraft in accordance with the provisions of the Air Traffic Services (ATS) Plan and
other related documents. Therefore, ensuring the effective transmission of ATC instruction
information is the key to air traffic safety. Currently, the Civil Aviation Administration of
China (CAAC) is striving to promote the construction of intelligent ATC, which includes
some key technologies, such as multimodal fusion, automatic ATC speech recognition,
radiotelephony communication intention recognition, namely ATC instruction intention
recognition, automatic response of ATC instructions, semantic verification of ATC instruc-
tions, etc. [1]. ATC instruction intention recognition refers to the deep learning technology
that enables the computer to judge the intention contained in the ATC instructions. The
computer identifies the intention of the ATC instructions and the intention repeated by the
pilot to determine if there is a miscommunication. Intention recognition technology can
also be applied to human—computer dialogue systems to improve the accuracy of response
generation [2,3]. Through this technology, the computer in the air traffic controller (ATCO)
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training simulator can improve the accuracy of generating response instructions so as to
better execute the corresponding actions in the instructions.

Intention recognition is defined as a classification problem, and the main classification
data are the current input dialogue information [4]. In the early period, various scholars
mainly used the method based on statistical learning. Haffner et al. proposed the support
vector machine (SVM) model, which has achieved good results in the field of classification
and has been widely applied to intention recognition tasks [5]. Hakkani-Tur et al. used
heterogeneous features extracted from semantic and syntactic graphs of user utterances
to carry out intention recognition [6]. Kim improved the performance of the model in
intention recognition tasks by improving the word embedding method [7]. Jeong et al.
proposed a triangular conditional random field [8], which carries out intention recognition
by adding an additional random variable to the standard conditional random field [9].
However, the features of the above methods are determined manually based on experience,
which means the methods based on statistical learning have some problems such as heavy
dependence on the size of the datasets, sparse extracted feature vector, and the extracted
feature vector cannot effectively represent the semantic information of a short text.

The intention recognition method based on deep learning can solve the above prob-
lems better. For the first time, Kim proposed applying the convolutional neural networks
(CNN) model for visual tasks to text classification tasks, built a convolutional neural net-
works for sentence classification (TextCNN) model, and conducted a series of convolution
experiments based on Word2Vec architecture. The results show that simple CNN with one
layer of convolution can perform better [10]. However, TextCNN has a problem in terms
of selecting an appropriate convolution window. If the convolution window selected is
too large, the computational complexity will become higher due to the large number of pa-
rameters; if the convolution window selected is too small, it will cause the loss of semantic
information to some extent. In order to overcome this shortcoming of TextCNN, Wang et al.
proposed recurrent convolutional neural networks (RCNN), which can overcome informa-
tion loss and maximize the extraction of context information. Compared with TextCNN, it
achieves a better effect [11]. Zhou et al. built a travel consumption intention model based
on CNN and long short-term memory (LSTM), which makes up for the shortcoming of
CNN’s inability to extract deep meaning and semantic information [12]. Liu et al. used an
attention mechanism to obtain important word information in sentences and combined
it with a bidirectional circulatory neural network to extract sentence features to improve
the accuracy of intention recognition [13]. However, the above intention recognition-based
deep learning studies only consider single intention recognition and do not consider the
case of multiple intentions in text sentences. For multi-intention recognition tasks, Lin
et al. proposed a bidirectional long short-term memory (BiLSTM) model based on the
self-attention mechanism for intention classification, in which the self-attention mechanism
is used to obtain various semantic information of sentences [14]. With the proposal of BERT,
this opens up a new way of thinking about natural language processing (NLP) tasks. Sun
etal. apply BERT to text classification to study different methods based on BERT fine-tuning
in text classification tasks, and the results show that BERT has excellent performance and
huge potential in text classification [15]. Although the transfer learning model based on
BERT has achieved amazing results in the task of natural language understanding (NLU),
when the NLU task was carried out in the field of ATC, semantic information was still
lost due to reasons stemming from the model itself, such as the model of BERT’s failure to
consider Chinese word information when training masked language model (MLM) tasks
and the fact that the feature dimension of model output is limited, etc.

