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Abstract: Unmanned air vehicle (UAV) systems for performing forestry applications have expanded
in recent decades and have great economic benefits. They are validated to be more appealing than tra-
ditional platforms in various aspects, such as repeat rate, spatial resolution, and accuracy. This paper
consolidates the state-of-the-art unmanned systems in the forestry field with a major focus on UAV
systems and heterogeneous platforms, which are applied in a variety of forestry applications, such as
wood production, tree quantification, disease control, wildfire management, wildlife conservation,
species classification, etc. This review also studies practical applications under multiple forestry
environments, including wild and managed forests, grassland, urban green parks, and stockyards.
Special forest environments and terrains present customized demands for unmanned systems. The
challenges of unmanned systems deployment are analyzed from environmental characterization,
maneuverability and mobility improvement, and global regulatory interpretation. To better apply
UAV systems into forestry, future directions are analyzed in terms of mobility enhancement and
customized sensory adaption, which need to be further developed for synchronizing all possible
agents into automatic functioning systems for forestry exploration.

Keywords: UAV systems; forestry applications; forestry management; wildlife conservation

1. Introduction

Over the past decades, extensive studies of multiple unmanned platforms have been
conducted regarding intervention and data acquisition applications in forestry [1,2]. Despite
advances in adopting traditional methods, forestry practices are challenging to perform due
to the harsh environment [3]. Certain drawbacks exist in these traditional crewed-dominant
methods, such as maneuverability, real-time and valid range concerns, deploy-ability, and
cost-effectiveness [4]. To address these issues, the development of more mechanized ap-
proaches is demanded by the forestry industry [5]. Various merits, including repeat rate,
spatial resolution and accuracy, low cost, and great maneuverability, have made unmanned
aerial vehicle systems appealing alternatives in diversifying forestry approaches [6,7]. Re-
cently, applying unmanned aerial vehicle systems with different automation levels are
receiving increased attention worldwide with the rapid development of the forestry indus-
try. Unmanned systems that integrate both aerial, ground, and heterogeneous platforms are
deployed under this circumstance, which greatly satisfies the demands of current forestry
applications [8,9].

Introducing unmanned systems into the forestry industry has significantly improved
the automation levels in field applications [10,11]. Compared with conventional forestry ap-
proaches, such as crewed surveys, watchtower observing, and pilot operating, unmanned
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platforms, including UAV and mobile robotics, present significant advantages over tradi-
tional choices [12,13]. They can be deployed quickly and repeatedly under most weather
conditions, which offer more robust availability than satellites and manned crafts [14]. The
cost-effectiveness enables UAV to exert their potential in addressing forested tasks [15].
The typical small UAV applied in practices are usually piloted remotely by crews instead
of having operation crews onboard, such as traditional vehicles [16,17].

Forestry applications performed by various unmanned platforms extend from fun-
damental intervention operations, such as harvesting [18], forwarding, logging, and sort-
ing [19], to more comprehensive management, such as data acquisition practices, disease
control [20], wildfire management [10], smart transportation [21], and wildlife conserva-
tion [22]. Various merits, including cost-effectiveness, productivity, efficiency, and great
maneuverability, have made unmanned systems appealing alternatives in diversifying
forestry approaches [23,24]. Simon Ecke et al. believe that UAV is the main tool for forest
resource detection, but it is faced with the problem that multi-time and long-term monitor-
ing is obviously insufficient and the use of hyperspectral sensors is insufficient. [25]. Aydin
and Akhloufi et al. designed a framework for combining drones and unmanned systems
and assisting people in wildfire sensing and suppression tasks [26,27]. In addition, Yu et al.
control the UAVs to fly or hover over specific areas and retrieve relevant data in real time by
monitoring the on-board sensors. Thus, they can be of great help in monitoring wildland
fires and in post-fire damage assessment [28–30]. Guerrero-Sánchez et al. proposed a
filtered observer-based IDA-PBC strategy for trajectory tracking of a quadrotor, which can
deal with the noisy output measurements and uncertainties in the dynamics [31]. UAVs
are platforms that have been increasingly used to collect data for forest insect pest and
disease (FIPD) monitoring [20]. The traditional artificial ground monitoring method uses
the phototaxis of pests and diseases to monitor them [32], and UAV systems provide high
spatial resolution images that can expand spatial coverage, reduce response times, and
reduce costs in forest areas for pest monitoring [33]. Adão et al. proposed a forest pest
control approach based on drone based hyperspectral sensors [34]. Eugenio et al. presented
six studies on forest health monitoring and other forestry applications [35]. The feasibility
of UAVs being utilized in the forestry industry is reviewed throughout the comprehensive
studies, which thereby adds substantial value for forestry reference [36–38].

However, most of these reviews exclusively place major focus on a single and in-
dependent platform as their studied objectives. In practical forestry missions, multiple
platforms and cooperative strategies are utilized to achieve satisfying effects, but the merits
of applying multiple platforms are not documented. Without synthesizing all platforms
into a comprehensive system, considerable benefits and advances would be overlooked
or ignored. To this end, this review aims to provide a comprehensive reference by sorting
real-world applications.

In summary, the main contributions of this paper are as follows:

1. We consolidate the state-of-the-art unmanned systems in the forestry field with a
major focus on UAV systems and heterogeneous platforms.

2. Methodology and application under multiple forestry environments are reviewed,
including wood production, tree quantification, disease control, wildfire management,
and wildlife conservation.

3. The challenges of UAV systems deployment are analyzed from environmental characteri-
zation, maneuverability, and mobility improvement, and global regulatory interpretation.

4. The future directions are analyzed in terms of mobility enhancement and customized
sensory adaptation, which need to be further developed for synchronizing all possible
agents into automatic functioning systems for forestry exploration.

The rest of this article is organized as follows: main unmanned systems in forestry
are described in Section 2, with a major focus on automated machines, mobile robotics,
UAV, and heterogeneous strategies. Case studies of forestry applications are presented in
Section 3. Discussions regarding current status and challenges are analyzed in Section 4.
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Lastly, conclusions are drawn by presenting comments with respect to future directions of
further development.

2. Forestry Unmanned Platform

Different types of unmanned platforms for forestry applications are described in
this section including unmanned ground vehicles (UGVs) and UAVs. In some forestry
applications, the hybrid concept or the collaboration of aerial and ground units is needed to
improve mission efficiency. In the following subsections, the utilization of robotic platforms
is elaborately discussed.

2.1. Unmanned Aerial Vehicles

UAVs are flying vehicles that can be remotely controlled from the ground station or
operators with no pilots on board [39,40]. UAVs were initially invented to support warfare
for military requirements [41,42]. Then, it was gradually applied to non-military and private
sectors by diversifying research methods [43]. UAVs are regarded as a promising alternative
for various missions in performing diverse executions. While Unmanned ground vehicles
are utilized exclusively for ground scenarios, their perception capabilities from a distant
scale are limited. To this end, UAVs are introduced with easy deployability, ideal spatial
resolution, and accuracy, and multiple sensor diversity from aerial aspects. Initial focuses
of developing unmanned aerial vehicles were put on automatic surveillance and tactical
data acquisition [44]. Later, the deployment of UAVs for photogrammetry applications
became prevalent as early as 2000, driven by affordable GPS/INS (Global positioning
system/Inertial navigation system) technologies [45]. Recently, the design, manufacturing,
guidance, navigation, and control (GNC) technologies are becoming increasingly advanced.
A wide range of UAVs for situations where the presence of traditional approaches is
difficult, impossible, or dangerous have been developed [46,47].

