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Abstract: Space exploration missions involve significant participation from astronauts. Therefore,
it is of great practical importance to assess the astronauts’ performance via various parameters in
the cramped and weightless space station. In this paper, we proposed a calibration-free multi-view
vision system for astronaut performance capture, including two modules: (1) an alternating iterative
optimization of the camera pose and human pose is implemented to calibrate the extrinsic camera
parameters with detected 2D keypoints. (2) Scale factors are restricted by the limb length to recover
the real-world scale and the shape parameters are refined for subsequent postural reconstruction.
These two modules can provide effective and efficient motion capture in a weightless space station.
Extensive experiments using public datasets and the ground verification test data demonstrated the
accuracy of the estimated camera pose and the effectiveness of the reconstructed human pose.

Keywords: multi-view system; astronaut performance capture; extrinsic camera calibration; human
pose estimation

1. Introduction

As a scientific research laboratory in a microgravity environment, low-Earth-orbit
space stations conduct a wide range of experimental tasks in many domains, such as
biology, physics, and astronomy. To ensure the physical and mental well-being of the
astronauts and the efficient completion of tasks, astronauts must carry out a number of
complex scientific experiments while in orbit, monitor and analyze their workload, arrange
in-orbit tasks reasonably, and increase their work efficiency.

Attitude and pose are the external manifestations of astronauts’ human performance
when performing the in-orbit missions. By measuring and analyzing the postural data
of astronauts in orbit, it is possible to discover their long-term postural characteristics in
weightlessness, which is of great value for improving the design of orbital modules, regu-
lating experimental tasks in accordance with workload and enhancing human operative
capabilities during prolonged space voyages [1–3]. Therefore, it is necessary to precisely
estimate the body pose of astronauts when performing different tasks to quantify their
postures and movements.

The capture of human motion data relies on different sensors, which can be divided
into two categories according to working mode: contact methods and non-contact meth-
ods [4]. Contact human motion measurement is performed by installing inertial sensors
in key parts of the human body (e.g., limbs, torso) and capturing information, such as the
acceleration and angular velocity of the wearing part in real-time for postural measurement.
These inertial measurement unit (IMU)-based motion capture systems (MOCAP), such as
Xsens, can provide robust motion capture with occlusion, which can only be alleviated
by increasing camera numbers for optical-based MOCAP. IMU-based MOCAP is widely
used in biomedical applications for gait analysis of patients [5] and astronaut postural
analysis in extravehicular operations [6]. Non-contact methods mainly rely on optical
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sensors, including infrared cameras, color cameras, and depth cameras. Optical motion
capture generally uses a multi-camera configuration, and can be divided into two categories
according to whether markers are required. Marker-based optical motion capture, such as
Vicon, OptiTrack, etc., can provide the high-precision position of optical markers placed
on the surface of the human body to measure human motion, while markerless optical
motion capture [7] mainly uses computer vision algorithms for human pose estimation,
which is less accurate than the marker-based human motion capture systems. However,
with the continuous development of computer vision, its accuracy continues to improve
and the advantages of convenience gradually emerge. The space station requires more
convenience due to its small space and limited resources; therefore, designing a markerless
optical human motion capture system for in-orbit is the best way to achieve astronaut
postural measurements.

With the development of deep learning in computer vision, multiple convolutional
neural network (CNN) models have been proposed to solve the human pose estimation
problem [8,9]. At present, 2D human pose estimation has been explored to provide effective
and efficient human body joint detection [10–12]. However, 3D human pose estimation is
still problematic due to the depth ambiguity and occlusion problem in single-view camera
setups [13–15]. Thus, multi-view 3D human pose estimation methods are the most robust
solutions to infer the 3D location of human joints at present. However, the multi-camera
system relies on extrinsic calibration before deployment, which is cumbersome in weightless
space stations. To reduce the complexity of calibration, several calibration-free human pose
recovery methods have been proposed. As the human body moving in the scene is captured
by these multi-view systems, the most intuitive strategy is to take advantage of the human
body that is presented to provide common viewpoints [16–18]. The workflow usually
contains three parts. First, an initial calibration of the multi-camera systems is obtained
with traditional fundamental matrix estimation. Then, bundle adjustment is implemented
to optimize the rotation and translation among each cameras with re-projection error and
other specifically designed priors. Finally, the human body is reconstructed by optimizing
an appropriate cost function. However, the initial calibration is usually far from the ground
truth and the bundle adjustment struggles to deal with the deviated rotation matrix and
translation vectors together with the erroneous 3D keypoints because the camera pose and
human pose are highly coupled and influence each other.

