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Abstract: Autonomous navigation and orbit determination are key problems of asteroid exploration
missions. Inter-satellite range link is a type of measurement widely used in the orbit determination
of Earth satellites, but not so widely used in missions around small bodies. In our study, we assume
that highly accurate inter-satellite range data can be obtained around small bodies between the chief
spacecraft and some low-cost deputies, and study the feasibility of simultaneous autonomous orbit
determination of the spacecraft and the gravity-field recovery without the support from ground
stations. After the feasibility analysis, two modified methods are proposed. Both methods demon-
strate obvious improvements in both the convergence region and the accuracy. One remark is that
the inter-satellite range data can be also used together with various observation data from ground
stations to enhance the accuracy of the determined orbits and the gravity field.

Keywords: autonomous orbit determination; gravity field; asteroid; inter-satellite range data; optimization

1. Introduction

Nowadays, small bodies are interesting targets of in-suite explorations. Up to now,
many missions have visited these objects. Determining the spacecraft’s orbit and the
asteroid’s gravity field is one of the goals for these missions. To this end, the current
technology heavily depends on observations from ground stations. There are several types
of observation data often used in asteroid missions. In the earliest missions, Doppler and
range-measurement are main types of data used in missions, such as the NEAR-Shoemaker
and the DAWN mission [1–3]. VLBI data is also widely used. For example, during the
Chang’e-2 flyby of the asteroid Toutatis, its orbit was determined by the VLBI data together
with the USB (Unified S-Band) data [4]. Delta Differential One-way Ranging (DDOR) is
a highly accurate measurement based on the VLBI technology [5] and was used in the
OSIRIS-Rex mission [6,7].

Most asteroids are irregularly shaped. Many studies have been carried out on asteroid
shapes and gravity-field models. For example, the polyhedron model is one of the most
widely used asteroid shape models [8], but its associated form of gravity field is incon-
venient to use in the gravity field recovery from observations. For elongated asteroids, a
simple rotating mass dipole model is used to rapidly model the gravity field [9]. Despite of
these gravity models, the most commonly used one in the asteroid’s gravity field recovery
is still the well-known spherical harmonics. By recovering the gravity harmonic coeffi-
cients, density and internal structures of an asteroid can be inferred [10–12]. The gravity
coefficients are usually measured simultaneously with the spacecraft’s orbit. For the first
asteroid exploration mission, NEAR-Shoemaker, the gravity field up to the fourth order and
degree was determined [1]. Using Doppler and range data of the Dawn spacecraft, Park
and Konopliv et al. obtained a gravity field up to 20th order and degree for Vesta and 18th
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order and degree for Ceres, the two most massive asteroids in the asteroid belt [2,3,10,13].
For asteroids of hundreds of meters in diameter or even smaller, it is usually difficult to
obtain a high order and degree gravity field using traditional methods. One exception
is the asteroid Bennu which is only about 450 m in diameter. In the OSIRIS-Rex mission,
angle-measurement data between the spacecraft and particles around the asteroid made it
possible to determine the gravity field to a high precision of 10th order and degree [14,15].

Experience from the OSIRIS-Rex mission indicates that accurate relative measurement
around the asteroid may help improve the accuracy of the gravity-field recovery. We do
not always have the chance to obtain relative angle measurement data as we did in the
OSIRIS-Rex mission because not all targets have particles ejected from their surface, but we
can use artificial relative-measurement data such as the inter-satellite range measurement,
which is already extensively used in many applications around the Earth. For example, in
the global navigation satellite system (GNSS), the addition of inter-satellite range data to the
ground-observation data can significantly improve the accuracy of orbit determination [16–18].
In addition, in the GRACE-FO mission, the precise inter-satellite range data are used to
obtain the high-order gravity field of the Earth [19].

An intuitive idea is to borrow this technology for asteroid missions. That is to say,
we build accurate inter-satellite links between the spacecraft formation with one chief
spacecraft and some cheap deputies which can move closer to the asteroid’s surface. For
spacecraft formations in the proximity of asteroids, autonomous navigation using multiple
sensors was already studied [20]. For Earth satellites, it is impossible to autonomously
determine the satellites’ orbit using only the relative inter-satellite range data, due to
the well-known rank-deficiency problem. This is no longer the case for missions around
irregular asteroids. The highly non-spherical gravity obviously disturbs the spacecraft’s
orbit and efficiently removes the rank-deficiency problem, a fact which will be shown in
our studies.

