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Abstract: This paper concerns the fire-control command calculation (FCCC) of an unmanned au-
tonomous helicopter (UAH). It determines the final effect of the UAH attack. Although many different
FCCC methods have been proposed for finding optimal or near-optimal fire-control execution pro-
cesses, most are either slow in calculational speed or low in attack precision. This paper proposes
a novel inverse reinforcement learning (IRL) FCCC method to calculate the fire-control commands
in real time without losing precision by considering wind disturbance. First, the adaptive step
velocity-verlet iterative algorithm-based ballistic determination method is proposed for calculation of
the impact point of the unguided projectile under wind disturbance. In addition, a swarm intelligence
demonstration (SID) model is proposed to demonstrate teaching; this model is based on an improved
particle swarm optimization (IPSO) algorithm. Benefiting from the global optimization capability of
the IPSO algorithm, the SID model often leads to an exact solution. Furthermore, a reward function
neural network (RFNN) is trained according to the SID model, and a reinforcement learning (RL)
model using RFNN is used to generate the fire-control commands in real time. Finally, the simulation
results verify the feasibility and effectiveness of the proposed FCCC method.

Keywords: UAH; IPSO; IRL; fire-control command; swarm intelligence

1. Introduction

With the development of unmanned autonomous helicopter (UAH) technology, UAHs
have increasing advantages in future air warfare [1]. UAHs are cheap, with an excel-
lent bomb load and carrying capacity, making them well suited for air-to-surface attack
missions [2,3]. Moreover, UAHs are flexible, with a small turning radius and vertical
takeoff capability, being able to fly close to mountains to avoid detection by enemy radar.
Thus, they can perform long-range surprise attacks and post-reconnaissance strikes [4,5].
However, UAHs have poor stability because of their complex aerodynamic characteristics,
making it difficult for them to achieve rapid precision attacks, especially under wind distur-
bance. As a result, there are growing interests in the technology of fast and precise attack
using UAH automatic aiming [6], which mainly depends on the method of fire-control
command calculation (FCCC).

FCCC is used to guide the weapon system to adjust the elevation angle and the
azimuth angle to aim at the target to achieve the goal of a precision attack. Due to the highly
coupled attitude control of the UAH, the FCCC of the UAH is a non-convex optimization
problem. So far, two types of FCCC have been proposed, namely the look-up table method
and the differential method. The look-up table method obtains fire-control command by
multi-dimensionally, interpolating the table of the shot data or approaching this table
with a continuous analytic function [7]. It has the advantage of fast calculation and meets
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real-time requirements. However, its shortcomings include fitting formula errors and poor
universality. In addition, it needs to correct the nonlinear error of non-standard ballistic
meteorological conditions using the differential method. The differential method is used
to solve the ballistic differential equation [8,9] directly. It has the advantages of good
universality and high precision; nevertheless, it needs multiple trajectory iterations to
meet accuracy requirements, so it does not meet real-time requirements. In addition, this
approach also has the danger of falling into a local optimal solution.

The traditional FCCC methods often make it challenging to balance the calculational
speed and precision of the fire-control command, choosing only one to satisfy. Some improved
FCCC methods have been proposed to improve the attack precision or calculational efficiency.
The model in [10] can be quickly solved since there is no need to predict the status of the UAH,
but it still has a significant error since the bomb is not dropped at the time of the minimum
error. The method in [11] requires a long time to calculate the optimal solution, so it is difficult
to apply in the rapidly changing battlefield despite high precision. Although these improved
FCCC methods have further improved the speed and precision of the FCCC compared to the
traditional FCCC methods, two critical issues still need to be solved.

(1) Calculation with simultaneous consideration of the effects of disturbances and physi-
cal constraints.

(2) Improving the precision of the attack to a sufficient level of destruction while satisfying
real-time calculations.

In this paper, a new method combining the inverse reinforcement learning (IRL)
algorithm with the improved particle swarm optimization (IPSO) algorithm is used to
calculate the fire-control command of a UAH in real time. The main contributions of the
paper are summarized as follows:

• A trajectory calculation model is established based on the system of ballistic differential
equations considering the wind disturbance. The one-way adaptive step velocity-
verlet algorithm is used to solve the equations iteratively. The impact point and the
flight time of the unguided projectiles under wind disturbance can be computed
through this model.

• A swarm intelligence demonstration (SID) model based on the IPSO algorithm is
established for exact fire-control commands. This model is required to generate expert
demonstrations for the latter-mentioned IRL algorithm.

• An FCCC method with the SID-based IRL (SID-IRL) structure is implemented. The
RL model established in this method can learn to approximate the precision of the SID
model by completing the calculation faster.

This paper is organized as follows. Section 2 introduces the related works. Section 3 details
the process of the attack by a UAH with the unguided weapon. Section 4 investigates the
ballistic solution with the velocity-verlet algorithm. Section 5 proposes an FCCC model using
SID-IRL. Experimental simulations and comparisons between the traditional PSO algorithm,
the gradient descent-based (GD) algorithm, the IPSO algorithm and the SID-IRL algorithm in
two scenes are carried out in Section 6. Finally, some conclusions are presented in Section 7.