UAVs for forestry tasks can be roughly divided into the helicopter, fixed-wing (e.g.,
glider or high wing), and rotary wing (single-rotor, coaxial, quadcopter, hexacopter, etc.)
platforms according to their mechanical structure, take-off, and landing characteristics.
Their distinctive differences are identified in terms of valid range and stability [48]. A
comparison between different types of UAVs in terms of payload, wind resistance, mini-
mum speed, flying autonomy, portability, and landing distance aspects is needed. Typical
prototypes of fixed-wing and rotary wing UAVs are shown in Figure 1.
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Figure 1. Typical prototypes of fixed-wing and rotary wing UAVs. (a) Single rotor UAV, (b) Multi-rotor
UAV, (c) Fixed-wing UAV, (d) Hybrid UAV.
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Fixed-wing systems are advantageous in speed performance and valid range, while
multi-rotor UAVs present better maneuverability [49]. Their merit lies in the long endurance
and high cruising speed when implementing missions [50]. For forestry applications, fixed-
wing UAVs are preferable when potential work areas are huge with the help of their speed
performance and valid range.

The centroid motion equation of fixed wing UAV consists of dynamic equation and
kinematic equation. The purpose of establishing the dynamic equation of centroid motion
of UAV is to relate the centroid acceleration to the applied force. Its vector form is:

m
dV
dt

= P + A + G (1)

where V is the velocity vector of UAV, G is the earth gravity, P is the thrust of the engine,
and A is the aerodynamic force.

The vector form of the kinematics equation of UAV can be expressed as:

dR/dt = V (2)

where R is the centroid position vector of UAV, and V is the velocity vector.
Limitations of fixed-wing UAVs include the requirement of launcher or runaway.

Rotary wing UAVs have rotors attached to a fixed central mast. They can take off and
land vertically, hover, and fly in any direction [51]. Rotary UAVs have a higher level of
maneuverability and flexibility [52,53]. In some small areas of forestry fields, multi-rotors
are more ideal and advantageous over fixed-wing UAVs, and are able to take off and land
vertically, especially in confined spaces [54]. Their maintenance and power requirements
are comparatively higher when compared to fixed-wing platforms. Additionally, their
flight speeds and valid coverage are also less competitive.

The dynamic equations of the quadrotor can be derived by the Newton–Euler method,
including the position and attitude:

..
x = U1(sin θ cos ψ cos φ + sin ψ sin φ)/m
..
y = U1(sin θ sin ψ cos φ − cos ψ sin φ)/m
..
z = (U1 cos θ cos φ − mg)/m
..
φ = U2/Iz +

..
θ

..
ψ
(

Iy − Iz
)
/Ix..

θ = U3/Iy +
..
φ

..
ψ(Iz − Iz)/Iy

..
ψ = U4/Iz +

..
φ

..
θ
(

Ix − Iy
)
/Iz

(3)

where (x, y, z) are the position vector, [φ, θ, ψ] are the attitude vector,
[
Ix, Iy, Iz

]
are the

moment of inertia around the three axes, U1 is the total lift generated by the quadrotor, and
[U2, U3, U4] are the control torque. m is the mass of the UAV.

One of the key technologies of UAV is how to design a reasonable control method
to replace the role of the pilot in the human–machine system. According to the different
control methods, UAV systems can be divided into the following three categories [55].

The base station-controlled UAV is also called Remotely Piloted Vehicle (RPV) [56].
During the flight process, the operator on the ground base station is required to continu-
ously send operation instructions to the controlled UAV. In essence, base station-controlled
UAVs are radio-controlled aircraft with complex structures. Due to the limitations of radio
control technology in space, UAV has rarely used pure base station control to conduct
unmanned driving today.

Semi-autonomous control refers to the control mode combining base station control and
preset program. The base station can obtain the control authority of the UAV at any time, and
some key actions during the flight need to be instructed by the base station. In general, the
UAV can fly and perform relevant actions according to the pre-programmed settings.

Due to the performance limitations of the onboard processor, the researchers chose to
send the data to a ground base station for processing, then back to the UAV to guide the
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movement. Imdoukh et al. developed a fire-resistant drone that can search for survivors
and locate them in the shortest possible time [57]. The drone is designed to fly with a
fire extinguisher and a camera, allowing the drone’s operator to view the environment
and take manual control of special situations. Semi-automatic control methods can realize
the exploration of UAV in an unknown environment, and complete the two-dimensional
environment modeling. The ground station uses different algorithm modules (modeling,
positioning, and obstacle avoidance) to process the data and sends the processed data
results to the UAV to complete the positioning and path planning [58,59]. Since there is
generally no manual participation in this process, it can also be regarded as a kind of
intelligent control, but the communication performance between the ground processor and
the UAV has a great impact on the robustness and autonomy of this control mode.

Fully autonomous control is also known as intelligent UAV. Specific tasks can be
performed completely autonomously without the help of human instructions. A complete
intelligent UAV system has the ability to monitor its own state, collect environmental
information, analyze data, and make corresponding responses. Intelligent control UAV
should at least include sensor module, SLAM module, path planning module, etc. At the
same time, the control module of aerodynamic disturbance can be added to the UAV to
realize the adaptive adjustment of the UAV to the complex environment.

Steenbeek et al. proposed a solution for 3D mapping applications that only uses images
in input, and integrates SLAM and CNN-based Single Image Depth Estimation methods to
densify and scale the data [60]. In autonomous navigation tasks without external GNSS
assistance, Dong et al. used visual localization to assist odometer integration and image
matching to achieve vehicle localization. A dual-rate Kalman filter is adopted to fuse the
data of vision, inertial navigation, and odometry [61,62].

The Department of High Altitude Long Endurance (DHALE) of NASA Vehicle Systems
Program (VSP) proposed a quantitative method to evaluate the autonomy of unmanned
aerial vehicles (UAVs) [63]. The hierarchy and meaning of this method are clearer, and it
has better practical operability, as shown in Table 1 [64].

Table 1. Defined autonomy level of the aircraft system by NASA.