For the ATC instruction multi-intention recognition, keyword information extraction has
a huge impact on the results of recognition, and choosing an appropriate word embedding
method is also important. Therefore, the model we construct should effectively encode text
information and capture keyword information in ATC instructions to improve the performance
of the model. Using the Ernie-Gram model is a good way to overcome the limitations of
BERT's pre-training model in word information extraction. The BIGRU module can capture
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global semantic information, and the attention mechanism can further extract instruction
keyword information. However, it is not ideal to simply concatenate the results of each
module. We use an FC to fuse the text vector output from the BiIGRU module with the output
from the attention layer, and splice the obtained fused vector with the classification word
vector output by the Ernie-Gram model to obtain the final feature vector for multi-intention
recognition. The improved model can extract semantic information from multiple levels,
and expand the dimension of final classification word vector, significantly improving the
accuracy of multi-intention recognition. The remainder of this paper is as follows. Section 2
highlights the difficulties in using multi-intention recognition techniques in this field and
expounds the efforts of other researchers in the application of techniques in ATC. Section 3
describes the motivation of our model and the strategies adopted. In addition, we describe the
principle and structure of each module in the model, and the overall framework of the model
is presented. Section 4 introduces the characteristics of ATC instruction and the multi-intention
recognition dataset of ATC instructions, compares the performance of different models in
the target domain, and analyzes the experimental results. Section 5 summarizes the major
findings and provides an outlook on our future work.

2. Challenges

In the past few years, many experts and scholars have conducted research on intention
recognition, but most of their research focuses on the intention recognition of aircraft.
Based on the constructed intention recognition model, they can predict the flight path of
aircraft [16] or conduct situation awareness. In fact, the intention information contained
in ATC instructions is very important for the safe operation of aircraft, so it is necessary
to study the intention of ATC instructions in depth. At present, there are the following
challenges in applying intention recognition technology to air traffic management:

(1) Model performance problem: Most of the intention recognition models currently
studied are mainly used as a sub-module in the ATC monitoring system [17], so most
scholars’” work is mainly focused on improving the overall performance of the system.
This results in a lack of in-depth research on the intention recognition sub-module. It
is necessary to apply the latest technology to the field of ATC and build a model with
high performance and good compatibility.

(2) Multiple intention recognition problem: At present, intention recognition based on
deep learning technology is mainly aimed at single intention recognition. Since ATC
instructions are characterized by short sentences, concise content, and no ambiguity,
multi-intention recognition is a difficulty in this field. For example, the sentence shun
feng/wu yao san guai/, lei da/kan dao/, shang sheng/dao/guai liang/bao chi only
contains seven words and one word, but contains two intentions, which are aircraft
identification and positioning and aircraft altitude adjustment. How to improve the
accuracy of multi-intention recognition in short texts is a difficult problem that few
people have studied.

(38) Fewer data and higher labeling costs: With the increasing number of deep learning
model parameters, for supervised learning, a multi-intention recognition model with
superior performance needs to be trained with a large amount of data. In the field
of ATC, data acquisition is difficult due to the confidentiality of data. In addition,
the acquired original ATC speech data can only be used after being marked by
professionals, which brings great challenges to the application and development of
deep learning technology in this field [18].

3. Methodology
3.1. Response Strategies to Challenges

For the first challenge, we conducted in-depth research on the ATC instruction intent
recognition model. We studied mainstream intent recognition methods in other fields and,
based on the characteristics of ATC instructions, constructed a high-performance ATC
instruction multi-intention recognition model specifically for the air traffic control domain
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using advanced technical methods. For the second challenge, we employed a feature fusion
strategy to construct an intention recognition model that can effectively extract local and
global semantic information from short texts. At the base layer, we utilized a pre-trained
model to encode text and extract global semantic features, while adopting bidirectional
temporal neural networks and attention mechanisms to extract local semantic features. We
compared and studied different feature fusion strategies, and selected the most suitable
one to fuse global and local semantic features. The model we constructed can effectively
handle ATC instruction texts containing multiple intents. For the third challenge, we
adopted transfer learning to avoid the issue of model performance degradation caused
by insufficient data. We improved the language model obtained by jointly pre-training
on multiple tasks, and fine-tuned the improved model in the ATC domain, effectively
alleviating the problem of poor performance in the small sample domain. On the basis of
handling these challenges, we also performed an additional task. We validated the impact
of replacing the character-based tokenizer with a word-based tokenizer on the performance
of the pre-trained model, which lays the foundation for subsequent related research.

3.2. Model Introduction
3.2.1. Model Structure

The final model structure diagram we built is shown in Figure 1. The first layer of the
model structure is the Ernie-Gram pre-training language model, which is responsible for
encoding the input sentence. The BIGRU module is used for the global feature extraction of
encoded sentence vectors. The Attention module selects the local information to focus on
according to the extracted global information. FC is responsible for the feature fusion of
extracted global information and local information. Finally, the fused feature vector and
the CLS word vector output by Ernie-Gram are spliced together and fed into FC to realize
the multi-intention classification of ATC instructions.