2. Related Work

Over the past few years, many improvements to the FCCC have been proposed. In [10],
a control method was designed for bombing, with miss distance (MD) being calculated
according to the target velocity measured by radar. Furthermore, the bombing command
was executed when the MD, calculated continuously, is first found to increase. An FCCC
method was proposed based on shot data in [12]. The initial solution was obtained by
looking up the shot data table. Then, the fire-control commands were solved by modifying
the initial solution. In [11], the relationship between th target height angle and target motion
time was introduced in the solution process; in this way, the target is always considered to
be a moving state in the fire-control solution process. A system of objective information
acquisition, attack target selection, weapon preparation, attack preparation and formal
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attack was proposed based on the air-to-surface multi-target attack in [13]. The fourth-order
Runge–Kutta method is applied in the fire-control computation in [14] to improve the speed
of solving differential equations.

A detailed analysis of the existing proposals in the FCCC is shown in Table 1.

Table 1. Relative comparison of existing proposals in FCCC.

Reference 1 2 3 4 5

Hu, X. et al. [7] Real-time Medium × × Ability to adjust balance
of precision and speed

Li, D. et al. [8] Simulation High
√

× With high precision

Li, Z. et al. [11] Simulation High
√ √ Full consideration of the

target movement

Li, X. et al. [12] Real-time Low × × Simple structure, quick
calculation

Sun, Y. et al. [13] Simulation -
√

× Propose innovations for
cluster attacks

1: Real-time/simulation; 2: Attack precision; 3: Universality; 4: Constraint consideration; 5: advantage;
-: not-mentioned;

√
: considered; ×: not considered.

With the development of computing power, many artificial intelligence algorithms
have also been used for solving nonlinear optimization problems, such as evolutionary
algorithms, swarm intelligence algorithms, and machine-learning algorithms. The swarm
intelligence algorithm is a computational technique based on the behavior of biological
populations [15]. These algorithms solve complex combinatorial optimization problems
because multiple iterative computations most likely obtain the optimal solution. However,
these algorithms often need abundant computing resources and still fall into a local optimal
solution. The particle swarm optimization (PSO) algorithm is one of them, with a simple
structure and easy implementation. Additionally, it has a strong capability of the global
search for nonlinear, multi-peaked problems [16]. Broadly, research has been done on
applying PSO algorithms to unmanned aerial vehicles (UAV). In [17], a simulated annealing-
particle swarm optimization algorithm was proposed to avoid local optima in UAV multi-
target path planning. In [18], a PSO algorithm developed for a rapid and flexible UAV can
optimize the coverage performance of the UAV. The feasibility of calculating the position
command by the swarm intelligence algorithm means that the same is also possible for the
attitude command. With the global optimization ability of the PSO algorithm, the angle
command of the fire-control system can be calculated accurately.

However, it is difficult for the PSO algorithm to achieve a fast solution, this being
precisely the advantage of machine learning. An agent trained well by the machine-learning
method can be calculated by consuming few computational resources, which is suitable
for deploying the machine-learning agent to on-board fire-control computers. In machine
learning, the innovative deep-reinforcement learning (DRL) algorithm proposed by the
DeepMind team combines methods from deep learning (DL) with powerful perception
and reinforcement learning (RL) with excellent decision-making power [19]. The use of
DL in RL defines the field of DRL, intending to solve the computer control problem from
perception to decision-making, thus enabling general artificial intelligence. In [20], many
DRL algorithms employed in automated driving were summarized. The algorithms used in
automated driving give many innovative ideas for UAHs [21]. The IRL algorithm used in
this paper demonstrates its strengths in performing well without explicit reward-shaping.
IRL is an RL structure that aims to infer an underlying reward structure based on the
interaction between the environment and expert demonstrations. It allows an agent to learn
the underlying reward of the expert demonstration behavior rather than imitating surface
behaviors [22]. A deep neural network was applied to the reward function structure to fit
the nonlinear functions from [23,24]. In [25], an IRL algorithm was investigated to learn the
UAV control performance of an expert. An inverse reinforcement learning algorithm with
maximum entropy was used to increase the efficiency of the aerial combat action in [26].
In [27], an IRL using a deep Q-learning algorithm was proposed to coordinate the UAVs
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and the unmanned ground vehicles. The IRL algorithms are usually able to compute the
output command quickly. Since the precision of the command is always close to the expert,
it is essential to design a great expert demonstration model.

3. Problem Formulation

The focused problem is that air early warning (AEW) detects the target and sends
the corresponding location information to the UAH. Then, the UAH, with unguided
projectiles, receives information about the target, evades enemy reconnaissance, and quickly
approaches the target. When the UAH’s own sensors detect the target, the UAH needs to
quickly calculate the fire-control command and execute the attack mission. The process of
attack by the UAH is shown in Figure 1.

Figure 1. The attack process of UAH.