Taking an audacious step further, we attempt to study the feasibility of simultaneously
determining the asteroid’s gravity field and the spacecraft’s orbit using only the inter-
satellite range data. This is definitely impossible for Earth satellites, because determining
the spacecraft’s orbit alone already requires the support from ground stations. But for
asteroid missions it is possible due to the strong non-spherical gravity perturbation. To
this end, we assume that the asteroid’s rotation is already well established, i.e, rotational
parameters such as the pole angles and angular speed are already known. In the current
study we assume that the asteroid is uniformly rotating along its largest principal axis
in space. As a very preliminary setting, we use a gravity field up to fourth order and
degree to simulate the orbits and the inter-satellite range data. However, we only try to
determine the gravity field up to the second order and degree. By doing so, we simulate
the force model errors in the orbit determination and gravity field recovery. The gravity
field of the asteroid 433 is taken as an example [1]. To simplify the notations, we call
the problem of simultaneously determining the asteroid’s gravity field and the spacecraft
the complete-inverse problem. We divide the complete problem into two sub-problems.
Sub-problem 1 is the orbit determination with a prescribed gravity field, and sub-problem
2 is the gravity-field recovery with prescribed orbit elements.

In this paper, the feasibility of solving the complete problem using only the inter-
satellite range data is analyzed. Our studies indicate that the complete-inverse problem is
sensitive to errors in the initial estimation. It converges only when the initial estimation is
close to the real value. When the initial estimation is poor, the iteration process usually fails.
In our test, the accuracy of our best estimation is 3% for the C20 term and 8% for the C22
term. To help enhance the estimation accuracy, we propose two improved strategies. One is
to extend the single link to multiple links by adding more deputies, and the other is to add
the angle-measurement data between the chief and the deputy. Both strategies work fine
in the sense that the convergence region is much wider. For the example case studied, the
accuracy is 3% for the C20 term and 0.15% for the C22 term for the first improved strategy,
and is 3% for the C20 term and 0.1% for the C22 term for the second improved strategy. At
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the end, we also discuss the influence of SRP and demonstrate the other perturbations only
have little influence in our case.

This paper is organized as follows: The coordinate system, dynamic model and
measurement model are introduced in Section 2. Sub-problem 1 and sub-problem 2 are
studied in Section 3 and Section 4, respectively. The complete inverse problem is studied
in Section 5. Two improved strategies and the influence of SRP are discussed in Section 6.
Section 7 concludes this study.

2. Preliminaries
2.1. Coordinate Systems

The asteroid (433) Eros is a highly elongated asteroid, so it has a highly irregular
gravity field. In our study, the gravity truncated at the fourth order and degree is chosen
as an example. As a conceptual study, only two coordinate systems are involved—the
asteroid-centered inertial frame and the asteroid’s body-fixed frame. Assuming that Eros
is uniformly rotating in space, the transformation between the two coordinate systems is
simply a rotation matrix along the asteroid’s rotational axis.

2.2. Force Model

For orbital motions around the asteroids, the two strongest perturbations are the
non-spherical gravity and the SRP. For large-size asteroids such as Eros, the non-spherical
gravity is much stronger than the SRP. For Eros, non-spherical gravity is several orders of
magnitude larger than the SRP for low-altitude orbits within about ten kilometers above
the asteroid’s surface. Therefore, it is appropriate for us to use the simplified force model.

The gravity field in the asteroid’s body-fixed frame can be described as

V = V0 + ∆V =
GM

r
+

GM
r

∞

∑
l=2

l

∑
m=0

(
ae

r
)l Plm(cos ψ)(Clm cos mλ + Slm sin mλ) (1)

where ae is the reference radius, Plm is the associated Legendre polynomials, ψ is latitude,
and λ is longitude. Clm and Slm are spherical harmonic coefficients. For the example case
used in our study, the coefficients are adapted from Ref. [1] and displayed in Table 1.

Table 1. Gravity harmonic coefficients of Eros.

C10 0.000000 C22 0.082538 C41 −0.000106
C20 −0.052478 S22 −0.027745 S41 0.000136
C30 −0.001400 C31 0.004055 C42 −0.017495
C40 0.012900 S31 0.003379 S42 0.004542
C11 0.000000 C32 0.001792 C43 −0.000319
S11 0.000000 S32 −0.000686 S43 −0.000141
C21 0.000000 C33 −0.010337 C44 0.017587
S21 0.000000 S33 −0.012134 S44 −0.008939

Physical parameters of Eros are shown in Table 2 [1]. In our study, normalized units
are used. The mass unit and the length unit take values in Table 2. The time unit (T) is
defined as

√
[L]3/G[M], and its value is also displayed in Table 2. In this paper, all the

units are normalized unless specified.
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Table 2. Physical parameters of Eros.