In this paper, we propose a multi-view system to recover the astronaut’s postural
performance without cumbersome extrinsic calibration. More precisely, the first part of
our pipeline consists of multi-view camera pose estimation. The self-calibration technique
is based on the insight that the inaccuracy of the camera pose and human pose are cou-
pled and will influence each other. We proposed to alternatively estimate the camera
pose and recover the human pose with confidence-weighted iterative perspective-n-point
(PnP) and triangulation. First, the fundamental matrix estimation between each camera
pair is estimated and the rotation matrix and translation vector are recovered by matrix
decomposition. Then, the re-projection error is calculated to assess the estimation results
for the selection of the first two base cameras and the human skeletons are triangulated
to provide 3D–2D correspondences for the other cameras. Third, the remaining cameras
are incorporated into the multi-camera systems with PnP-based camera pose estimation
and the human skeletons are alternatively refined with the gradually incorporated cameras.
In this way, the triangulation error caused by the erroneous camera’s extrinsic parameters
and partially occluded human skeletons will alternatively decrease and the iteration is
terminated until the difference between consecutive triangulated points is lower than
the pre-defined tolerance. Furthermore, during the procedure of incorporating an extra
available camera, the scale of the translate vectors among each cameras will be consistent
with the first chosen camera pair.

After the multi-camera system is calibrated with the presented human body, the pos-
ture of the astronaut can be recovered with a pre-scanned mesh model. The length of the
limbs is regarded as a reference when calculating the scale, as the microgravity can barely
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influence the bone length of the limbs compared to the trunk [19]. With the scale-modified
camera’s extrinsic parameters, the shape parameters of the skinned multi-person linear
model (SMPL) are refined to describe the spinal lengthening and anthropometric changes in
microgravity. Finally, the posture of the astronauts are reconstructed with SMPL parameters
fitting to the detected 2D keypoints. The schematic workflow is shown in Figure 1.

Figure 1. The schematic workflow of the proposed systems.

To summarize, the novelties of this work are twofold:

• First, an alternating iterative optimization of the camera pose parameter estimation
and human pose parameters is proposed to provide a convenient and accurate estima-
tion of the camera’s extrinsic parameters.

• Second, a shape optimization is implemented based on the pre-scanned astronaut body
model to refine the shape parameters for long-term space exploration missions and
the astronaut’s postural performance is reconstructed with non-linear optimization.

The rest of the paper is organized as follows. Related works in astronaut performance
analysis and motion capture and calibration-free human body reconstruction are discussed
in Section 2. The principles and methods are described in Section 3. The experiment details
and an extensive evaluation of the proposed method for further applications in space
stations are revealed in Section 4. Finally, the advantages, disadvantages and future works
are discussed in Section 5.

2. Related Works

In this section, we review related works on astronaut performance capture, calibration-
free systems and 3D human shape reconstruction.

2.1. Astronaut Performance Capture

Astronaut performance capture is of great importance to the research on manned space
exploration to investigate the influence of weightlessness on the human body. To capture
the astronaut’s performance when collecting and analyzing human body characteristic in
weightlessness, different kinds of sensors have been developed and tested. The marker-
based motion capture system ELITE-S2 [20,21] was developed and brought into the In-
ternational Space Station in August 2007. The goal was to research the motor control
strategies of astronauts in a weightless environment. The system comprised eight TVC
boxes containing a camera and processor, by which the astronauts’ motion could be mea-
sured using four lasers to illuminate up to 100 markers placed on the body surface with
an accuracy of less than a millimeter. This is quite similar to the optical motion capture
system, while passive markers and retro-reflective markers are both attached to the body
and captured by the camera. The system is complicated regarding calibration and marker
preparation for astronauts performing in-orbit experiments, despite its high precision.
NASA applied a compact stereo-vision-based motion capture system—ESPRIT [22]—to
monitor microgravity exercises using marker detection and 3D kinematic posture recovery.