S I,,,,,,,,,,,,,,,,,,,QWPPEJ%XC,L,,

[l Concat2

i

FC

i

Concat1

I

Attention
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Base layer
‘[CLS]‘ So1 ‘ So2 ‘ So3 ‘ So4 ‘ Sos ‘ ‘ ‘ Son

Sentence o

Figure 1. EBA model structure.
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Supposing the input sentence sequence is Sy = {sp1, Sp2, .- - , Som}, the calculation
process of our model is as follows:

T,CLS = Ernie — Gram(Sy) 1)

The Ernie-Gram() module encodes text information, T is the embedded representation
of sentence Sy, and CLS represents the hidden state vector output by Ernie-Gram that
contains the whole sentence information.

s, (H, H) = BiGRU(T) @)

—
S is the further encoding of T by BiGRU() and (H, H) is the forward and backward
hidden state vector of the output of the last layer of the BIGRU module.

H = concat(H[1), H[1]) 3)

o
The concat() function can concatenate vectors in a certain dimension. H[—1] and

-
H{[1] represent the forward final hidden state vector and the backward final hidden state
vector, respectively.

K = Attention((H, S;)) 4)

G = Linear((K, H)) &)

The Attention() function and the Linear() function are used to compute the attention
vector and the feature fusion of the vector, respectively. G represents the vector obtained by
fusing the attention vector K with the final hidden state vector H.

I = concat(CLS, G) (6)

I is the vector that is ultimately used for classification and is a combination of vector G
and vector CLS.
Ypre = softmax(IW + b) (7)

The softmax() function is used to calculate the probability of each intention. W and
b represent the weight and bias of FC, respectively, and y,r. is the final output and is a
probability vector.

The details of the architecture are shown in Table 1:

Table 1. Details of architecture.

Structural Order Input Size Output Size Parameter Setup
Ernie-Gram (32, 50) (32,50, 768), (32, 768) Batch_size = 32, Max_length = 50
BiGRU (32, 50, 768) (32,50, 768), (4, 32, 384) Hidden_size = 384, Number_layers = 2
Extraction (4,32, 384) (32, 768) Hlindex = 1], Hlindex = 1]
Attention layer (32,768) (32,768) Extraction (32, 768) for g; BiGRU_output (32, 50, 768) for k and v;
Concaty (32,768), (32, 768) (32, 1536) dimension = —1
FC , ) (32,768) FC (Concaty)
Concat; (32,768), (32, 768) (32, 1536) dimension = —1
FC (32, 1536) (32,15) Num_class = 15

3.2.2. Ernie-Gram Module

Ernie-Gram is a Chinese pre-training model improved by Baidu based on the BERT
model. The input of this model is a single sentence or sentence pair, with additional
segment embeddings and position embeddings that the model can learn by itself. The
input structure diagram of the model is shown in Figure 2:
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Figure 2. Input structure diagram of Ernie-Gram model.

The <cls> character is the classifier marker that starts the sentence. The <sep> character
is a separator that splits two sentences and ends the sentence pair. E5 and Ep are segment
embeddings of two sentences, respectively, and Ey_»; are position embeddings that are
self-learnable.

3.2.3. The Difference between Ernie-Gram and BERT

When carrying out masked language model (MLM) pre-training tasks, the BERT model
considers the representation of fine-grained text units [19], which, in Chinese, only means
considering the concealment of a single word and predicting it. This processing method
ignores a structured information of Chinese language, which is the word. For example, the
masked character ‘qu’ is predicted based on the local co-occurrence of the three characters
‘xia’, ‘'men’, and ‘diao’. In this process, the model does not learn larger semantic units,
such as the words, "Xiamen’ and ‘qu diao’, etc. The MLM strategy of the BERT model
is shown in Figure 3a. The model of Ernie introduces knowledge enhancement learning
based on the BERT model, and realizes better pretraining learning by masking successive
N-Grams. Based on the Ernie model, Ernie-Gram takes into account the dependencies
between N-Grams and uses an integrated N-Gram prediction mechanism. Ernie-Gram
predicts masked N-Grams in both coarse-grained and fine-grained ways through carefully
designed attention-masking measures, which enables the model to have stronger semantic
modeling capabilities [20]. Figure 3b shows the MLM task strategy considering N-grams,
and Figure 3¢ shows the MLM task strategy considering both N-grams and the direct
dependencies within N-grams.