Parameter Value

Mass (M) 6.6904× 1013 kg
Unit Length (L) 8420 m
Unit Time (T) 1156.486 s

Rotation period/h 5.27025547
Main diameter/km 16.840

Average density/g· cm−3 2.675

2.3. Measurement Model

Denote the positions of the two spacecrafts in the inertial coordinate system as
(x1, y1, z1) and (x2, y2, z2), and denote their relative position vector as

x = x1 − x2

y = y1 − y2

z = z1 − z2

(2)

The inter-satellite range can be simply expressed as

ρ =
√

x2 + y2 + z2 (3)

In the discussion section, the inter-satellite angle measurement data is also used. It is a
simple fact that

δ = arcsin
z
ρ

; α = arctan
y
x (4)

where α is the right ascension, and δ is the declination.
To simulate the observation errors, we use the White Gaussian Noise as the measure-

ment error. The standard deviation is set as 0.05 m for the range data and 5 arc-seconds for
the angle data. One remark is made here. The two satellites are very close to each other.
This fact leads to a negligible light time delay in the current study.

2.4. Orbit Types

Before we start studying the orbit determination problem, it is better to choose suitable
orbits. There are two rules we should follow when we make our choice. First, the chief
spacecraft should move on a practically stable orbit. Second, the orbits should be chosen
such that the signal from the asteroid’s non-spherical gravity is strong.

In order to characterize the strength of the signal in the inter-satellite range data caused
by the asteroid’s non-spherical gravity, we introduce the index J in Equation (5). For the
fourth order and degree non-spherical gravity field listed in Table 1, we integrated two
orbits and recorded the mutual distance ρ after an integration time. By adding a small error
to the coefficients listed in Table 1, we integrated two orbits starting from the same initial
conditions and recorded the mutual distance ρ′ after the same integration time. The index J
was, thus, defined as ρ′ − ρ. It is an obvious fact that the influence is stronger for a larger J
value. Our studies find that the tesseral term has a more obvious influence on the mutual
distance on short time scales. In addition, as we already mentioned in the introduction
section, only the second order and degree gravity field will be recovered. Therefore, only
the error to C22 is considered.

There are six orbital elements (a for the semi-major axis, e for orbit eccentricity, i for
orbit inclination, Ω for the longitude of the ascending node, ω for the argument of perigee,
and M for the mean anomaly) to be considered for one spacecraft. To limit the dimension
of the problem, we should introduce some constraints. The most important factor should
be the semi-major axis which directly determines the spacecraft’s altitude. In order for
the signal from the non-spherical gravity to be strong, the altitude should be sufficiently
low. On the other hand, low-altitude orbits are generally unstable, which may lead to
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the spacecrafts’ collision. Based on this consideration and the highly elongated shape of
Eros, the axes of both spacecrafts were chosen as 3[L], which is a sufficiently low orbit and
can avoid the spacecrafts’ collision with the asteroid within a moderate time. Due to the
low-altitude orbit, we also set the initial orbit eccentricity as e = 0. Moreover, considering
the orbital stability of the chief spacecraft, the terminator orbit is a good choice [21]. In
our work, since the SRP is not considered, we approximated the terminator orbit as a
near-circular polar orbit. As a result, we set the orbital element of the chief spacecraft as
[a, e, i, Ω, ω, M] = [3, 0, 90◦, 60◦, 60◦, 0◦].

For the deputy, we set a = 3[L], e = 0, ω = 0◦ and M = 0◦, and we changed the values
of its longitude of ascending node Ω and orbit inclination i to study the sensitivity of the
inter-satellite range data to its orbital plane. Left frame of Figure 1 displays the contour
maps of measurement sensitivity when different values of orbit inclinations and longitude
of ascending node are chosen.The abscissa is the orbit inclination of the deputy, and the
ordinate is the difference in the longitude of the ascending node between the chief and the
deputy. The sensitivity index is calculated using the following equation

J =

√
∑(ρ′i − ρi)2

n
(5)

where n is the number of measurements. ρi is the inter-satellite range data when the gravity
filed in Table 1 was adopted, and ρ′i is the inter-satellite range data with a small error
(+10−3) added to the C22 term. A measurement interval of 0.05(T) and an arc length of
100(T) are taken for Figure 1, where (T) is the Unit time shown in Table 2.