Grades Control Mode Description Characteristic

0 Remote control Flight by operator on the ground (100% control time) Manually controlled aircraft

1 Simple automation
Perform tasks under the supervision of an

operator with the assistance of an automatic
control device (80% control time)

Autopilot instrument

2 Remote automatic
operation Execute preprogrammed tasks (50% control time) Fly according to the preset waypoints

3 Semi-automatic
Perform complex tasks autonomously. Has

environmental awareness. Make routine decisions.
(20% control of time)

Automatic takeoff/landing
The task can continue after the link

is broken

4 Fully autonomous
control

Have broad situational awareness and have the
ability and authority to make comprehensive

decisions (<5% Control time)

Automatic task planning; Has the
ability to cooperate with other units

or systems

5 Cooperative control Multiple UAVs work in teams Learning by itself and has ability of
self-organization and coordination

At present, there are still some problems to be solved in the research of UAV au-
tonomous control. Most of the research results are only applied to the experimental
scenarios designed in this work, and their robustness has not been verified in the real
environment. Moreover, due to different application fields, such as forest search and rescue,
outdoor tracking, etc., the design architecture and sensors of the corresponding intelligent
UAV are not exactly the same. These problems require specific consideration and design in
the face of different scenarios.
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2.2. Unmanned Ground Vehicles

For heavy operations, such as tree harvesting, preliminary ancillary equipment, such
as brush cutters and chainsaws, were used around 100 years ago (1916–1917) as they are
light and convenient enough to use. Over the past 50 years, forestry has been evolving
from manual instrumentation to more and more mechanized. The development of forestry
automation gradually replaced past manual work methods [65]. Since 1980, mechanized
harvesting systems became commonplace, and they began performing an increasingly
dominant role in large-scale forest operations [66]. Various approaches of harvesters with
different automation levels are utilized in the modern timber harvesting industry, namely,
remote supervision, semi-automatic harvesters, and automatic shuttle [67]. Due to the
flexibility of realizing fully automatic machines, semi-automatic systems, and teleoperated
selections are mainstream options. Remote supervision or teleoperations is a similar
concept to remote control, in which human operators directly control the systems in a
remote manner [68]. Semi-automatic harvesters are controlled by manned systems, such as
forwarders. A prototype of a typical semi-automatic harvester is “Besten” system [69].

The systems deployed in harvesting practices must consider the slope degree of
forestry terrains as a major factor. Additionally, the most suitable selection of harvester
systems is characterized by different harvesting methods, such as a whole tree or full tree
(FT) cutting, tree length (TL), and cut-to-length (CTL). Given the missions to be completed,
the robotic systems for harvesting purposes can be categorized into five groups based on
their mechanization levels, according to Gerasimov [70], as shown in Table 2.

Table 2. Harvesting systems for various mechanization levels and tasks.

Categories Application Utilized Equipment Harvesting

Motor-manual (MM) full tree Tree felling, extraction, and processing Chainsaw, cable skidder, delimber FT

Fully mechanized (FM) full tree Tree felling, extraction, and processing Feller, buncher, skidder,
delimber/processor FM, FT

Motor-manual
tree length Tree felling, delimbering, and extraction Chainsaw, skidder MM, TL

Motor-manual
cut-to-length Tree felling, extraction, and processing Chainsaw, forwarder MM, CTL

Fully mechanized
cut-to-length Tree felling, extraction, and processing Harvester, forwarder FM, CTL

An unmanned ground vehicle (UGV) is an automatic ground platform mission with-
out manned controllers aboard presence [71]. They present more desired mobility than
harvester systems apart from completing harvesting applications. With sensors and ac-
tuators onboard, an UGV can work as an effective tool for field applications, especially
under hazardous conditions [72]. This vehicle was first developed with limited effort in
1960s for exploring operations. As a platform under the remote operation frame, UGVs
have been presenting unique contributions in tree counting, tree disease control, wildfire
management, and heavy applications with the help of payload and perception capabilities.
Tang et al. investigate a SLAM-aided positioning solution with point clouds collected by
a small-footprint LIDAR [73]. Zhang et al. designed a 2D lidar based tracked robot for
information collection system in the forest [74]. In [75], legged robots as shown in Figure 2d
are used for environmental monitoring tasks in the Amazon, as the Amazon rainforest is
an unstructured and inaccessible environment. Freitas et al. designed a forest robot with a
separate robotic arm that can monitor the air and water in the forest [76]. In Figure 2, some
manufactured prototypes with different locomotion capabilities are shown.
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Given different locomotion components, mobile platforms can be divided into multiple
categories, such as wheeled, legged, tracked, spherical, and hybrid mechanisms. Wheeled
robotic platforms are acknowledged as efficient solutions in flat as wheels present high
speed and smooth performances. However, they may encounter efficiency decrease in
challenging terrains where obstacles are larger than wheel radius [77]. Tracked vehicles
have lower ground than other platforms as their ground contact areas are larger [78]. For
locomotion in forestry applications, walking mobility is required under benign terrains.
Legged mobility is best desired as it presents good adaptability on rough terrains. However,
the legged mobility may render the operation efficient if the terrains are not too steep. Lo-
comotion modes of ground mobile robots in an unstructured environment are summarized
in Table 3 [79].

Table 3. Locomotion feature comparison of ground vehicles (NA: Not available).

Feature Definition Wheeled Tracked Legged

Maximum speed maximum speed on flat and compact surfaces
in the absence of obstacles High medium/high low/medium

Obstacle crossing
the capability of crossing obstacles with

random shapes in unstructured environments
(e.g., rocks)

Low medium/high high

Step/stair climbing capability of climbing up single steps and stairs
in environments structured for humans Low medium high

Slope climbing capability of climbing compact slopes with a
sufficient friction coefficient (>0.5) low/medium high medium/high

Walking capability
(soft terrain)

capability of walking on soft and yielding
terrains (e.g., sand) Low high low/medium

Walking capability
(uneven terrain)

capability of walking on uneven terrains (e.g.,
grassy ground, rocky ground) Low medium/high high
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Table 3. Cont.

Feature Definition Wheeled Tracked Legged

Energy efficiency energy efficiency in normal operating
conditions, on flat and compact terrains High medium low/medium

Mechanical
complexity

level of complexity of the
mechanical architecture Low low high

Control complexity level of complexity of the control system
(hardware and software) Low low high

Technology
readiness

level of maturity of the necessary
enabling technologies Full full full/in progress

With respect to the compromise between two notable solutions, one solution is to
use the mixed integration of both legged and wheeled mobility functions [80]. In this
regard, hybrid articulated robots present better desirable characteristics by uniting various
modes, which enables them to have adaptability and agility under varying requirements.
They are advantageous alternatives since they offer more degree of freedom than conven-
tional robotic platforms that passively adapt to terrain changes. By mounting multiple
sub-systems, such as active suspension mechanisms or transformable components, these
mechanisms are capable of increasing stability in practices.

Wheel-on-leg robots are highly hybrid robotic platforms that can effectively clamber
uneven and benign terrains with the configuration of wheel and leg components. Inte-
grating leg and wheel locomotion modes and hybrid wheel-on-leg robots are capable
of maneuvering and negotiating over unstructured terrains. In this regard, wheel-on-
leg rovers are proposed as complex maneuver alternatives that integrate the merits of
both wheeled and legged robotics, which offer competitive adaptability and efficiency for
addressing practical operations in unstructured terrains that demand flexible mobility capa-
bilities. The ground mobile platforms sector has significantly improved the performance of
challenging field applications in forestry. The complex surfaces in forestry lands pose great
challenges for efficient mobility strategies, which require reliable and flexible structures
under harsh conditions.