=T T i P
g g‘ (< e~ R o = = -2
i T e b A B o i
I oY ! ! I ) PR SR AN 0
| |
[ Transformer Encoder ]}[ Transformer Encoder }}E Transformer Encoder ]
| |
R ‘ R R R
i i | | \ 1 | i H
: [M]: \XaH %1 [xi] [ \E Ml (X lz[M]:.-ﬂ
T F T Ea E R S S S N S T
s A s }‘-- III‘}\III--
,,,,,,,,, —— ! ! —4—
(a) MLM on Bert (b) MLM on Ernie (¢) MLM on Ernie-Gram

Figure 3. Comparison of MLM task structures with different strategies.

3.2.4. BiGRU Module

BiGRU is a neural network model composed of forward and reverse GRUs. The GRU
consists of two control units: reset gate unit R; and update gate unit Z;. The reset gate is
used to remember or forget the hidden state information before the current moment, and
the update gate is used to determine whether to update the hidden state of the current
moment or use the hidden state of the previous moment as the hidden state of the current
moment [21,22]. The GRU structure diagram is shown in Figure 4.
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9 Candidate hidden state H.
Input X:
Figure 4. Comparison of MLM task structures with different strategies.
The specific calculation formula is as follows:

Rt = O'(Xthr + Ht,1 Whr + br) (8)
Zt = U'(thxz + Ht,1WhZ + bz) (9)
Hy = tanh(X; Wy, + (R © Hy—1) Wy, + by,) (10)
Hi=Zt© Hy 1+ (1 - Z) © A (11)

R; represents the reset gate, X; represents the input at the current moment, W,,
represents the weight matrix of the reset gate at the current moment, H;_ is the hidden
state at the previous moment, Wy, is the reset gate’s weight matrix of the hidden state
before the current moment, and b; is the bias of the reset gate. Z; represents the update
gate, ® represents the multiplication, o represents the sigmoid activation function, and H;
represents the candidate hidden state.

GRU only considers the previous information, not the later information, when extract-
ing the time series information. For the task whose input text is a complete statement, the
GRU model will result in semantic information loss. The output of each step of BiGRU takes
into account the combination of the forward-propagated hidden state of the previous step
and the backpropagated hidden state of the later step of the current state, which enables
the model to consider the semantic information of the entire sentence when making the
output. The structure diagram of the BiGRU module is shown in Figure 5.

Forward |
propagation
layer

N /

{ " Backward

3 # GRU F Ipropagation

3 i layer

Figure 5. BiGRU structure diagram.
The formula of the BIGRU module is as follows:

— —
I’Zt = GRU(X,}, htfl) (12)
— —
ht = GRLI(xt, htfl) (13)

— —
hy = wihy + vihy + by (14)
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The GRU() function represents the nonlinear transformation of the input word vectors,
encoding the word vectors into the corresponding GRU hidden state, w; and v; represent
the weights of the forward and reverse hidden states corresponding to BIGRU at time ¢,
respectively, and b; represents the bias corresponding to the hidden state at time .

3.2.5. Attention Mechanism

The purpose of the attention mechanism is to focus on the details according to the
target. It overcomes the problem of information loss caused by too long a time series,
and can be used to link the encoded hidden state vectors with the input encoded vectors,
playing a role of highlighting the text keyword information. The core of the attention
mechanism is the query vector g, the key vector k, and the value vector v. We can calculate
the attention vector through the operation of the three vectors above [23,24]. Its principle is
shown in Figure 6.

Attention :
scoring Attention @ R Output

function weights

>
'

e
=
7@—> =4 — Values
» : — :@‘
_/
Figure 6. Schematic diagram of the attention mechanism.
The calculation process is as follows:
s(k,q) = kg (15)
K gs(ki'q) 16
a(ki,q) = W (16)
m
att(X,q) = Za(ki,q)vi (17)

i=1

In the three formulas above, g is the query vector with 4 € R and k is a time step in the
input time series with k € RY. Key vector k is equal to the value vector v. The function 5() is
used to calculate the attention score between the query vector and the key vector. «() is the
attention distribution function. atf() is the expectation function, which is the expectation of
the input vectors under the attention distribution.