Figure 1. Contour map of measurement index J with 10−3 error in C22 (left) and Orbit of the chief
spacecraft and the deputy spacecraft (right).

From the left frame of Figure 1, we find that with the increase in the orbit inclinations,
the measurement sensitivity J decreases. In addition, there is a periodic patten in the
contour map when different values of the longitude of the ascending node are taken. It
seems that the maximum sensitivity happens when the deputy’s Ω is close to the Ω value
of the chief. Only judging from Figure 1, we should choose prograde orbits (i < 90◦)
for the deputy. However, due to the instability of the prograde orbit, the deputy may
quickly collide with the asteroid. In such a case, we are unable to obtain measurement data
long enough. Therefore, in our study, we choose the orbit of the deputy as a polar orbit.
This type of orbit is relatively stable, and receives enough influence from the asteroid’s
non-spherical gravity. In this case, we set the deputy’s longitude of ascending node as
Ω = 0◦, shown as the red point in Figure 1. In addition, the orbit of the chief and the
deputy are shown in the left frame of Figure 1.

3. Sub-Problem 1

Sub-problem 1 is the orbit determination with prescribed gravity-field coefficients.
As mentioned in Section 1, the highly irregular non-spherical gravity makes it possible to
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determine the autonomous orbit using only the inter-satellite range data. In this section, for
the gravity field listed in Table 1, we use several examples to demonstrate the feasibility.

3.1. The Batch Algorithm

For each measurement, the residual y is expressed as:

yi = Yoi −Yci (6)

where the subscript ‘c’ indicates the calculated value, and the subscript ‘o’ indicates the
measured value. The subscript i is the serial number of measurement. Y is the measurement
data. Here, it is the same as Equation (3). For a constellation of two spacecraft, the state
vector (denoted as X0) to be determined is a 12-dimensional vector which includes the
position and velocity of both spacecrafts. The error in the initial state vector is denoted as
x̂0. The equation of orbit determination becomes

yi = Hx x̂0 + ε (7)

where
Hx =

∂Yi
∂Xi

∂Xi
∂X0

= H̃xΦ ; Φ =
∂Xi
∂X0

(8)

Φ is the system transition matrix calculated by integrating the following equation

Φ̇(X, t) =
∂Ẋ
∂X

Φ(X, t) (9)

Using the batch algorithm [22], the solution of x̂0 can be estimated as

x̂0 = (HT
x Hx)

−1HT
x y (10)

By substituting Equation (10) into the initial estimate of the state vector X0, we can
start the iteration process until the correction x̂0 is small enough. This is a common practice
in orbit determination and further details are omitted.

Detailed expression of H̃x in Equation (8) depends on the type of the measurement
data. For the inter-satellite range data, it can be expressed as

H̃x =
∂Y
∂X

= [
x
ρ

,
y
ρ

,
z
ρ

, 0, 0, 0,− x
ρ

,−y
ρ

,− z
ρ

, 0, 0, 0] (11)

where x, y, z are given in Equation (2).

3.2. Two Examples

In this section, two examples are shown to demonstrate the feasibility of autonomous
orbit determination using only the inter-satellite range data. In the tests, only two space-
crafts and one link are considered. The initial orbital elements are σ1 = [3, 0, 90◦, 60◦, 60◦, 0◦]
and σ2 = [3, 0, 0◦, 0◦, 0◦, 0◦]. For the initial estimation, a random error (with a threshold of
100 m) along all three directions is added to the position vector of both the chief and the
deputy. The measurement interval is 0.05(T). The only difference between the two tests is
the arc length used for orbit determination. It is 50(T) for test 1 and 100(T) for test 2. The
result is shown in Figure 2. The left frame shows the residual in the observation data, and
the right frame shows the position errors of the determined orbit with respect to the true
one. The blue line is the position error of satellite 1 and the red line is the position error of
satellite 2.
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(a) Test 1

(b) Test 2

Figure 2. Residual in the observation data (left) and norm of the position error of the determined
orbit from the true one (right).