2.3. Collaboration of Multi-Hybrid Robot Platforms

When working individually, aerial systems can achieve large-scale missions, but
their endurance and load capacities are limited. Ground platforms are capable of com-
pleting heavy load and near-distance detection tasks. However, they may encounter
accessibility problems in a practical forestry environment. Moreover, their ability in
negotiating obstacles is typically limited due to their valid coverage [81]. It is argued
that the heterogeneous strategies of different unmanned platforms will make it more
competitive and unmatched to execute forestry applications. Heterogeneous robotic
systems can realize a more successful implementation in a closely connected manner.
For instance, cooperative use of a UAV-to-UGV team can offer comprehensive support
for conducting missions including exploration, surveillance, detection, search and res-
cue, and tracking tasks [82]. By communicating and sharing acquired information, the
wholeness of conducting forestry practices will be improved, and, thereby, the accu-
racy guaranteed. The power-tethered UAVs to UGVs is another concept that can be
considered for forestry applications. In Figure 3, schematic views of heterogeneous
UAVs and UGVs are presented. The main aim of deploying collaborative multi-robot
systems is to offer sound solutions for carrying forestry maintenance, reconnaissance,
and surveillance missions by integrating all advanced options.
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In the air-ground cooperation system, the UAV acts as a sensor to collect, transmit,
detect, and track target-related information, while the UGV plans a path based on the
information transmitted by the UAV and feeds back the real-time state of the road for
further modification. Stentz et al. demonstrated that the data collected in advance from the
UAV can improve the planning efficiency of UGV, but it has the disadvantage that the map
cannot be reused multiple times and the preservation period is short [83]. Subsequently,
Kelly and Vandapel et al. [70,84] proposed a multi-robot cooperative system to solve the
above problems, in which the ground navigation capability of UCV can be improved by
obtaining pre-collected data through UAV. With the continuous progress of autonomous
exploration technology, UAVs can collect ground images, then correct them by image
processing technology, while automatically building a map of the environment so that
UGVs can avoid obstacles and perform tasks [85]. Kaslin et al. [86] proposed an elevation
map-based localization method for UGVs, which allows UGVs to find their relative position
in the reference map provided by the UAV without relying on GPS positioning sensors.

The collaborative strategy uses robotics as its core component, and it combines both
aerial and ground systems with expected capabilities. Ground robotics are used fully
autonomously or semi-autonomously to foster ground intervention tasks, while the aerial
alternatives work as an assistant agent to locate possible operation areas with the help of
their competent supervision performance in wide forest areas. A typical real-world case
would be the SEMFIRE project presented by the university of Coimbra, Portugal [87]. In
this project, tracked mobile robot Ranger and aerial vehicle Scouts are applied to complete
a series of tasks, including primary environment reconnaissance, surrounding mapping,
regions of interest identification, and surveillance. The ground mobile platform works as a
transportation tool carrying aerial alternatives, and it sends commands after reaching the
target site. Apart from transportation, the Ranger platform is capable of conducting forest
debris cleaning tasks. When one mission is completed, the flying robots land autonomously
on the ground mobile vehicle and is ready for the next mission according to operators’
instructions. The diagram of SEMFIRE multi-robot project can be seen in Figure 4, which
shows how each sub-system works in this forestry maintenance mission.

The design and practice of multi-robot systems take advantage of intelligent robotics
from different application fields and integrated heterogeneous deployments into a com-
prehensive architecture, which contributes to the coverage availability, traversability, and
technical advancement in forestry applications.
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3. Forestry Applications

After decades of development and implementation, extensive cases have been studied
on various aspects of robotic operational systems in forestry applications. There are
varieties of forestry applications that can be addressed by UAVs or/and UGVs, such as
tree quantification, disease control, wildfire management, tree estimation, and wildlife
monitoring, etc., as shown in Figure 5. In the following subsection, each of the mentioned
cases is discussed elaborately, and the related techniques are described.
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3.1. Wood Production

Basic forestry applications accomplished by the classic robotic platform is wood
harvesting. It deals with harvesting and associated operations, such as thinning, debarking,
and cut-to-length tasks, among others. Based on preliminary utilization, robotic systems
with a higher automatic degree are applied into the forestry industry, and the applied
domains expanded in recent years, ranging from tree harvesting and log transporting
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operations to forest monitoring, surveillance, and comprehensive management. After years
of rapid development, the harvester-forwarder system has been validated as an efficient
automation option in terms of profit and productivity considerations [88]. In Scandinavian
countries, the percentage of unmanned system harvesting reached more than 95% in the
late 1990s [89]. At present, the degree of mechanization has reached almost 100% [90].

The teleoperation method freed forestry workers from steep terrains and hazards of
heavy machines by remote controlling. The feasibility has been demonstrated throughout
previous cases in this domain [91]. The most classic project was MECHANT, developed
Halme from TKK Automation Technology Laboratory [92]. Based on this research project,
Oy (former part of John Deere) developed a walking harvester prototype, which was a
remotely controlled six-legged platform. Further exploration conducted by TKK put more
emphasis on the possibility of combining hybrid locomotion modes in forestry scenarios.
The representative prototype was Work partner, a mobile centaur-like robot for field
environment operations [93]. The hybrid system enables the Work partner to present a
mobility performance by combining legged and wheeled motion features, which is greatly
desired in forestry practices.

Harvesting systems encompass a set of automatic machines that are designed to
execute wood harvesting tasks. The whole workflow includes tree felling and processing
(FP), bunching (B), and extraction (E) stages [94]. Tree felling operations are preliminary
phases in the wood extraction work cycle. Towards this aim, fellers are utilized to conduct
tree felling tasks, and additionally, assist in following delimbing and extraction operations.
For instance, they are developed to automatically measure the stem diameters and lengths
in real-time during tree cutting tasks. Magagnotti et al. conducted a temporal study of
hybrid poplar plantations. Clear-cutting operations were carried out in both single-tree
and multi-tree processing operations using a dual-machine truncating harvest system
with a hybrid design. Higher productivity (+8%) was achieved in multi-stem handling
mode [84]. Lindroos et al. record data on the position of the harvester head relative to
the machine, then the analysis of such data was performed to improve forestry operations
and related processes [95]. Mechanized CTL systems are capable of processing wood
into logs. Typical CTL harvester prototypes are demonstrated through extensive research
worldwide. Additionally, the cut-to-shred harvesters are utilized towards sugarcane and
bamboo plantations [96,97]. Forwarders deal with the transportation of harvested logs
from the field site to the sorting yard or warehouse [98].

The transportation application after timber harvesting is another major task in the
wood production process. In addition to ground-based operations, the airship method
was developed as it offers a new perspective in diversifying operational transportation
methods [99]. For economic and ecological concerns, a new aerial transportation strategy
was presented after comparing UAV and manned helicopter platforms. This UAV logging
method was demonstrated as an economically and environmentally competitive alternative
to conduct wood transportation tasks, especially in the boreal Canadian forest.