Despite the marker-based system, markerless computer vision methods are also pro-
posed to monitor the kinematic states of astronauts. In the Human Research Program [23],
NASA has developed a machine-learning based method to automatically extract the as-
tronaut’s posture from video data. Considering the limited computational resources in a
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space station, ROpenPose [2] was proposed to solve the posture detection problem with
optimized neural networks. The markerless-based vision system is more friendly for astro-
nauts due to its senselessness and unaffectedness during postural monitoring, while the
accuracy of the reconstructed posture still needs to be continuously improved. At present,
the multi-view motion capture system can provide the most reliable and accurate 3D human
pose [24].

2.2. Calibration-Free Multi-View System

Practically, the camera intrinsic parameters are considered invariant and can be cali-
brated using the classic chessboard method. Therefore, extrinsic calibration is required for
each camera position and the orientation is unknown with each installation. The funda-
mental of multi-camera extrinsic calibration is obtaining enough point correspondences for
several camera perspectives, with or without specially designed calibration tools. Calibra-
tion tools refer to precisely manufactured calibrators, such as one-dimensional objects [25],
chessboard [26], and spheres [27], which are required to move around the target area to
ensure there are enough points correspondences for high-precision calibration. Thus, this
intensive manual operation makes the calibration cumbersome, especially when the multi-
view vision system is orientation-adjusted, which makes it unfeasible in the weightless
space station.

Alternatively, calibration with geometric methods using the structure from motion
(SfM) pipelines requires no special calibration tools. These methods consider extrinsic
calibration as a camera pose estimation problem and solve the problem with a two-stage
framework by 2D–2D matching points’ extraction and successive camera pose estimation.
Keypoints, such as Harris and FAST [28], are commonly detected from images of various
viewpoints. Then, the feature descriptors of these keypoints are exploited to match points
in different views. The most-used are SIFT [29] and ORB [30]. Afterwards, the fundamental
matrix between each camera pair is estimated with different methods, such as the RANSAC-
based N-point algorithm [31,32] or convex optimization [33]. Successively, the camera
rotation and translation are obtained by decomposing the essential matrix. To further
improve the 3D positions of all cameras, they utilize bundle adjustment [34] as a last step.
Despite the convenience of camera pose estimation, this pipeline is severely limited, as a
large amount of camera power is required to provide a sufficient common field of view,
which is usually not an issue for SfM reconstruction with a moving camera. In addition,
the estimated camera translation is up-to-scale between each camera pair and requires a
constant-sized object to calculate the scale.

To solve these problems, researchers have taken advantage of the human body to
provide 2D–2D point correspondence, which is meaningful and available to those multi-
view systems aiming for human body reconstruction. Reference [17] proposed detecting
the bounding box of each person in the wide-baseline multi-camera and using a CNN
with person re-identification ability to match these detected person centers. These 2D–2D
correspondence are then transmitted to the typical process pipeline with bundle adjustment.
It is noticeable that the center of the bounding box in different views cannot be trusted to
provide accurate 2D–2D correspondences, as the human body is complicated and can form
different poses. With utilization of off-the-shelf 2D human pose estimators, [16] calibrated
and synchronized the multi-view system with OpenPose and proposed constructing an ob-
ject function with relaxed reprojection errors to avoiding optimization in noisy observations.
Reference [18] proposed taking advantage of a moving person in a different way by first
lifting the 2D human pose to a 3D human pose with VideoPose3D [35], and then solving
the camera extrinsic calibration as an absolute orientation problem. In these paradigms,
the multi-view reconstructed human poses are regarded as a ground truth to fine-tune the
CNN module of 2D or 3D human pose estimation.
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3. Proposed Method

The details of our method are presented in this section. In this paper, we used an
off-the-shelf 2D pose detector as the 2D–2D correspondence extractor and treated the
astronaut performance capture as a iteratively refined problem. The key idea is to optimize
the camera pose and human pose alternatively by incorporating multi-view cameras into
the postural assessment system.