Therefore, the key to calculating the fire-control problem of UAH is how to quickly
generate the sequence of commands that can be executed steadily using the flight control
system. In the traditional FCCC method, the FCCC model is first established, and its
corresponding state vector diagram is shown in Figure 2 [28].

Figure 2. The schematic diagram of the fire-control command calculation method.

In this figure, ~ξ jd is the displacement vector of the projectile under the effect of the
initial velocity, ~ξw is the displacement vector under the effect of wind disturbance, ~η
is the displacement vector under the effect of gravity, the relative position relationship
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between the UAH B and the target T is expressed by ~Dm,~L is the vector of predicted target
displacement between current target T and the expected target Te, W is the impact point of
the projectile, and~e is the vector of MD.

The system of the fire-control solution equations are as follows [29].

t f + Dm cos θw cos ψw

= ξ
up

v01
cos θc

w cos ψc
w + ξ

vb
v01

cos α cos β− η sin θb
(1)

t f + η cos θb cos φb + Dm sin θw = ξ
up

v01
sin θc

w + ξ
vb
v01

sin α cos β (2)

t f + η cos θb sin φb + Dm cos θw sin ψw = ξ
up

v01
cos θc

w sin ψc
w (3)

where (ξwx, ξwy, ξwz) are the wind speed constant components, (ψb, θb, φb) are the yaw, pitch
and roll of the UAH, respectively, t f is the flight time of the projectile, Dm is the relative
distance with Dm = |~Dm|, ξ is the absolute ray length of the projectile with ξ = |~ξ jd|, up
is the initial velocity of the projectile, v01 is the absolute velocity of the projectile, vb is
the velocity of the UAH, (α, β) are the angle of attack and the angle of sideslip, η = |~η|,
(θw, ψw) are the current elevation angle and the current azimuth angle of the weapon line,
while (θc

w, ψc
w) are the weapon line’s expected elevation angle and azimuth angle.

The FCCC problem is to obtain the optimal values of (θc
w, ψc

w, t f ) using Equations (1)–(3).
However, it is difficult to solve the system of equations in real time due to the physical
constraints of the UAH and the constant change in attitude angles. In addition, there
are cases where the equations have no solutions after accumulating disturbance errors.
Therefore, the best approach to the FCCC problem is to consider it an optimization problem.
Due to the non-convex nature of the equations, the gradient-based algorithm is difficult to
solve this problem because of falling into a local optimum solution.

This paper aims to integrate available target information with UAH states to compute
the optimal commands of the fire-control process in real time considering the constraints.
The command obtained should be reasonable for the flight control system, as it is also
iteratively revised and updated until the aiming is complete. The framework of the
proposed algorithm in this paper is shown in Figure 3.

Figure 3. The framework of SID-IRL fire-control command calculation method.
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4. Calculation of the Projectile’s Trajectory

The impact point of the unguided projectile, based on the current weapon angle, is first
calculated by iterating through the differential equations. Then, the weapon line’s elevation
angle and azimuth angle is modified so that the impact point is close to the prospective
position of the target. To improve the solving speed, a neural network-fitted solution model
(described in detail later) is used; thus, the precision requirement is only considered in the
ballistic solving process. A variable step size velocity-verlet algorithm [30] is designed to
solve the ballistic differential equations. It is assumed that the projectile has no recoil, with
the initial launch velocity being constant. Since it is disturbed by the wind, wind speed
should be estimated by the atmospheric wind field model.

According to the theory of external ballistics, the equations of projectiles are derived
in a rectangular coordinate system as follows:

v̇x = − fK(vx, zw)

v̇y = − fK(vy, zw)

v̇z = − fK(vz, zw)

ẋw = vx

ẏw = vy

żw = vz

(4)

where fK is the air drag function related to the velocity of the projectile itself, vx, vy, vz
are the velocities of the projectile in the geographic coordinate system, while (xw, yw, zw)
describes the position of the projectile.

If the projectile is consistently disturbed by cross-lateral wind during its flight, an
estimate of the wind is required. So that Equation (4) is rewritten as

v̇x = − fK(vx, zw)− fW(σx)

v̇y = − fK(vy, zw)− fW(σy)

v̇z = − fK(vz, zw)

ẋw = vx

ẏw = vy

żw = vz

(5)

where σx, σy are the height-related components of wind speeds on the x-axis and y-axis,
and fW is the estimated value of the wind type disturbance (to be discussed later).

4.1. The Estimation of the Wind Disturbance

Suppose that the wind has the speed u1; its direction is β1 for an altitude of z1 obtained
through the data link, 0.5 m < z1 < 100 m. The wind has the speed ub ,its direction is
βb for an altitude of the airframe zb is measured by the UAH. The estimation of the wind
disturbance is shown in Figure 4.