For test 1, the residual of the observation reaches the accuracy level of the observation
data, and the position errors are smaller than 0.4 m. For test 2, where the arc length is
longer, both the residual in the observation data and the position errors increase when
compared with test 1. The reason for this phenomenon is that the force model for the
orbit determination is different from the ’real’ force model which we use to generate the
simulated observation data. When the length is too long, the difference between the two
force models will cause the decrease of accuracy. To find an appropriate arc length, we
conducted some further tests and displayed the relationship of the RMS with respect to
the arc length in Figure 3. The abscissa is the arc length, and the ordinate is the RMS of the
residuals. RMS is calculated by the following equation

RMS =

√
∑(ρ′i − ρi)2

n
(12)

Different from Equation (5), here ρ′ is the calculated value and ρ is the observed value.
From Figure 3, the accuracy of RMS is the best with 40(T) to 80(T) arc length. When

the arc length is larger than 80(T), the accuracy decreases quickly. By our calculation, for
most cases, the arc of 50(T) is sufficient.
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Figure 3. RMS of different arc lengths

4. Sub-Problem 2

Sub-problem 2 is the gravity-field recovery with stable initial orbital elements. In
Section 3, the feasibility of autonomous orbit determination was demonstrated by assuming
that the asteroid’s gravity field is known a priori. In this section, we demonstrate the
feasibility of the other sub-problem. That is the feasibility of gravity-field recovery from
inter-satellite range data by assuming that the orbits of the two spacecraft are known
a priori.

4.1. The Batch Algorithm

We define the gravity-field coefficients to be determined as C, and the error of the
coefficients as ĉ. Considering errors in other coefficients, Equation (7) can be reformulated as

yi = Hx x̂0 + Hc ĉ + ε (13)

where
Hc =

∂Yi
∂Xi

∂Xi
∂C

= H̃xΦc ; Φc =
∂Xi
∂C

(14)

Φc is the sensitivity matrix, which can be calculated by integrating the following equation

Φ̇c(X, t) =
∂Ẋ
∂X

Φc(X, t) +
∂Ẋ
∂C

(15)

Similar to Equation (10), ĉ can be estimated by the following formula if we assume no
error to the initial state vector X0.

ĉ = (HT
c Hc)

−1HT
c y (16)

Same as the orbit determination process, the process to determine the gravity-field
coefficients should be repeated until the correction ĉ is small enough.

4.2. Feasibility Analysis

The first question to be answered is whether the gravity-field recovery is possible with
the inter-satellite range data. To answer this question, we remove errors from the simulated
observation data, i.e, the observations are accurate. We compute the residuals as functions
of the gravity coefficients C20 and C22 to be determined. We also assume that the orbits
are already determined without errors, and the initial conditions for the two orbits are the
same as test 1 in Section 3.2: σ1 = [3, 0, 90◦, 60◦, 60◦, 0◦] and σ2 = [3, 0, 0◦, 0◦, 0◦, 0◦]. For the
example orbits above, the RMS as a function of C20 and C22 is displayed in the contour
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map, Figure 4a. There is no doubt that there is only a single minimum in the contour map,
which indicates that the gravity-field recovery is possible, in theory. The integration time is
100(T) and the measurement interval is 0.05(T).

(a) (b)

Figure 4. Contour map of the residual with respect to the gravity-field coefficients C20 and C22

(accuracy initial position). (a) Contour map of a 0.05(T) measurement interval. (b) Contour map of a
1(T) measurement interval

There is only one global minimum value of the RMS, so it is possible for us to achieve
the gravity-field recovery. However, if the measurements are too sparse, the number of
local optimum will be more than one. In Figure 4b, the measurement interval is set as
1(T). Obviously, there is more than one local minimum value in Figure 4b. In this case,
it is difficult to recover the accurate gravity field. Therefore, dense measurement data is
recommended for the gravity-field recovery. For this reason, in the calculations below, the
measurement interval is set as 0.05(T).

Here is an example. The initial conditions are the same as the example in Section 3.2.
The initial estimate of gravity-field coefficients is C20 = −5× 10−2 and C22 = 9× 10−2 and
the measurement interval is set as 0.05(T). The recovered gravity-field coefficients are

C20 = −5.247792× 10−2 ; C22 = 8.253777× 10−2 (17)

Compared with Table 1, the result is very close to the true value C20 = −5.2478× 10−2

and C22 = 8.2538× 10−2.

4.3. Influence of Observation Error

In practice, there are errors in the determined orbits. In this situation, the relationship
between the residual and the C20 and the C22 term will be different. In this example, we
set the position error of both the chief and the deputy as 10 m in all the three directions
randomly. Using the same approach as in Figure 4, the result is shown in Figure 5.