3.3. Motivation and Details for Model Building

We found that, although referring to the current mainstream methods, only using the
Ernie-Gram pre-training model to fine-tune can achieve the classification of multi-intention
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text [25,26]. However, we found that when we applied the above fine-tuning strategy to
the ATC instruction text, the model’s performance was not satisfactory. This is because, to a
large extent, the text of the ATC instructions is a kind of natural language with particularity.
Due to its unique professionalism and conciseness, the keywords in the instructions contain
a large amount of information, which enables the keywords to represent the complete
semantic information of the instructions in some cases. Therefore, highlighting some
keywords in the classification vector can significantly improve the accuracy of multi-
intention recognition [27,28]. We found that although the <cls> word vector of Ernie-
Gram'’s output contains the semantic information of the instructions, the model assigns
equal importance to each character or word in information extraction. This results in
semantic information loss in information extraction. In addition, the dimension limitation
of the classification vector also cause a loss of instruction semantic information. Starting
from the goal of minimizing semantic information loss and improving the accuracy of
model multi-intention recognition, a model of deep semantic information extraction using
Ernie-Gram, BiGRU, and Attention is constructed based on the idea that CNN uses different
filters for feature extraction. The results show that the proposed model can effectively
extract the coarse and fine-grained semantic information, balance the contribution of each
piece of coarse and fine-grained information, and significantly improve the accuracy of
multi-intention recognition.

As shown in the details of architecture in Table 1, we first use the Ernie-Gram model
to encode the whole sentence, and take out each vector obtained after encoding as the
input of the BiGRU module. Secondly, the BiGRU module generates two outputs, which
are the set of hidden states at each time step and the hidden state vector output at the
last step. We splice the forward and backward final hidden state vector of the output
of the last layer of BiGRU and extract them as inputs to the attention layer. Then, the
attention layer calculates the attention vector by taking the input as the query vector and
the hidden state of each time step output by BiGRU as the key vector and value vector. We
fuse the calculated attention vector with the query vector through an FC to obtain the final
attention vector. We splice the final attention vector with the <cls> classification vector
output by the Ernie-Gram model to obtain the final feature vector containing sentence
coarse and fine-grained information, and send the feature vector into the FC to realize the
multi-intention classification of ATC instructions.

4. Experiments
4.1. Experimental Data

Chinese radiotelephony communication instructions have strict standards, which are
composed of numbers, units, airline code, airline name, and other elements, together with the
information carried by the instruction itself in a certain format, which constitutes the whole
content of ATC instructions [29,30]. The ATC instructions studied in this paper are based on
the standard radiotelephony communications for air traffic services (MH/T4014-2003) issued
by the Civil Aviation Administration of China, covering the instructions at the flight stage,
approach stage, take-off and landing stage, and other stages. Figure 7 shows the tree structure
diagram of common ATC instructions and pilots” response instructions. Based on this tree
structure diagram, we described the process of human intention inference and matching. From
this figure, it can be seen that we infer ATC instruction intentions by integrating information
from different keywords, which is the starting point of the multi-intention recognition model
we constructed.

In the ATC instruction intention recognition dataset we use, the dataset labels include
single intention and composite intention, with a total of 15 categories. There are eight
types of single intentions in the datasets, namely, adjustment, transfer, positioning of
aircraft, reminder, waiting, permission, reporting, and verification. There are seven types of
composite intentions in the datasets, which include adjustment and positioning, adjustment
and reporting, adjustment and reminder, adjustment and transfer, transfer and reminder,
location and reminder, and permission and adjustment. Referring to the standard, we
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defined the intention of ATC instructions as follows. (1) Adjustment class: the adjustment
class refers to when the instruction contains a requirement for the aircraft to adjust to or
maintain a certain state, such as adjustment of aircraft height, speed, heading, joining
the planned route, bias, adjustment of aircraft call sign, transponder code, and other
information expressed in the ATC instructions. (2) Transfer class: the transfer class refers
to the intention shown by an air traffic controller in an instruction to transfer the control
of an aircraft currently under his or her jurisdiction to a controller in another seat or
area. (3) Positioning of aircraft class: the instruction contains the intent of air traffic
controllers to determine the position of aircraft through electronic devices, such as radar
and radio apparatus. (4) Reminder class: the intention of an instruction that does not contain
enforcement but does contain information that would avoid a flight collision. (5) Waiting
class: the instruction contains a message requiring the aircraft to wait for further definite
notice and proceed as planned until then. (6) Permission class: the instruction contains the
intention to agree to a request made by the aircraft or to release permission information in
advance of an inquiry. (7) Reporting class: the instruction contains the intention to require
the pilot to report information relevant to the flight. (8) Verification class: the instruction
contains the intention to ask for information in the content of the ATC instructions, or
to confirm that the content of the inquiry from the pilot and other intention information
contained in the verification class is invalid. Furthermore, the composite intention is
defined as the combination of single instruction intentions. The single intentions in the
composite intention are in no particular order. Instance analysis of the dataset is shown in
Table 2.

Shandong 8848, contact Jinan on 127.05, goodbye. ‘ ‘ Contact Jinan on 127.05, goodbye, Shandong 8848.
T

Shandong
8848

Aircraft call
sign

Transfer

Shandong
8848

Objective
Complement

Aircraft call
sign

Transfer

>} Intention result matching ‘r

Figure 7. Instruction structure tree and intention recognition matching diagram.