• zb < 100 m
In this case, the projectile is in the surface layer all the time, thus indicating the wind
speed to be estimated u at the altitude z and the available wind speed u1 at z1 are
related by a power law as follows [31]:

u(z) = u1(
z
z1
)k (6)

with
k = ln

ub
u1

/ln
zb
z1

(7)
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where z1 ≤ z ≤ zb. The angle β is related to β1, and βb is described by

β(z) =
zb − z
zb − z1

β1 +
z− z1

zb − z1
βb (8)

• 100 m ≤ zb < 1000 m
In this case, the projectile is in the Ekman layer until its altitude is less than 100 m [32].
If 0.5 m ≤ z < 100 m, it still can be calculated by Equation (6) with

k(z) = 1/ ln[
√

z · z1/z0]− 0.0403 ln(u1/6) (9)

where z0 = 0.5 m is the height of the viscous sublayer.
The angle β is obtained by [32]

β(z) =
zg − z
zg − z1

β1 +
z− z1

zg − z1
βg (10)

with
βg = arctan(e−zg/δ sin(zg/δ)/(1− e−zg/δ cos(zg/δ))) (11)

where zg = 100 m is the critical altitude, and δ = 1000/π is the Ekman altitude.
If 100 m ≤ z < zb, the speed u is calculated as

u(z) =
zb − z

zb − 100
ug

√
1− 2e−z/δ cos(z/δ) + e−z/δ +

z− 100
zb − 100

ub (12)

where ug is the wind speed at height zg calculated using Equations (6) and (9). The
angle β is yielded by

β(z) =
zb − z

zb − 100
arctan(e−z/δ sin(z/δ)/(1− e−z/δ cos(z/δ))) +

z− 100
zb − 100

βb (13)

Since the speed and angle of wind at any altitude have been obtained above, σx, σy
can be computed now as follows:{

σx(z) = u(z) cos(β(z))
σy(z) = u(z) sin(β(z))

(14)

Figure 4. The schematic diagram of the wind disturbance estimation.

The wind disturbance of the projectile is obtained by aerodynamic effect estimated as
follows [33]: {

fW(σx) =
1
2 Cx1ρσ2

x Sm

fW(σy) =
1
2 Cy1ρσ2

y Sm
(15)
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where Cx1 is the axial force coefficient, Cy1 is the sideway force coefficient, ρ is the air
density, while Sm is the characteristic area of the projectile.

4.2. The Calculation of the Impact Point

The air drag function fK(vx, z) can be described by [34]

fK(v, z) = C(v)H(z)G(v) · v (16)

with {
H(z) = (20, 000− z)/(20, 000 + z)
G(v) = 4.737× 10−4 · v

(17)

where v is the velocity of the projectile, z is the altitude of the projectile, C(v) is the standard
air drag coefficient, related to the Mach number of the projectile v/α, α is the speed of sound,
H(z) is the air density function, z ≤ 10, 000 m, and G(v) is the air drag coefficient [35].

The initial velocity of the projectile is decomposed in the geographic coordinate system
as follows: 

v0
x = up · cos αw · cos βw + vbx

v0
y = up · cos αw · sin βw + vby

v0
z = up · sin αw + vbz

(18)

where up is the initial velocity of the projectile, vbx, vby, vbz are the velocities of the airframe
in the geographic coordinate system, αw ∈ [−π/2, π/2] is the angle between the direction
of u and the horizontal plane, while βw ∈ [−π, π] is the angle between the x-axis and the
projection of u on the horizontal plane.

Angles αw and βw can be calculated by the relative position between the weapon firing
point and the airframe, as below:αw = arctan zb−ze√

(xb−xe)2+(yb−ye)2

βw = arctan xb−xe
yb−ye

(19)

where xb, yb, zb are the coordinates of the airframe mass center, while xe,ye,ze are the coordi-
nates of the weapon firing point in the geographic coordinate system; these coordinates
can be calculated by [36] xe

ye
ze

 = Tb→e · Pb (20)

with

Tb→e =

cos θb cos ψb sin φb sin θb cos ψb − cos φb sin θb cos φb sin θb cos ψb + sin φb sin ψb
cos θb sin ψb sin φb sin θb sin ψb + cos φb cos ψb cos φb sin θb sin ψb − sin φb cos ψb
− sin θb sin φb cos θb cos φb cos θb

 (21)

and

Pb =

lw · cos θw · cos ψw + xb
lw · cos θw · sin ψw + yb

lw · sin θw + zb

 (22)

where Tb→e is the transition matrix from the airframe to the geographical coordinate system,
while ψb, θb, φb are the airframe’s yaw, pitch and roll, respectively. Pb is the initial coordinate
matrix of the projectile in the airframe coordinate system, lw is the length of barrel, θw is
the elevation angle of the projectile, and ψw is the azimuth angle of the projectile.
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The speed vx, vy, vz and the position xw, yw, zw are updated by [37]

xj+1
w = xj

w + vj
x∆tp +

v̇j
x

2 ∆t2
p +

1
2 fW(σx(z

j
w))∆t2

p

yj+1
w = yj

w + vj
y∆tp +

v̇j
y

2 ∆t2
p +

1
2 fW(σy(z

j
w))∆t2

p

zj+1
w = zj

w + vj
z∆tp +

v̇j
z

2 ∆t2
p

vj+1
x = vj

x +
v̇j+1

x −v̇j
x

2 ∆tp + fW(σx(z
j
w))∆tp

vj+1
y = vj

y +
v̇j+1

y −v̇j
y

2 ∆tp + fW(σy(z
j
w))∆tp

vj+1
z = vj

z +
v̇j+1

z −v̇j
z

2 ∆tp

(23)

where ∆tp is the variable step size. The impact point estimation algorithm is
shown in Algorithm 1.