In this example case, there is still only one global optimal value. In other words, the
recovery calculation is still feasible. Using the same initial conditions as in Figure 5, the
result is

C20 = −5.326190× 10−2 ; C22 = 8.480794× 10−2 (18)

The accuracy is worse than the result in Equation (17), and the accuracy is speculated
to be even worse if larger errors in the determined orbits exist. This phenomenon poses
a considerable challenge to the following complete inverse problem where both orbit
determination and gravity-field recovery are required simultaneously.
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Figure 5. Contour map of the residual with respect to the gravity-field coefficients C20 and C22

(erroneous initial position).

5. The Complete-Inverse Problem

In Sections 3 and 4.2, we showed the feasibility of the two sub-problems, respectively.
However, the feasibility of the two sub-problems cannot guarantee the feasibility of the
complete-inverse problem. In this case, the gravity field and orbit are coupled, and we
need to estimate the orbit and gravity field together.

In our work, the mutual influence between the two sets of parameters (the gravity field
and the orbits) is so strong that it is hard to converge. When the error of the initial estimate
is too large, the complete-inverse problem is hard to converge. To solve this problem, we
use the adaptive step size to control in the iteration process. As shown in Equation (19).

x̃ =
x̂

1 + k|x̂| (19)

x̂ = [x̂0, ĉ] is the calculated correction value by the iteration process. It is quite possible
that x̂ is too large. Directly correcting the estimate with this calculated value may lead
to a worse estimate and eventually the failure of the iteration process. To overcome this
problem, we deliberatively decrease the size of the correction value by introducing the
step-size control parameter k. x̃ is the actual correction value taken and k is an empirical
constant which usually takes the value of 1. In such a case, when x̂ is large (i.e., the estimate
is far from the true value), the size of the actual correction |x̃| is always smaller than 1.
When x̂ is small (i.e., the estimate is close to the true value), x̃ ≈ x̂.

Test 3 shows two examples with good initial estimates. The simulation observation
data of them are the same: The initial position is the same as Section 3.2. But the initial
estimate of initial position is different. Random error (with a threshold of 10 m) along all
three directions is added differently in the two examples. The initial estimate of the gravity
field is the same, where C20 = −5.20× 10−2 and C22 = 8.30× 10−2. For an arc length of
50(T), the result is shown in Figure 6 and Table 3. And Table 4 reflects the change of RMS
for two examples before and after the calculation.
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Figure 6. Residual in the observation data (left) and norm of the position error of the determined
orbit from the true one (right) (test 3 with small errors in the initial estimate).

Table 3. Recovery result of test 3.

Parameter Initial Estimate Test 3.a Test 3.b

C20 −5.20× 10−2 −5.2467× 10−2 −5.2309× 10−2

C22 8.30× 10−2 8.2559× 10−2 8.2455× 10−2

Initial position error
of Satellite 1 10m 0.75m 0.90m

Initial position error
of Satellite 2 10m 0.43m 0.24m

Table 4. The change of RMS in test 3.

RMS Test 3.a Test 3.b

Initial Estimate 6.4053 8.0739

Result 0.1167 0.1417

Obviously, the results after iteration are much better than the initial estimate. For test
3a, the residuals of observation are less than 0.5 m, and the position errors of estimated
orbits are less than 0.8 m. For test 3b, the residuals are less than 0.3 m and the position
errors are less than 2 m. In addition, the difference in the results of these two tests is small.
The accuracy of the estimated gravity-field coefficients is about 0.02% for test 3a and about
0.1% for test 3b. The RMS of them are similar. Thus, we can say that the orbit determination
process has converged.
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However, when the initial estimate is poor, the iteration process converges harder, and
the accuracy of the results obviously decreases. In test 4, we randomly added a position
error of 50 m in all the three directions of both the spacecraft. The initial estimate of the
gravity-field coefficients are C20 = −5× 10−2 and C22 = 9× 10−2. Setting the arc length as
50(T), the result is shown in Figure 7 and Table 5.

Figure 7. Residual in the observation data (left) and norm of the position error of the determined
orbit from the true one (right) (test 4 with large errors in the initial estimate).

Table 5. Recovery result of test 4.

Parameter Initial Estimate Test 4

C20 −5× 10−2 −5.3959× 10−2

C22 9× 10−2 7.5978× 10−2

Initial position error of
Satellite 1 50 m 47.71 m

Initial position error of
Satellite 2 50 m 27.67 m

RMS 39.9917 5.5752

Figure 7 and Table 5 indicate that the iteration process has not converged, because
some of the final result is even worse than the initial estimates.