Since there is no publicly available corpus of ATC instructions, we collected real
speech data of radiotelephony communications. Based on the collected data, after our strict
screening, we manually marked the data based on the above definition of intention. We
obtained 9520 pieces of data that could be used for training. The statistical distribution of
dataset labels is shown in Figure 8:

In Figure 8, the horizontal axis represents the intention category, and its specific
meanings can be found in the legend; the vertical axis represents the quantity of categories.
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Table 2. Instance analysis of the dataset.

Class of Intention

ATC Instructions

Instance Analysis

Adjustment

Transfer
Positioning of aircraft
Reminder
Adjustment and positioning
Waiting
Permission
Reporting

Adjustment and reporting
Verification
Adjustment and reminder
Adjustment and transfer

Transfer and reminder
Location and reminder

Permission and adjustment

China Eastern 9916, veer right by five nautical miles;

China Eastern 2453, climb to and maintain 5700;

China Eastern 3401, reduce indicated airspeed to 255.

China Southern 0055, contact Zhengzhou on 130.0, good day.

Shunfeng 6954, Zhengzhou, radar contact.

China Eastern 2125, similar flight number Dongfang 2135, monitor closely.
Lucky Air 9525, Zhengzhou, radar contact, climb to and maintain 7800.
Hainan 7188, maintain radio silence on this frequency, I'll call you later.

Lucky Air 9970, push back and start up approved, taxiway alpha, runway 36R.

Okay Airways 6311, report at 25 nautical miles out, flying over Zhengzhou.

Yangtze River 5643, speed 260, report passing waypoint.

China Southern 6960, affirm, adjust heading to 210.

Air China 1671, climb to 7200, there’s a convergence ahead.

Shunfeng 5137, set QNH 5300, contact ground on 125.3.

Hainan 3211, contact Shanghai Control on 120.8, and be aware of the passing time
of the waypoint.

China Express 3211, radar contact, you can contact your own dispatch

for communication.

Chonggqing 1205, descend to 900, cleared for ILS approach, runway 03.

Aircraft transverse distance adjustment;

aircraft altitude adjustment;

aircraft speed adjustment.

Transfer of aircraft control.

The radar located the aircraft.

Similar flight number conflict alert.

The radar locates the aircraft and adjusts its altitude.

Aircraft waiting at communications channel.

The controller granted the pilot’s request for a slip-out.

Fly over the Zhengzhou reporting point, report at 25 nautical
miles from reporting point.

Aircraft speed adjustment and report past the reporting point.
Confirm course adjustment to 210.

Aircraft altitude adjustment and conflict alert.

Aircraft altimeter adjustment and control transfer.

Control transfer and past report point time reminder.

Radar locates aircraft and reminds them to communicate with
the flight despatcher first.

Adjust altitude and agree to use instrument approach
procedure for aircraft approach.
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Figure 8. Label distribution of dataset.

4.2. Experimental Platform

Our experimental environment and configuration are as follows. Our experiment
operating system is Windows10, CPU is an Intel(R) Xeon(R) E5-2680, and GPU is a NVIDIA
RTX2080Ti 11 G; The Paddle framework was used to build the neural network model. The
super parameter settings of the EBA model we constructed are shown in Table 3.

Table 3. EBA model hyperparameters table.

Hyperparameters Number
Dropout 0.2
Max sequence length 50
Learning rate 2x107°
Batch size 32
Number of epochs 10

4.3. Ablation Experiment

We conducted ablation experiments to validate the effectiveness of each module in the
constructed model and the feature fusion strategy adopted by the constructed model. The
results are shown in Tables 4 and 5.

Table 4. Ablation experiment of EBA model.

Model Dev_Acc Recall Precision F1
EG 0.970 0.969 0.971 0.970
EGB 0.977 0.977 0.977 0.977

EBA 0.982 0.982 0.981 0.981
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Table 5. Feature fusion strategy ablation experiment.
Feature Fusion Method Dimensionality of the Fused Features Dev_Acc Recall Precision F1

Not fused (using only feature vectors from
the base layer) 768 0.970 0.971 0.969 0.970

Not fused (using only feature vectors from
the BIGRU Attention layer) 768 0.065 0.070 0.065 0.068
. . . . . 768 0.058 0.062 0.058 0.060
Dimensionality-changing feature fusion 1536 0077 0.080 0077 0.079
Additive feature fusion 768 0.972 0.972 0.972 0.972
Concatenation feature fusion 1536 0.982 0.982 0.981 0.981

In Table 4, the abbreviation EG represents the Ernie-Gram model, EGB represents
Ernie-Gram BiGRU, and EBA represents Ernie-Gram BiGRU Attention. As can be seen
from this table, we can effectively improve the performance of the model by using the
strategy of integrating the feature extraction of text information from different models.