Algorithm 1 The one-way adaptive step velocity-verlet iterative algorithm of ballistic
solution
Input: φb, θb, ψb, xb, yb, zb, vbx, vby, vbz, up, θw, ψw, u1, β1, z1,ub, βb, zb
Output: t f , xw, yw, zw

Calculate xe, ye, ze according to Equation (20)
Calculate the initial velocities of the projectile v0

x, v0
y, v0

z according to Equations (18) and (19)
Start iterating
Initialize the initial position of the projectile with x0

w ← xe, y0
w ← ye, z0

w ← ze, t f ← 0
Initialize iteration index j = 1, iteration step ∆tp = 0.5, attenuation factor k = 1

while zj
w > 0.01 do

Calculate the wind disturbance fW(σx(zw)), fW(σy(zw)) at zj
w by Equation (15)

Calculate vj+1
x , vj+1

y , vj+1
z , xj+1

w , yj+1
w , zj+1

w by Equation (23)

if zj+1
w < 0 then

Update ∆tp = ( zj
w

zj
w−zj+1

w
)k∆tp

Recalculate vj+1
x , vj+1

y , vj+1
z , xj+1

w , yj+1
w , zj+1

w with new ∆tp
Increase k = k + 1

end if
Update j = j + 1
Record t f = t f + ∆tp

end while
Record xw = xj

w, yw = yj
w, zw = zj

w

5. Fire-Control Command Calculation Method Based on SID-IRL

After establishing the trajectory calculation approach, the FCCC method can be de-
signed by the virtual MD between the impact point calculated in Section 3 and the expected
position of the target. This method is based on the following idea:

First, expert demonstrations are obtained by the SID model; then, the IPSO algorithm
is used to iteratively optimize the elevation and the azimuth angles of the projectile in the
SID model. Afterwards, the expert demonstrations are used to train a reward function.
Finally, the IRL algorithm is used to learn the reward function, then a fast iterative and
precision FCCC model is obtained.

5.1. The Establishment of the Swarm Intelligence Demonstration Model

In this model, the elevation and the azimuth angles of the projectile are used as
variables to optimize. Then, the final command curve of the optimal angles in solution
space is obtained using the MD and aiming time as evaluation indicators.

The projectile flight time and the expected MD are obtained by the trajectory calcula-
tion model with the current projectile’s elevation and azimuth angles. The firing condition
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is judged to be complete; if not, the fitness function is optimized according to the IPSO
algorithm. The fitness function of the IPSO algorithm can be calculated by

Ff it = w1 ·
∣∣−→e ∣∣+ w2 · t f (24)

where w1 is the weighting factor of MD, w2 is the weighting factor of the flight time of the
projectile, and t f is the flight time of the projectile.

∣∣−→e ∣∣ is the virtual MD calculated by
the projectile’s impact point and the target’s expected position; the former is obtained by
Algorithm 1, while the latter is calculated as follows:

∣∣−→e ∣∣ = √(xte − xw)2 + (yte − yw)2 + (zte − zw)2 (25)

with 
xte = xt + vtx · t f

yte = yt + vty · t f

zte = zt + vtz · t f

(26)

where xte, yte, zte express the expected position of the target at the time of the projectile
landing, xt, yt, zt denotes the position of the target at the time of the projectile firing, and
vtx, vty, vtz are the velocities of the target.

Due to the execution time required to apply the command to the flight control system,
calculating the final result fails to meet the fast-aiming requirement. It neglects the effect of
the airframe’s inertia during the iterative process. As a result, the traditional PSO must be
improved by spatial clipping so that the command of each iteration can be applied as the
current control expectation. In each iteration, the maximum and minimum constraints of
the projectile’s elevation and azimuth angles are simultaneously updated, considering the
inertia of the airframe’s rotation. The update of the constraints is shown in Equation (27).

θi+1
max = θi

w + λdwi
θ∆tj +

1
2 βθ∆tj

2

ψi+1
max = ψi

w + λdwi
ψ∆tj +

1
2 βψ∆tj

2

θi+1
min = θi

w + λdwi
θ∆tj − 1

2 βθ∆tj
2

ψi+1
min = ψi

w + λdwi
ψ∆tj − 1

2 βψ∆tj
2

(27)

where θi
w, ψi

w are the elevation and the azimuth angle of the projectile at i,
[
θi

min, θi
max
]
, and[

ψi
min, ψi

max
]

are the bounded ranges, and wi
θ , wi

ψ are the velocities, βθ , βψ are the maximum
angular acceleration of them, λd ∈ (0, 1) is the damping term, while ∆tj is the iteration step
of FCCC.