3.2. Tree Quantification

The role of robotic systems becomes increasingly competitive in tree quantification
applications as it offers desired cost-effectiveness more than conventional methods. The
targets of the tree counting mission can be both live plants in the forest and log stacks in
the factory stockyard. The detection of live trees aims to acquire tree height and canopy
density parameters. However, for log volume estimation, the process becomes much
different as the stacking factor must be determined before identifying the log measurement
of interest area. Midhun et al. [100] study evaluates the applicability of low consumer
grade cameras attached to UAVs and structure-from-motion (SfM) algorithm for automatic
individual tree detection (ITD) using a local-maxima based algorithm on UAV-derived
Canopy Height Models (CHMs), but it was only tested in the small field plots. Charton
et al. [101] conducted a test on remotely-piloted wood volume estimation in a Brazilian
sawmill yard. The oblique imaging technique is regarded as a promising technology tool
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for remote sensing missions due to its potentiality over traditional vertical imaging method.
Lin et al. [102] proposed a novel algorithm for individual tree detection in Sundsberge urban
areas, aiming to directly apply it onto UAV for analysis. Parameters, such as tree height
and breast width are important information in growth condition evaluation and resource
conservation processes. It would greatly improve efficiency to execute quantification tasks
before performing ground-based surveys and reconnaissance missions [50]. In 2016, Jan
et al. [103] carried out a UAV-based mission to measure the tree height in central Europe.
Another tree height estimation study was presented by Bridal et al. [104], in which a
lightweight (<0.70 kg) fixed-wing UAV carrying a consumer-grade camera was deployed.
The correlation rate reached 94%, and the error was 28 cm. Three-dimensional forest
measurement and inventory deal with obtaining various forest attributes. Airborne laser
scanning (ALS) [105,106], terrestrial laser scanning (TLS) [107], and mobile laser scanning
(MLS) [108] approaches are mainstream techniques of air and ground scenarios for data
acquisition. Pierzchala et al. [109] used Superdroid 4WD IG 52 mobile platform to collect
3D data with the help of multiple sensing accessories, including LIDAR, stereo camera,
and GPS equipment. The local forest map was generated by using the Simultaneous
Localization and Mapping algorithm (graph-SLAM) in this case. Views of the typical
reconstructed point cloud for the forestry environment and stem cylinder map are shown
in Figure 6.
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3.3. Disease Control

Forest pest insects and diseases affect the yield of wood production and environmental
sustainability. The outbreak of forest disease causes losses in both economics and ecosys-
tems. Affected plants tend to show critical signatures, such as different canopy shapes and
color, which can be captured in high-resolution aerial images. Generally, typical robotic
operations can be divided into two types, namely, the monitoring work for decision-making
and spray operations. For decision-making purposes, early monitoring mission before
the outbreak and widespread is essential for maintaining the balance and health of the
forest, especially at a large scale. The aerial spray mission using unmanned vehicles is
more desirable since there is no pilot or crew onboard in the whole spraying process. This
unmanned application prevents forestry workers from hazardous exposure to prolonged
pesticide contact, which may cause versatile damages for human laborers [110].

Multi-spectral image information acquired by UAVs have been demonstrated effective
in identifying physiological abnormality, even in quite an early stage. A forest health
monitoring study using UAV platform was conducted by Dash et al. [111] in Central North
Island, New Zealand. The weighted kappa value reached 0.694, which indicates good
accuracy in detecting potential disease. Zhang et al. [112] built a multi-spectral imaging
platform for effective pest-affected regions recognition purpose in Yunnan pine forest of
Yunnan province. General classification precision is validated to be 94.01%, and its Kappa
index is 0.92. Imagery methods for forestry purposes have evolved from multi-spectral
to hyperspectral over the past years. Hyperspectral method is more effective than multi-
spectral imaging due to its improved performance in spectral and spatial scales. Roope
et al. [113] applied a miniaturized UAV with hyperspectral imaging sensors to investigate
the spruce dark beetle outbreak in Lahti, Southern Finland. The overall accuracy of
identifying tree health conditions was 76% (Cohen’s kappa 0.60) when classifying the
targets into healthy, infested, and dead. The classification results of tree health conditions
are shown in Figure 7.
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3.4. Wildfire Management

Forest fires have become one of the most hazardous natural disasters all over the world
in the past decades. Over 100,000 wildfires in the United States occurred annually, and
more than 9,000,000 acres are damaged [114]. According to the World Bank report [115],
it is estimated that the economic loss caused by wildfires in Indonesia reached over USD
16.1 billion in 2015, and this number was equivalent to 1.9 percent of annual GDP. Forestry
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unmanned platforms for wildfire management are designed to prevent the occurrence
of forest fire phenomena, and decrease the rate of potential economic losses and human
injuries [116]. Wildfire control applications can be divided into three stages according to
different occurrence levels, namely, wildfire prevention before happening, fire disaster
control in time, and after-fire management. Unmanned systems can be utilized in the whole
cycle by presenting unique contributions.

UAVs are utilized as a valuable asset in wildfire monitoring recently. Pastor [117]
developed the Sky-Eye platform, a helicopter-based UAV for wildfire surveillance pur-
poses. It is capable of offering tactical support for both day/night surveillance and post-fire
hot-spot detection tasks. The capability of utilizing Ikhana UAV as an effective tool was
studied by the National Aeronautics and Space Administration (NASA) and US Forest
Service throughout extensive flight missions in three fire seasons during 2006–2010, as
shown in Table 4 [118–120]. It is worth noticing that the Ikhana was the first civil UAV
platform to receive Certificate of Airworthiness (COA) support during the Southern Cal-
ifornia firestorms in 2007 [121]. The University of Cincinnati proposed a Surveillance
for Intelligent Emergency Response Robotic Aircraft (SIERRA) strategy and validated its
performance from site implementations [122]. Towards the same goal, several successful
implementations were conducted towards the wildfire management purpose over past
years [123,124]. Figure 8 shows views of a flight mission in the burning area, hot-spot
detection and identification using image fusion, and Ikhana.Aerospace 2023, 10, x FOR PEER REVIEW 15 of 31 
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Table 4. Ikhana (and its predecessor, Altair) during the 2006–2009 fire seasons [121].

Year Aircraft Flights Hours Wildfire Mission

2006 Altair 4 68 Mono Lake Prescribed Fire
2007 Ikhana 12 89 Columbine, Hardscrabble

2008 Ikhana 4 21 North Mountain, American
River

2009 Ikhana 2 11 Piute, Station Fire

Although the above cases contribute to wildfire management in forestry, they deployed
independent robotics as a working platform. It is more efficient to utilize multiple robotic
systems since this strategy presents locomotion and perception advancements by adopting
multiple platforms. Towards more advanced forestry applications, deploying multiple
UAVs to forest fire fighting is conducted as an innovative method [125]. Heterogeneous
paring method of UAVs and ground vehicles for forest fire management was studied [126].
Ghamry et al. [127] tested the valid coverage advantages of UAVs and payload merits of
UGVs. A post-fire application can offer valuable information and data on the recovery
conditions in forest areas, assisting experts with evaluating the sustainability and recovery
quality. Chu et al. [128] reviewed the remote sensing-based evaluation after forestry fire
disturbances. The assessment focuses on post-fire recovery, including burned forested area
mapping, fire-burned severity assessing, and recovery situations tracking.