Studies in this section demonstrate the feasibility of the complete-inverse problem.
However, a good initial guess is necessary for the convergence of the problem. In order
to obtain a good initial estimate, we tried to use the particle swarm optimization method
(PSO) to find the global optimal solution. However, most of the time, the PSO fails to
converge or converges to a local minimum far away from the true value. Thus, this attempt
failed. In the following, we propose two improved algorithms to help solve the narrow
convergence-region problem.

6. Discussion
6.1. Two Improved Algorithms
6.1.1. Multiple Links

In this case, more than one link is used. We choose one of these spacecrafts as the chief
spacecraft, and the others as the deputy spacecraft. Using multi-spacecraft constellation,
the convergence region of the problem can be extended.

Figure 8 shows an example (test 5). It is a constellation with one chief spacecraft and
eight deputy spacecrafts. In this case, we put the deputy spacecraft in different types of
orbits to obtain stronger signals from the non-spherical gravity. By our calculation, the
spacecraft of prograde orbit do not collide with the asteroid for a 50(T) arc length. Thus, we
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put the chief spacecraft in the polar orbit (the black trajectory in the right picture of Figure 8,
the orbital elements are the same as σ1 in Section 3.2). Four of the deputy spacecrafts are
in the prograde orbits (the blue trajectories) and four of them are in the polar orbits (the
red trajectories). The initial position error is set as 50 m (the same as test 4) randomly
along all three directions of all the spacecraft. For the initial estimation, an error of 50 m
is randomly added in all the three directions to the position vector of the chief and all of
the deputy, respectively. Initial estimate of the gravity-field coefficients is C20 = −5× 10−2

and C22 = 9× 10−2 (Table 6). Our test shows that the complete-inverse problem converges
well in this example.

Figure 8. Residual in the observation data (left), norm of the position error of the determined orbit
from the true one (middle) and orbits of spacecraft (right) (test 5 with 8 links).

Table 6. Recovery result of test 5.

Parameter Initial Estimate Test 4

C20 −5× 10−2 −5.0871× 10−2

C22 9× 10−2 8.2667× 10−2

Initial position error of
Chief Satellite 50 m 20.12 m

Unlike test 4, the result after iteration is better than the initial estimate, so the iteration
process has converged. Most of the residuals are less than 10 m and position errors of
estimated orbits are less than 50 m. In addition, the value of C22 is much better than test
4. The error is only 0.15%. This improvement in this result is significant. As a feasibility
analysis, test 5 is enough. It can prove that more links can extend the convergence region.

6.1.2. The Addition of Inter-Satellite Angle Data

The Osiris-Rex mission uses the angle-measurement data from the spacecraft to the
particles near Bennu’s surface to recover the asteroid’s gravity to high orders and de-
grees [10]. Inspired by this, we added the inter-satellite angle measurement data into our
study as a supplementary to the inter-satellite range data to improve the accuracy.

For inter-satellite angle data, H̃x = [ ∂δ
∂X , ∂α

∂X ] will be

∂δ

∂X
= [δx, δy,−δZ, 0, 0, 0,−δx,−δy, δZ, 0, 0, 0] (20)

∂α

∂X
= [

y
x2 + y2 ,− x

x2 + y2 , 0, 0, 0, 0,− y
x2 + y2 ,

x
x2 + y2 , 0, 0, 0, 0] (21)

where δx, δy and δz can be calculated using Equation (22).

δx =
xz

ρ3
√

1− (z/ρ)2
δy =

yz
ρ3
√

1− (z/ρ)2
δz =

1√
1− (z/ρ)2

(
1
r
− z2

ρ3 ) (22)
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Firstly, our study indicates that the addition of the inter-satellite angle measurement
data can significantly improve the accuracy of the orbit determination. As test 6 (Figure 9)
shows, all of the initial conditions are the same as those of test 2 in Section 3.2.

Figure 9. Residual in the range data (left), residual in the angle data (middle) and norm of the
position error of the determined orbit from the true one (right) (test 6).

Compared with test 2, the accuracy of test 6 is much better. The range residuals are
less than 0.1 m and the angle residuals are less than 10 arc-seconds. Both of them reach the
accuracy level of observation data, just like test 1. The position errors of test 6 are less than
0.04 m and the position errors of test 2 are about 14 m. Thus, it is clear that the addition of
angle data can provide more constraints to improve the accuracy.

When both initial orbital elements and gravity-field coefficients are erroneous, the
addition of angle measurement data also works. In test 7, all of the initial conditions are
the same as test 4 in Section 5 and the result is shown in Figure 10 and Table 7.