The improvement of the PSO algorithm is based on spatial clipping by updating the
constraints at every iteration. It helps reduce the situation of being in a local optimum
solution and improves the computation speed and precision. The following diagram of the
IPSO algorithm is shown in Figure 5. We make the max iteration of the SID model be Imax,
the fitness allowed for attack Fattack, and the expert demonstrations generated by the SID
model are shown in Algorithm 2.

Figure 5. The follow diagram of the IPSO algorithm.
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Algorithm 2 Expert demonstrations generation algorithm

Input: Parameters of the environment, θ0
w, ψ0

w
Output: {θ1

w, θ2
w, · · · }, {ψ1

w, ψ2
w, · · · }

Calculate xw, yw, zw, t f with θ0
w, ψ0

w according to Algorithm 1
Calculate Ff it by Equation (24)
Initialize i = 1
while i < Imax or Ff it > Fattack do

Update i = i + 1
Spatial clipping according to Equation (27)
Find the best θi

w, ψi
w by IPSO algorithm

Calculate xw, yw, zw, t f with θi
w, ψi

w
Calculate Ff it by Equation (24)

end while

5.2. The Establishment of SID-IRL Model

The swarm intelligence algorithm requires a large population size to meet the solution
precision, which often leads to a long solution time and cannot meet the requirement of fast
aiming. The IRL algorithm is considered in order to use the environment state and its state
to obtain the reward function effectively. Then, it learns the optimal solution command
through the generated reward function, which can improve the solution efficiency without
affecting the precision of the solution.

The parameters that affect the solution results are used as the input of the IRL algo-
rithm; they are shown in Table 2.

Table 2. The parameters of input.

Name Meaning

vbx , vby, vbz Velocity of the airframe in the geographic coordinate system
vtx , vty, vtz Velocity of the target in the geographic coordinate system
up initial velocity of the projectile
atx , aty, atz acceleration of the target in the geographic coordinate system
xb, yb, zb Position of the airframe in the geographic coordinate system
xt, yt, zt Position of the target in the geographic coordinate system
θmax, θmin The maximum and the minimum of the projectile elevation angle
ψmax, ψmin The maximum and the minimum of the projectile azimuth angle

The output χ of the SID model and the output γ of the IRL agent is used to train the reward
function of the neural network (RFNN) model. First, the IRL agent is initialized randomly, with
the same set of environment parameters being used as the input of both the SID model and the
IRL agent. Then, the RFNN is trained to reach the goal that outputs a higher value R(χ) with
the input of χ while outputting a lower value R(γ) with the input of γ. An RFNN model can
evaluate the behavior of the SID model as better behavior is obtained. Finally, the RFNN model
trains the IRL agent with the deep deterministic policy gradient (DDPG) algorithm [38]. The
diagram of the SID-IRL algorithm is shown in Figure 6.
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Figure 6. The flow diagram of the SID-IRL model.

6. Simulation Results

In this section, two simulations are performed to verify the feasibility and the effec-
tiveness of the proposed model and algorithm in the quick calculation fire-control problem:

(1) The UAH approaches from a distance after knowing the target’s location and
drops bombs.

(2) The UAH suddenly finds the target in the process of close reconnaissance and makes
timely adjustments to attack.

In the SID-IRL model, we use Adam [39] for learning the neural network parameters
with a learning rate of 5× 10−4 , 5× 10−3 and 5× 10−4 for the actor, critic network and
RFNN. The actor network has two hidden layers with 400 and 300 units, respectively; the
units of its input and output layers are 20 and 2, respectively. The critic network has one
hidden layer with 500 units. Moreover, the RFNN has three hidden layers with 200, 500,
and 100 units, respectively. The size of the SID-IRL model’s experience pool is set to 200,000.
The main parameters of SID are shown in Table 3.

Table 3. The main parameters of the SID.

Name Meaning Value

Nsi Population quantity 100
Dsi Particle dimension 2
Tsi Maximum Iterations 200
c1 Learning factor 1 0.5
c2 Learning factor 2 0.5

Wmax Maximum inertia weight 0.8
Wmin Minimum inertia weight 0.4
Vmax Maximum velocity weight 0.5
Vmin Minimum velocity weight −0.5

The actor network trained by the above parameters will act as the agent as the output
of the proposed algorithm. In the following experiments, the performance of the SID-
IRL algorithm is evaluated by the MD, the earliest attackable time of the UAH, and the
calculation time. We compared the results with the traditional PSO algorithm, the GD
algorithm, and the IPSO algorithm with and without wind disturbance.

6.1. Case 1: Long-Range Attack

In this scenario, the UAH is set at a remote location away from the target and fires an
unguided weapon to launch an attack. Furthermore, the UAH moves at a higher velocity,
while the target does not detect the presence of the UAH and thus moves at a low speed.
The speed and direction of the wind at the height of the UAH are known, and the surface
wind data are known from the monitoring-station measurements. The main parameters of
case 1 are shown in Table 4.