The SEMFIRE project practiced is another notable case that applies heterogeneous
deployment of multi-purpose forestry robots into debris maintenance tasks. Forest debris
encompasses accumulated combustible materials due to a range of procedures, such as tree
pruning, mowing, raking, and disposal [129], and their existence will lead to a potential
wildfire. Therefore, thorough cleaning of fuel debris is an effective measure to prevent
wildfire in forests. In this three-year project, multiple agents, including tracked mobile
robot Ranger and aerial vehicle Scouts, are deployed for environment reconnaissance,
surrounding mapping, regions of interest (ROI) identification, and surveillance tasks. The
Ranger platform transports aerial alternatives to the target site while the flying Scouts
perform environment sensing work to locate potential ROIs. Apart from transportation and
sensing, the Ranger platform is capable of conducting forest debris cleaning task through
tree cutting and vegetation mowing with its forestry mulcher attachment. Additionally, one
or more Scouts can perform status estimation of engaged agents and objective supervising.
When one mission is completed, the flying robots land autonomously on the ground
mobile vehicle, and is ready for the next mission according to operators’ instructions. The
deployment of Ranger and Scout is illustrated in Figure 9.
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3.5. Wildlife Conservation

It is significant for experts to obtain detailed information about wildlife density, pop-
ulation, behavior, patterns, and tracks. Remote operations using unmanned platforms
are becoming increasingly popular with their target-friendly working features. Extensive
innovative efforts have been made in wildlife monitoring with the help of unmanned
technologies over the past decades. Abundant research have been conducted in wildlife
monitoring. Current samples of wildlife monitoring cases include tiger [130], koala [22],
sea eagle [131], monkey [132], and thrush [133]. UAVs, Wireless Sensor Networks (WSN),
and a combination of multiple methods were utilized. Artificial Intelligence (AI) technique
was applied in processing steps, which greatly improved the accuracy of species detect-
ing and matching [134]. Sensor nodes positioned in wild environment ground are easily
affected by multiple factors due to near-ground disturbance effects, which usually cause
low monitoring accuracy. Badescu [130] developed a monitoring strategy by combining
UAV and WSN systems to overcome the defects in a traditional method. Nicolas [134]
conducted an experiment on animal detection in Kuzukus wildlife reserve. Large animals
were chosen to be monitored for two major reasons, namely, their outstanding visibility in
the background and great pixel availability. The identification results of wildlife are shown
in Figure 10.
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UAV systems have revolutionized wildlife monitoring and protection, providing new
opportunities for wildlife specialists to inexpensively survey relatively large areas [135].
UAV systems can utilize the airborne sensor platform to monitor wildlife for an accurate
estimation of species abundance [136]. UAVs equipped with digital and thermal image
sensors can record high-resolution videos and capture images closer to the animal [137].
Jones et al. collected wildlife video and image data from over 30 tasks and concluded that
UAV systems can overcome the safety and cost issues associated with manned aircraft for
wildlife monitoring [138]. UAV systems have been shown to be effective in conducting
wildlife monitoring investigations [139,140].

Tree species classification and inventory research using remote sensing methods have
been active over the past forty years [141]. Many innovative techniques are applied to
tree species classifications, such as remote sensing-assisted approaches for data collecting
and artificial neural network for post-training. In a multi-spectral survey conducted by
Rossana [142] in Northern Italy, the availability of using UAVs in conducting tree species
classification was investigated and discussed. This practice proved the feasibility and
efficiency of distinguishing different bushes, trees, and non-vegetated areas (bare soil,
concrete, shadow, etc.). It can be noted from the overall accuracy that the supervised
classification has a higher rate (80%) than the unsupervised classification one (50%). Apart
from tree species inventory applications in forests, UAVs were also utilized in grassland
species classification. Lu [143] carried out a study aiming to investigate the composition
of the test site. A Tarot T15 UAV platform was used in this research, consisting of a GPS
module for location sensing, an IMU (Inertial measurement unit) module for flight position
measuring, and an Ardupilot Mission Planner (AMP) for ground station control. Lisein
et al. [144] applied a fixed-wing platform with a focus on the combination of SFM (Structure
from motion) [145] and photogrammetry methods in order to model the forest canopy
surface from low altitude aerial images. In their work, the elevation of vegetation was
determined by a combination of a co-registered LIDAR with a digital terrain model.

4. Discussion
4.1. Current Status

Onboard sensors of robotic platforms are continuously developing towards further
improvement. The equipped sensors in different robotic systems are determined by their
specific work requirements, including high spatial and temporal resolution [146]. A great
diversity of functional sensors can be mounted on forestry robots, ranging from vari-
ous cameras (Digital, Multispectrum, Infrared, NIR (Near-infrared), SWIR (Short-wave
infrared), and TIR (Thermal infrared)) [48], laser scanning [147], multi-/hyper-spectral
sensors [148], and LIDAR technologies [149], as described in Table 5.

Generally, UAVs are equipped with different sensors that can exceed twenty in number,
including accelerometers, magnetometers, gyroscopes (IMU), and GPS [150]. These sensors
are speed or inertial/angular measurement devices and are used to obtain data with the
exclusive aim of controlling the UAVs during navigation.

Video cameras are systems broadly used in UAVs for data acquisition and intervention
practices in forestry, which include RGB cameras, professional multispectral, hyperspectral,
and thermal cameras [151]. They are also known as passive sensors. The acquired images
will be associated with the corresponding GPS position, altitude, and direction of UAVs [25].

RGB cameras are able to perceive visible light in the 390–700 nm band of the electro-
magnetic spectrum, and sub-density spatial resolution can be obtained by RGB cameras
even at relatively high ground heights. It is common practice to separate color channels to
work with the individual bandwidths, for example, adopting different types of filters [152].
Li et al. developed a red-green-blue (RGB) camera to extract overlay and forest floor pixels
using 3D structure-from-motion (SFM) point clouds and 2D superpixel segmentation. This
approach can deal with the high price of LIDAR [153].
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Table 5. UAV onboard sensors: auxiliary and specific [150].

Auxiliary Specific

• GPS
• IMU
• Gyroscopes
• Accelerometers
• Altimeters
• Video stabilizer
• Image transmitter
• Communication antennas
• (VHF, UHF)
• Communication modems

• Video cameras (visible spectrum):
EOS, stereoscopic, omnidirectional,
fisheye lens.

• Thermal cameras
• Infrared cameras
• FLIR
• LIDAR (Laser scanner)
• Multi-Hyperspectral (HyperUAS)
• Irradiance
• Radar/SAR
• Radiometer (multi-frequency)
• Infrared spectroscopy
• Electronic nose
• VCSEL
• WMS

• Ultraviolet spectrometer
• Multi-gas detector
• Sonar
• Smartphone
• Particle counters (optical,

condensation)
• Photometer, aethalometer
• Aerosol sampling
• Probes (temperature, humidity, and

pressure)
• Cloud droplet spectrometer
• Pyranometer
• Electrostatic collector
• Radiation gauge
• Magnetic sensor
• Ultraviolet flame detector
• Gas/smoke detector

Multispectral cameras can simultaneously acquire multiple optical spectral bands
(usually greater than or equal to three), and extend the visible light to infrared and ultravio-
let light. A common method is to combine various optical filters or splitters with a variety
of photographic films to receive the light signals radiated or reflected in different narrow
spectral bands, and obtain several pictures of the target in different spectral bands [154].
Shin et al. used multispectral UAV imagery to analyze burn severity after forest fires and
accurately grade burn surfaces [155].

Hypespectral sensors have a sophisticated technique that can capture and analyze
point-by-point spectra in a spatial region. Due to the unique spectral features at different
spatial locations of a single object, substances that are not visually distinguishable can
be detected [156]. Hyperspectral images consist of narrower bands (10–20 nm), and the
images may have hundreds or thousands of bands. The spectral information can fully
reflect the difference of physical structure and chemical composition inside the sample.
These characteristics determine the unique advantages in the detection of wood product
quality. Yang et al. applied the integration of the crop growth model and the random forest
model to estimate crop yield based on hyperspectral imagery, and the UAV hyperspectral
data were found to significantly improve the retrieval accuracy [157].