From the table above, it can be seen that when we feed the feature vectors from
the base layer output to the output layer, the model’s accuracy can reach 0.97, whereas
when we only use the feature vectors from the BiGRU Attention layer output, the model’s
accuracy is only 0.065. The reason for the poor performance of the latter is that the attention
mechanism extracts local information for intent recognition, which cannot effectively reflect
the intention of ATC instructions contained in the text. When we use feature fusion
strategies, the model’s accuracy and other performance indicators are further improved.
For example, when using additive feature fusion strategy, the model’s accuracy is improved
to 0.972. When we also consider the feature dimensions in feature fusion, the model’s
performance is further improved. For instance, when using feature concatenation as the
feature vector fusion method, the model’s accuracy reaches 0.982. In conclusion, using
an appropriate feature fusion method to combine the global information output by the
base model with the local information output by Attention can significantly improve the
performance of the model. For the multi-intention recognition of ATC instructions, using
feature concatenation for feature fusion is a good method.

4.4. Experimental Analysis

We adopted the Ernie-Gram pre-trained language model as the bottom layer. In the
training process, we did not update the pre-training model parameters, but only updated
the model parameters of the BiGRU module, the Attention layer, and the FC. Through
10-epoch training, we obtained the experimental results shown in Table 6. The accuracy
rate of each round of the model testing in the real process is drawn as a broken line graph
in Figure 9. In terms if the evaluation criteria of the model, the precision rate, accuracy
rate, F1 rate, and recall rate were adopted for comparative evaluation of the model [31]. To
assess the model’s performance improvement, we used a confusion matrix to visualize its
effects. The formula for calculating indicators is as follows:

TP+ TN
Acc = 1
T TPIFP+EN+TN (18)
TP
Re— " 1
TP 1 FN (19)
TP
P=Tp1Fp (20)
F - 2PR 1)

P+ R
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Table 6. Comparison of the effect of different models on the ATC instruction intention recognition dataset.

Model Dev_Acc Recall Precision F1
BERT 0.957 0.956 0.957 0.956
BERT-Jieba tokenizer 0911 0.912 0.911 0.911
BERT-LSTM 0.956 0.92 0.956 0.937
BERT-BiLSTM 0.951 0.93 0.951 0.94
BERT-TextCNN 0.96 0.96 0.97 0.96
BERT-GRU 0.968 0.967 0.968 0.967
BERT-BiGRU 0.971 0.969 0.971 0.97
BERT-TextCNN-BiGRU 0.975 0.974 0.975 0.974
EBA 0.982 0.982 0.981 0.981

Curve of Intent Recognition Testing Accuracy

0.9

0.8

e
3

Accuracy

0.6
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©- bert_TextCNN_BiGRU
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©
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Figure 9. The accuracy curve of ATC instruction intention recognition on the test set.

P represents the precision rate, Acc represents the accuracy rate, R represents the recall
rate, and F1 represents the harmonic average of precision and recall. TP represents the
number of positive samples predicted by the model as a positive class, TN represents the
number of negative samples predicted by the model as a negative class, FP represents the
number of negative samples predicted by the model as a positive class, and FN represents
the number of positive samples predicted by the model as a negative class.

From Figure 9, it can be seen that the EBA model has lower accuracy in the initial
stage. However, with the increase in training rounds, the accuracy of the EBA model
continues to improve in the fifth to sixth rounds, while other comparative models have
already converged. Ultimately, the accuracy of the EBA model reached 0.982, showing
excellent performance.

According to the experimental results in Table 6 and in combination with the results
provided in Table 4, it can be observed that the accuracy of BERT is 0.957, while that of
EG is as high as 0.97. Compared to BERT, BERT-GRU, BERT-LSTM, BERT-BilSTM, and
BERT-TextCNN, EG exhibits better performance, indicating that selecting EG as the base
layer for the model is a reasonable choice. Furthermore, based on the experimental results
in Table 6, BiGRU is more effective in terms of feature extraction compared to the LSTM,
BiLSTM, TextCNN, and GRU modules. It is worth noting that, combined with the results
in Tables 4 and 6, the performance of the EGB model was improved from 0.977 to 0.982 by
introducing the attention mechanism, while TextCNN only improved the performance of
BERT-BiGRU from 0.971 to 0.975. Therefore, the attention mechanism is a more effective
local feature extraction strategy in ATC instruction intention recognition. Finally, after
improving the tokenizer based on the WordPiece strategy in BERT to the Jieba tokenizer
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based on the word strategy, the final model’s performance decreased from 0.957 to 0.911,
indicating that changing the encoding strategy may not be an effective way to improve
model performance.