Figure 10. Residual in the range data (left), residual in the angle data (middle) and norm of the
position error of the determined orbit from the true one (right) (test 7).

Table 7. Recovery result of test 7.

Parameter Initial Estimate Test 4

C20 −5× 10−2 −5.4093× 10−2

C22 9× 10−2 8.2626× 10−2

Initial position error of
Satellite 1 50 m 2.89 m

Initial position error of
Satellite 2 50 m 0.08 m

RMS 39.9917 5.5752

Similarly to test 5, the accuracy of result has improved a lot. The range residuals are
about one meter and the angle residuals are about 40 arc-seconds. Position errors are only
3.5 m and the initial errors are less than 3 m. The value of gravity-field coefficients is close
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to the real value. Their errors are 3% and 0.1%, respectively. Compared with test 4, this
result is excellent. The improvement in accuracy is significant.

In addition, from the above results, we can find that the accuracy of the tesseral C22
term is much better than the zonal C20 term. It is due to the fact that the influence of the
tesseral harmonic C22 is much greater than the zonal harmonic C20 in the calculation of
gravity-field recovery.

6.2. The Influence of SRP

Furthermore, let us consider the influence of the other perturbation. As mentioned in
Section 2, SRP is the largest perturbation besides the non-spherical gravity. In test 8, the
influence of the SRP is considered in the simulated measurement data. In addition, we still
only consider the second non-spherical gravity in the orbit determination. Here, because
the value of SRP is relatively small, we use a simple model. It can be expressed as [21].

FSRP = ρ(1 + η)
S
m

r
r

(23)

where ρ is the solar radiation pressure at r, η is the spacecraft’s reflectance, S/m is the
spacecraft’s area to mass ratio and r is the spacecraft position vector to the sun. We set η as
0.5 and S/m as 0.01. The initial conditions are identical to test 3: The position errors of both
the spacecraft are set as 10 m in all three directions randomly and the initial estimate of the
gravity field is C20 = −5.20× 10−2 and C22 = 8.30× 10−2. For an arc length of 50(T), the
result is shown in Figure 11 and Table 8.

Figure 11. Residual in the observation data (left) and norm of the position error of the determined
orbit from the true one (right) (test 8).

Table 8. Recovery result of test 8.

Parameter Initial Estimate Test 4

C20 −5.20× 10−2 −5.2475× 10−2

C22 8.30× 10−2 8.2476× 10−2

Initial position error of
Satellite 1 10 m 9.88 m

Initial position error of
Satellite 2 10 m 0.14 m

RMS 8.1752 0.1306

For test 8, the residuals of observation are less than 0.3 m and the position error is
less than 10 m. The accuracy of the gravity field is about 0.07%. Compared with test 3, the
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accuracy of the result is similar. It also demonstrates that the other perturbations, such as
SRP, only have little influence in our case since we have a large asteroid.

7. Conclusions

In this work, we mainly demonstrated the feasibility of orbit determination and
gravity-field recovery using only inter-satellite range data in three steps. First, sub-problem
1, in which the gravity field is known a priori and the orbits of the chief and the deputy
are autonomously determined, is studied. Second, sub-problem 2, in which the orbits of
the chief and the deputy are known a priori and the gravity field is recovered, is studied.
Then, the complete-inverse problem in which both the orbits of the chief and the deputy
and the gravity field are determined is studied. Our study shows that the complete-inverse
problem is invertible, but the convergence region is very narrow, i.e., an initial estimate
close to the real one is necessary. Two improved algorithms are proposed to solve this
problem: using multiple links by adding more deputies and adding the angle measurement
data between the chief and deputies. By our calculation, both algorithms can increase the
convergence region and improve the accuracy. Our studies find that the accuracy of the
zonal C20 term is worse than the accuracy of the tesseral C22 term. In addition, we also
analyzed the influence of different orbit types on the inter-satellite range data and the
influence of different arc lengths on the orbit determination.

We need to stress that this work is only a feasibility study. Our conclusions are
based on some assumptions. For asteroids of hundreds of meters in size or smaller, it is
possible that SRP is one order of magnitude larger than non-spherical gravity which may
seriously challenge the assumptions in the current study. The study indicates that it is
possible to solve the complete inverse problem using only the inter-satellite range data, but
a good initial estimation is necessary and the accuracy of the results is limited. A more
realistic mission scenario is to combine the accurate inter-satellite range data along with
ground observation data to do the complete inverse problem. We are currently working on
this project.
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