Figures 7–10 show the main and the side views of the projectile trajectory when the
final attack command is given with FCCC by different algorithms. The green asterisk
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represents the position of the UAH at this moment. The light blue dotted line shows the
projectile’s trajectory. The black circle denotes the impact point. The red plus indicates
where the target was at launch. The blue cross indicates the expected target position.
Figure 11 shows the sequence of commands calculated by different algorithms. The change
in the virtual impact point in different algorithms is shown in Figure 12. Figure 13 shows
the MD of the projectile over time in different algorithms. The comparison results of
this case in 5 s between the PSO algorithm, GD algorithm, IPSO algorithm and SID-IRL
algorithm are shown in Table 5.

Figure 7. The ballistic of PSO in case 1.

Figure 8. The ballistic of GD in case 1.

Figure 9. The ballistic of IPSO in case 1.
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Figure 10. The ballistic of SID-IRL in case 1.

Figure 11. Command of the projectile angles in case 1.

Figure 12. Change of impact point in case 1.
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Figure 13. Miss distance in case 1.

Table 4. The main parameters of the simulation case 1.

Name Value Unit

vbx , vby, vbz 50, 0, 0 m/s
vtx , vty, vtz 10, 10, 0 m/s

up 500 m/s
xb, yb, zb 0, 0, 500 m
xt, yt, zt 2000, 800, 0 m

atx , aty, atz 1, 1, 0 m/s2

ψb, θb, φb 0, −5, 0 Deg
u1, ub 1, 5 m/s
β1, βb 5, 20 m/s

z1 5 m

Table 5. Comparison results of case 1.

Wind Method 1 2 3 4 5 6 7 8 9

× PSO 806.17 1192.39 1024.22 129.83 inf 154.11 160.65 156.97 2.24
× GD 21.35 26.79 24.23 1.90 4.2 9.21 9.69 9.39 0.18
× IPSO 1.95 6.71 4.30 1.63 5.5 108.77 116.54 112.82 2.81
× SID-IRL 54.92 56.85 55.84 0.68 inf 1.98 2.16 2.04 0.06√

PSO 646.06 1263.68 975.21 239.79 inf 164.28 178.80 173.01 4.76√
GD 17.72 17.73 17.73 0.01 2.4 7.42 7.87 7.62 0.18√
IPSO 0.02 0.15 0.09 0.05 2.1 124.00 127.46 125.98 1.32√
SID-IRL 38.75 38.89 38.83 0.05 0.7 2.04 2.23 2.09 0.07

1: Minimum of the MD(m); 2: Maximum of the MD(m); 3: Mean of the MD(m); 4: Standard deviation of the
MD; 5: Earliest attackable time(s); 6: Minimum time of the calculation(s); 7: Maximum time of the calculation(s);
8: Mean time of the calculation(s); 9: Standard deviation of the calculational time.

6.2. Case 2: Close-Range Attack

In this scenario, the UAH is on patrol at a low altitude. Assume that when the UAH finds
the target, the target makes a fast movement to avoid the attack. Because the UAH is at a lower
altitude, it can be assumed that the wind speed at the altitude of the airframe is the same as the
wind speed near the ground. The main parameters of case 2 are shown in Table 6.

Figures 14–17 show the final projectile trajectory’s main and side views in this case.
The marker description is the same as in case 1. Figure 18 shows the sequence of commands
calculated by different algorithms in this case. Figure 19 shows the change in the virtual
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impact point by different algorithms in this case. The MD of the projectile over time is
shown in Figure 20. In Table 7, the comparative data of each algorithm is presented.

Figure 14. The ballistic of PSO in case 2.

Figure 15. The ballistic of GD in case 2.

Figure 16. The ballistic of IPSO in case 2.
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Figure 17. The ballistic of SID-IRL in case 2.

Figure 18. Command of the projectile angles in case 2.

Figure 19. Change of impact point in case 2.
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Figure 20. Miss distance in case 2.

Table 6. The main parameters of the simulation case 2.

Name Value Unit
vbx , vby, vbz 5, 0, 0 m/s
vtx , vty, vtz 25, 25, 0 m/s

u 500 m/s
xb, yb, zb 0, 0, 50 m
xt, yt, zt 120, 200, 0 m

atx , aty, atz 0, 0, 0 m/s2

ψb, θb, φb 2, −5, 0 Deg
u1, ub 1, 1 m/s
β1, βb 20, 20 m/s

z1 5 m

Table 7. Comparison results of case 2.