The attention visualization diagram of the Ernie-Gram module in the EBA model on
the ATC instruction intention recognition test set is shown in Figure 10.

Figure 10. Heat map of attention results of Ernie-Gram module.

In Figure 10, the vertical axis represents the input ATC instruction text, and the
horizontal axis represents the self-attention results, which indicate the degree of association
between each word and other words in the context. The brighter the color, the deeper the
association. The [CLS] vector is used to represent the semantic information of the entire
input sequence. Based on the visualization results of Figure 10 and the experimental results,
the high brightness of the [CLS] vector in the EG model indicates that the model pays more
attention to the semantic information of the entire input sequence.

The visualization of attention results of the attention layer in the EBA model on the
ATC instruction intention recognition test set is shown in Figure 11a,b, where Figure 11a
is the visualization result for single intention test data and Figure 11b is the visualization
result for multi-intention test data.

(a)

(b)

Figure 11. (a) Heat map of attention results of attention layer for single intention data. (b) Heat map

of attention results of attention layer for multi-intention data.

In Figure 11, because the attention layer mainly focuses on local information in the
input, we can see that in Figure 11a, the attention layer pays more attention to the words
‘xiang’, ‘zuo’, and ‘sep’, while in Figure 11b, the attention layer pays more attention to
the words ‘lei’, ‘da’, ‘kan’, and ‘sheng’, all of which are critical keyword information
for intention recognition, except for the character ‘sep’. This indicates that the attention
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layer can effectively extract local keyword information in the ATC instruction intention
recognition task.

The confusion matrix of test results of the EBA model on the ATC instruction intention
recognition test set is shown in Figure 12.

confusion matrix

1. 30 1050 | 40 10
800

2 | 1.0 B240 1.0

3 154.0
4 209.0 10 (1.0 | 10 14.0
5 65.0 600
6 126.0

7 118.0

Actual label

300
1 | 1.0 46.0

12 (10|10 43.0 200

13 2.0 38.0

15 27.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Predict label

Figure 12. Test result confusion matrix of EBA model on the test set.

In this figure, both the horizontal and vertical coordinates are label categories, and the
number at the position of the diagonal matrix represents the number correctly identified.
As can be seen, the EBA model we constructed can achieve excellent results in the ATC
instruction intention recognition dataset, especially for multi-intention data. The experi-
mental results show that for multi-intention recognition, extracting semantic information
from both global and local perspectives is an effective strategy to improve the accuracy of
multi-intention recognition. In addition, the selection of a suitable feature fusion strategy
and text encoding mode is also conducive to the improvement of model performance.

5. Conclusions

Based on the standard and the analysis of Chinese radiotelephony communication text
data we collected, we extracted 15 common ATC instruction intentions, including 8 kinds
of single intention and 7 kinds of composite intention. We compared and tested the effect
of the Jieba tokenizer tool and the BERT tokenizer tool in the BERT model, and the result
shows that the effect of the BERT tokenizer tool is superior to that of the Jieba tokenizer tool.
We propose a multi-intention recognition model, EBA. The EBA model achieved 98.2%
accuracy in the ATC intention identification dataset, which was 2.7% higher than that of the
BERT benchmark model and 0.7% to 3% higher than that of other improved models based
on BERT. In the future, due to the high safety requirements of ATC, our follow-up work will
be devoted to the optimization of the model and the application of intention recognition
results to the ATC human—computer dialogue system, so as to improve the accuracy of the
machine to generate repeated response instructions according to the recognition intention.
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Abbreviations

The following abbreviations are used in this manuscript:

RNN Recurrent neural networks

EBA Ernie-Gram_BiGRU_Attention

BiGRU Bidirectional gate recurrent unit

FC Fully connected layer

ICAO International Civil Aviation Organization
ATC Air traffic control

ATS Air traffic services

CAAC Civil Aviation Administration of China
ATCO Air traffic controller

SVM Support vector machine
CNN Convolutional neural networks
TextCNN  Convolutional neural networks for sentence classification
RCNN Recurrent convolutional neural networks
LST™M Long short-term memory
BiLSTM Bidirectional long short-term memory
NLP Natural language processing
NLU Natural language understanding
MLM Masked language model
EG Ernie-Gram
EGB Ernie-Gram bidirectional gate recurrent unit
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