Thermal sensors detect infrared energy emitted by objects in a non-contact manner and
convert it into electrical signals [158]. Thermal images show the temperature distribution
through colored pictures. Differences between thermal and infrared sensors are due to
emitted and reflected energy, respectively. Infrared sensors detect objects at night by
actively emitting infrared light that increases the brightness of the outside world by tens
of thousands of times, then generates thermal images and temperature values on the
display. Still et al. demonstrated the feasibility and potential of thermal imaging to measure
vegetation surface temperature at various scales [159].

Light Detection and Ranging (LIDAR) systems are used to measure distances by
exploring the environment with the pulses projected on the targets, which is an active
remote sensing device [160]. The signals are backscattered by the objects, and part of
the energy is transmitted to the sensors. The LIDAR system records the elapsed time
between transmission and reception and is combined with positional information to obtain
a detailed point cloud containing intensity and elevation measurements. These systems
have been widely equipped on UAVs to build environment models, avoid obstacles or
navigate. Forest health indicators, such as crown density and pattern distribution, can be
derived from lidar based point clouds [161,162].
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In addition, Synthetic Aperture Radar (SAR) is an also active observation system,
which can be installed on a flight platform for observation throughout the day [163]. Sonar
systems use sound waves to detect and identify airborne objects, which is rarely used in
UAVs for remote sensing, but is used widely in navigation [164]. Tanveer et al. consider an
UAV equipped with a biosonar sensor that mimics the sonar of echolocation. This sensor
provides a lightweight and low-cost alternative to other widely used sensors, such as Video
cameras and LIDAR systems.

Most of the summarized auxiliary and specific sensors have been applied in real-
world forestry practices and investigated in the above forestry cases. By mounting external
sensors, robotics applied in forestry are enabled to obtain desired capabilities in situation
perception, which contributes to their operational performance improvement in forestry
data acquisition applications. High-quality data acquired by UAVs in practical investiga-
tions include high-resolution images, audio samples, and other formats, which can provide
valuable assistance for forestry operators in the further analysis process.

The configuration of multiple imaging cameras is determined by actual need and
driven by advances in sensing techniques. A large variety of cameras are used in all cases
studied above, ranging from compact RGB digital camera, thermal camera, still imaging
camera to customized camera. In Table 6, practical cases using UAV systems are outlined.

Table 6. UAVs samples used for forestry applications (NA: Not Available).

Sample Platform Type Objective Application Country Area Camera

Midhun [100] DJI phantom 3 Rotary-wing Live plant Individual tree
detection USA 32 ha Compact RGB

digital

Charton [100] Swinglet CAM Fixed-wing Stack and logs
in sawmill

Wood volume
extraction Canada 50 hectares Digital RGB

Lin [102] Microdrone
Md4-200 Rotary-wing Urban forestry

and greening
Individual tree

detection Finland NA Digital
compact

Dash [111] Aeronavics
SkyJib Rotary-wing Pinus radiata

D. Don trees
Assessing

forest health New Zealand 2.7 ha MicaSense
RedEdge 3

Dempewolf
[103]

DJI phantom 3
Pro Rotary-wing Deciduous

species
Tree height

measurement Germany 2 ha RGB camera

Birdal [104] eBee Fixed-wing Black and
Scots pines

Tree height
estimating Turkey 1 ha Canon IXUS 12

7HS

Luis [22] DJI S800 Rotary-wing Koala, deer,
and kangaroo

Wildlife
monitoring Australia NA

Thermal
camera/RGB

camera

Gini [136] Microdrone
MD4-200 Rotary-wing Deciduous

species
Tree

classification Italy 1 ha
Pentax Optio
A40/Sigma

DP1
Puliti [165]

(2018) eBee Fixed-wing Deciduous
species

Stock volume
estimation Norway 7300 ha Canon

IXUS/ELPH

Nicolas [134] eBee Fixed-wing Large
mammals

Wildlife
monitoring Namibia 10,300 ha Compact

camera
Pierrot [144]

(Lisein J. et al.,
2013)

Gatewing
X100, Fixed-wing Deciduous

species
Forest canopy

modelling Belgium 200 ha Ricoh GR3 still
camera

Michale [10] The Vector P Fixed-wing Wildfires Wildfire
monitoring USA NA Color/infrared

cameras

Specialized adaptation of robotic systems are desired to adapt to predetermined goals
in supporting field tasks. Zhang et al. [123] used a customized imaging component to
obtain imagery materials by utilizing different light blocking filters. By replacing the typical
NIR-light-blocking filter with a red-light-blocking filter, NIR-green-blue false color images
are generated instead of acquiring red-green-blue images. The modified component is
contributing to obtaining ideal imagery for further processing. Commercial UAVs are
used in almost all studied cases in this paper. Consumer-grade UAV platforms, such as
eBee by SenseFly, S800 EVO, Phantom 3 and Phantom 3 pro by DJI, micro UAVs, etc., are
widely used. However, most commercial UAV platforms can hardly realize component
demands requested by practical needs as their specifications are fixed. It would be more
appropriate for researchers to customize the utilized device instead of directly using
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commercial platforms. On the other hand, the improved payload will allow the upgrading
of battery storage, which will contribute to realizing a longer flight mission. Apart from
the above options, UAV types are worth considering for carrying practical missions. UAVs
with rotary-wing are more popularly utilized in practical applications due to their better
operational characteristics. In terms of forestry field applications, a rotary-wing UAV is able
to vertically take off and land, which is more ideal and advantageous over fixed-wing crafts.

4.2. Challenges in Forestry

The advantages of applying unmanned systems in forestry have developed to a new
level, and their separated demerits are avoided. Despite many signs of progress achieved
so far, some certain gaps and strains still exist in both technical and regulatory aspects,
which requires further research attention. The challenges are analyzed from environment
characterizing, maneuverability, mobility improvement, and regulatory interpretation.

(1) Environmental uncertainty

In wild working scenarios, uncertainties and variations increase the difficulty of per-
forming pre-assigned operations and acquiring ideal materials for further processing [166].
Practical conditions of applying unmanned systems can be analyzed through the following
two aspects. The first one can be summarized as natural variations in wild environments,
and major examples would be illumination conditions, wind turbulence, humidity, etc.
The other would be the highly varying objectives in field sites, such as the unpredictable
paths of live creatures or the spreading of forested disasters. When acquiring field data in
mountainous areas, the illumination conditions may cause impacts on the photogrammetric
qualities as the illumination conditions to change greatly in different time periods [167].
Dataset acquired from previous field experiments can be seen in Figure 11.
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(2) Maneuverability and utilization of UAVs
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To realize better maneuverability and utilization, it is crucial to ensure fundamental
abilities for aerial crafts and leave post-processing functions to their ground backups.
Therefore, UAVs need to ensure their miniature shapes and sizes. The highly unstructured
terrains in the forestry environment pose challenges for efficient mobility strategies. To
better suit the forestry working environment, a set of unmanned systems that are capable of
maneuvering under harsh terrains and traversing obstacles in forests have been proposed.
Multiple locomotion modes that offer the best adaptability for various terrain scenarios
were developed regarding the characteristic demand. Efficient speed to achieve ideal
work efficiency and clambering over obstacles by switching into traversing modes when
encountered with harsh terrains are desired. In terms of this aspect, more reliable and
flexible mechanisms under harsh conditions need to be further explored.