Wind Method 1 2 3 4 5 6 7 8 9

× PSO 195.64 225.43 215.80 10.46 inf 69.28 86.77 77.36 7.26
× GD 52.54 59.60 55.80 2.35 inf 8.45 8.88 8.66 0.16
× IPSO 1.99 4.36 2.69 0.86 4.7 50.17 59.21 55.96 3.24
× SID-IRL 11.92 12.15 12.01 0.09 2.3 1.99 2.12 2.04 0.05√

PSO 178.82 227.01 201.81 16.65 inf 72.43 98.87 91.26 9.56√
GD 47.81 47.84 47.83 0.01 5.0 6.95 7.58 7.08 0.25√
IPSO 1.48 1.55 1.51 0.02 4.1 60.40 61.16 60.61 0.29√
SID-IRL 9.15 9.75 9.31 0.02 2.1 2.16 2.43 2.25 0.09

1: Minimum of the MD(m); 2: Maximum of the MD(m); 3: Mean of the MD(m); 4: Standard deviation of the MD; 5:
Earliest attackable time(s); 6: Minimum time of the calculation(s); 7: Maximum time of the calculation(s); 8: Mean
time of the calculation(s); 9: Standard deviation of the calculational time.

From these experimental results, we have the following observations.

(1) As shown in Figures 7 and 14, the FCCC method using the traditional PSO algorithm
makes it difficult to find optimal or suboptimal solutions in an extensive range. It
remains in an untargeted completion state at the final moment. However, the IPSO
algorithm can precisely aim at the target because of the clipping of the search space
and the consideration of physical constraints, as shown in Figures 9 and 16. The
global search capability of the IPSO algorithm is significantly increased, allowing
it to satisfy the precision requirements fully. However, according to Tables 5 and 7,
the calculation speed of the IPSO algorithm is far from the real-time requirement.
Moreover, the SID-IRL algorithm proposed in this paper provides a result slightly
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worse than the IPSO algorithm in MD, but has far better calculational efficiency,
according to Tables 5 and 7.

(2) The gradient-based algorithm of FCCC can obtain a solution at a fast computational
speed, but it does not attack with great precision, as shown in Tables 5 and 7. Although
the gradient algorithm used has an adaptive step size, the result is still not optimal
for each iteration. In addition, the method can meet real-time requirements well, but
its lack of attack accuracy prevents it from being a demonstration model.

(3) With the consideration of wind disturbance, the mean MD of SID-IRL drops from
56.85 to 38.89 in case 1, which satisfies the condition of attack (MD < 50). The cost
of the calculation for wind disturbance is an increase in computational load, which
increases its computation time, but the gain in the precision of attack is as expected.

(4) By combining Figures 11 and 12, it can be seen that the SID-IRL algorithm adjusts
both the x-axis orientation and y-axis orientation to bring the virtual impact point
close to the expected point as quickly as possible. It makes the earliest attackable time
of the SID-IRL algorithm even better than the IPSO algorithm. We think the right
policy is obtained by the IRL algorithm through inverse learning. By acquiring the
potential rewards, the SID-IRL model performs better than the demonstrator system
of the IPSO algorithm.

(5) As shown in Figures 11 and 18, the SID-IRL algorithm generates more logical com-
mands to stabilize the azimuth to the expected angle more quickly. The smooth
commands generated by the SID-IRL algorithm are better for UAH’s flight control
system to respond. Moreover, as can be seen from the azimuth angle commands
sequence in Figures 11 and 18, the commands of the SID-IRL algorithm quickly arrive
near the desired angle and slowly converge.

(6) The comparison results of the two simulation scenarios show that the SID-IRL algo-
rithm has a more attractive performance in the scenario of the close-range attack. It
allows the UAH to react quickly to complete targeting attacks in a sudden environ-
ment, thus enormously increasing the UAH survival rate and effectively reducing the
possibility of enemy escape.

7. Conclusions

The purpose of this paper is to calculate the fire-control command of a UAH in real
time, given the wind interference and flight constraints. In this paper, an IRL-based FCCC
method has been proposed with the demonstration of the swarm intelligence algorithm.
First, an iterative method of adaptive step velocity-verlet algorithm for ballistic trajectory
calculation under wind disturbance has been proposed. In addition, a SID model for FCCC
through an IPSO algorithm has been established, which can obtain fire-control commands
with high precision. Subsequently, the RFNN has been trained by the IRL algorithm and the
SID demonstrative teaching. Finally, the agent has been trained with the policy of DDPG
and the reward function from the RFNN. The fire-control computer with the agent model
can quickly output fire-control commands according to its own and environment states. In
the simulation, the IRL-based FCCC method has been compared with the PSO algorithm,
the GD algorithm and the IPSO algorithm in two scenarios of the long-range attack and
close-range attack. The simulation results show that the IRL-based FCCC method has
precision similar to the demonstrations of SID. Additionally, the calculational efficiency
of the IRL-based FCCC method is superior to the PSO algorithm and the GD algorithm.
On the other hand, from the perspective of time complexity, if the number of fire-control
command sequences is n, the time complexity of the final agent is approximately O(Dsin),
which is less than the time complexity of the PSO algorithm (O(NsiDsiTsin)). Overall, we
can conclude that the proposed IRL-based method works well for the FCCC for UAH.
This is crucial in the application of the observation strike integrated UAH. However, the
proposed method’s precision is still not sufficient for destroying ground-moving targets
with high maneuverability. Thus, further improvements to the attack precision of the FCCC
algorithm are needed in future work.
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