The complex surfaces in forestry lands pose great challenges for efficient mobility
strategies, which require reliable and flexible structures under harsh conditions. Rocks,
fallen trees, muddy slopes, and bushes all increase the difficulty of practical exploration
through mobile platforms. For locomotion in forestry applications, walking mobility is
required under benign terrains. However, the legged mobility may render the operation
efficient if the terrains are not too steep. With respect to the compromise between two no-
table solutions, one alternative is to use the mixed integration of both legged and wheeled
mobility functions. In this regard, hybrid articulated robots present better desirable char-
acteristics by uniting various modes, which enables them to have adaptability and agility
under varying requirements. Future development of automation platforms regarding
forestry practices needs to improve the locomotion function to make them flexible and
suitable to the highly unstructured environment.

(3) Supervision and regulations

Among all constraints that render practical UAVs deployment, the major non-technical
concern should be put on aviation regulations on aerial vehicles [168]. With the rapid
development of unmanned aerial platforms, the proper regulations towards the newly
dominant system have become major challenges for aerial regulation departments in some
regions, such as Australia, EU, and China. In 2002, Australia published its very first
regulatory rules for civil applications [169]. Guided by the European Commission, The
European Aviation Safety Agency (EASA) was founded with the aim to execute proper
management and administration issues for the effective utilization of aerial UAVs [170,171].
It released the regulatory statement in August 2009, and the document aimed to perform
a series of UAV applications [172,173]. In 2015, it gave detailed supervision towards
the general management and technical development aspects. Guided by the European
Commission, the European Aviation Safety Agency (EASA) was founded aiming to set
rules for the utilization of aerial UAVs. In 2019, Commission Implementing Regulation
(EU) formulated the rules and procedures for the operation of unmanned aircraft [174]. In
the same year, the Commission Delegated Regulation (EU) on unmanned aircraft systems
and on third-country operators of unmanned aircraft systems was also published [175].
JARUS published the guidelines on Specific Operations Risk Assessment (SORA) [176,177],
which recommended a single set of technical, safety, and operational requirements for all
aspects linked to the safe operation of the Unmanned Aircraft Systems (UAS). SORA is
regarded as the state-of-the-art risk assessment approach to all BVLOS UAS operations. At
the Chinese level, Civil Aerial Administration of China (CAAC) is organized to provide
development supervision and regulations of civil aerial UAVs. Its affiliated aerial standard
office published the operational regulation statements of lightweight UAS in December
2015, which gave direct references for executive issues.

4.3. Future Recommendations

Forest operations and management applications present new concerns in both techni-
cal and non-technical aspects when applying forestry robotic systems. Currently, extensive
prototypes are proposed by researchers, but most of the fully automatic robots are still
in the early stage as few are successfully implemented or commercially available. To
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better apply robotic systems into forestry, multiple underdeveloped areas must be further
explored regarding sub-system capability enhancement and customized adaptation for
synchronizing related sub-systems into fully complex systems.

For variations of objectives, it demands more accurate recognition and detection
techniques to be employed in forestry applications. In view of this aspect, the desired capa-
bilities of forestry robots include more adaptive and intelligent algorithms towards better
performance. More robust systems with advanced integration of environmental sensing,
and real-time decision making and planning are essential for forestry field applications. For
future research, a ground vehicle must improve its obstacle surmounting and avoidance
performance in a wild forested environment. Future research should focus on optimizing
the algorithm framework and improving the recognition accuracy. Hardware reliability,
such as sensors and controller of forest UAV, should be improved. The intelligent software
program and algorithm design can be integrated to realize the intelligent recognition of
multi-targets and dynamic targets.

Towards highly unstructured terrains, more flexible ground platforms are desired for
accomplishing complex forest missions under dynamic scenarios. While GPS can hardly
satisfy the accurate localization requirement, the simultaneous localization and mapping
(SLAM) method may improve the sub-system performance. The poor communication
quality in the forested environment is a major limiting factor due to the signal blocking
phenomenon of tree height when implementing unmanned practices. Therefore, the risk
of losing signals must be addressed to guarantee more efficient data transmission. The
efficiency of communication of the proposed system must be evaluated to ensure a trade-off
between low cost and high accuracy, and between simplicity and efficiency.

Additionally, the cooperative methodologies between aerial and ground vehicles
should further upgrade towards a more closely linked and intelligent stage. The robustness
and reliability of applied platforms require extensive experiments to ensure their perfor-
mance. The heterogeneity and complementarity of UAV and UGV in terms of dynamics,
speed, and communication enable the air-ground cooperative system to accomplish its
mission efficiently. These advantages are better than the performance of individual robots.
The key advances are to embed more intelligent computing algorithms for collaborative
systems and to develop new distributed frameworks.

It is also necessary to combine artificial intelligence (AI) technology with data acqui-
sition and intervention practices in forest, including deep convolutional neural network
(CCN), deep reinforcement learning (DRL), imitation learning (IL), meta-learning (ML),
etc., and furthermore, to study the automatic compilation technology for high-precision
UAV remote sensing images. At the same time, the spectral reflection image database
should also be constructed based on AI technology to improve the accuracy of forest re-
source investigation and monitoring, so as to accurately identify forest diseases, wildfires,
and wildlife.

In the new development process, the integration of fuel performance, emission speci-
fication, and corresponding bearing capacity against forest soils are major concerns. For
further development of forestry, barriers regarding policy and regulatory issues must be
reduced. A more systematic and appropriate system is demanded by researchers and
stakeholders in the forest industry.

5. Conclusions

Unmanned air vehicle (UAV) systems have constantly contributed to a variety of
forestry practices. Their technical feasibility in the forest industry has been validated by
past research efforts. Multiple advantages of utilizing unmanned alternatives for forestry
purposes were addressed in this effort by reviewing recent studies. The unmanned systems
including UGVs, UAVs, and heterogeneous platforms, and their applied scenarios were
presented accordingly herein, and the locomotion modes of robotic systems in an unstruc-
tured environment are compared. The UAV systems contributed to the improvement of
coverage availability, passability, and technical progress of forestry applications. Based on
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forestry automation equipment, different cases of utilized systems in the forestry industry,
including tree quantification, disease control, wildfire management, tree estimation and
wildlife monitoring, etc., were studied, and the associated technologies were discussed,
and the onboard sensors of UAV platforms are continuously developing towards further
improvement. Furthermore, in terms of mobility enhancement and customized sensory
adaptation, a detailed discussion was conducted with respect to the current status and
future development guidance.

The advantages of applying unmanned systems in forestry are developed to a new
level, and their separated demerits are avoided. The heterogeneous air vehicle unmanned
system can effectively improve productivity, maneuverability, spatial resolution, and real-
time and valid range concerns, but there are still some certain gaps and strains that need
to be further studied. (1) The complex terrain structure of the forest and the weak en-
durance of the robot make it difficult to adapt to large-scale intervention practices tasks.
(2) Due to the influence of environmental uncertainty, the stability of robots needs to be
further strengthened. (3) The dynamic nature of forest ecosystems requires timely and
repeated data acquisition and intervention practices, while the multitemporal and long-
term monitoring cannot be sufficiently performed due to the limitations of communication
reliability and battery. (4) Though unmanned systems are a great tool in many domains,
regulatory constraint may make it either impossible or excessively expensive to use, espe-
cially for individuals and small businesses. To better apply robotic systems into forestry,
multiple underdeveloped areas must be further explored regarding sub-system capability
enhancement, environment characterizing, maneuverability, and mobility improvement.
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