First, the fundamental matrix estimation between each camera pair was estimated,
and the rotation matrix and translation vector were recovered by matrix decomposition.
Then, the re-projection error was calculated to assess the estimation results for the selection
of the first two base cameras. Third, the other cameras were gradually incorporated into
the camera systems with PnP-based camera pose estimation until all the camera poses were
estimated and could be used for the reconstruction of 3D human poses. Furthermore, while
incorporating the extra available camera, the detected human body keypoints in the extra
camera gradually improved the intersected 3D human pose. Thus, the estimated camera
pose can be iteratively refined during the 2D–3D PnP calculation. In this way, the scale
ambiguity problem of each camera can be reduced to be related to the scale of the first
chosen camera pair. The schematic workflow is shown in Figure 2.

Figure 2. The workflow of our proposed calibration-free postural reconstruction. The self-calibration
module iteratively estimates the multi-camera extrinsic parameters from the detected 2D human
keypoints. The iteration flows in the red arrow direction to alternatively optimize the 3D keypoints
and the camera pose. The postural reconstruction module works after the self-calibration and
estimates the scale factor from the pre-scanned human models. The shape parameters are then refined
and posture is reconstructed.

3.1. MAGSAC-Based Fundamental Matrix Estimation

Given a set of keypoint detection results with correspondences in homogeneous
coordinates {xi ⇐⇒ x′i}, i = 1, 2, . . . , n, n ≥ 8, between two extrinsic uncalibrated cameras,
the objective is to estimate a 3× 3 fundamental matrix F satisfying the epipolar constraints:

xiFx′i = 0, i = 1, 2, . . . , n. (1)

The standard eight-point method can be applied to estimate the fundamental matrix.
However, as the human movements in the target space can provide more keypoint cor-
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respondence, at N × F, N is used as the keypoint number of the skeleton definition and
F as the frames captured during self-calibration. To select the best correspondent pairs
that can minimize the error according to the epipolar constraints Equation (1), the most
well-known RANSAC-like fitting model method can iteratively explore the space of model
parameters by random sampling and estimate the most reliable model by maximizing
the inliers. In the recently proposed MAGSAC++ [36], the model quality calculation is
formulated as a marginalization over a range of noise scales. The inlier residuals are as-
sumed to have χ2 distribution. This allows for MAGSAC++ to be significantly less sensitive
to the inlier–outlier threshold than other robust estimators. In this paper, we adopted
the recently proposed MAGSAC++ as the fundamental matrix estimator with numerous
keypoint correspondences.

3.2. Confidence-Weighted Camera Pose Refinement

In this paper, cameras were iteratively incorporated into the multi-camera system by
alternatively estimating the camera pose and refining the 3D human pose. The proposed
iteration can alternatively improve the 3D joints triangulation and camera pose estimation,
which are coupled to affect the final postural measurement. First, the 3D joints were
triangulated with the confidence output of the 2D pose detector, and the re-projection error
was combined with its corresponding confidence to provide the weights for subsequent
2D–3D camera pose estimations. Second, the remaining cameras were incorporated into
the multi-camera system with the confidence-weighted perspective-n-points methods from
OPnP [37].

Given the detected image points of each joint in multi-view cameras and the camera
parameters, the triangulation problem aims to recover the best estimation of the 3D point p.
With C cameras, the midpoint method [38] minimizes the following cost function:

E(p) =
C

∑
i=1
‖(I− bibT

i )(p− oi)‖2 (2)

where oi is the optical center of the i-th camera, bi is the i-th unit vector pointing from
the optical center to the image points and p is the point to be triangulated. To reduce the
influence of the mis-detected keypoints during triangulation, we multiple the confidence of
the detected keypoint to make the 3D point closer to the more reliable image point direction.

E(p) =
C

∑
i=1

ωi‖Bi(p− oi)‖2 (3)

where ωi is the confidence of the keypoints detected in the i-th camera images and C is the
number of cameras. (

C

∑
i=1

ωiBi

)
p =

(
C

∑
i=1

ωiBioi

)
(4)

given the 3D point p triangulated with the previous incorporated cameras’ parameters.
The multi-view camera pose can be re-estimated with the current 3D points using the PnP
method. The cost function used to estimate the rotation matrix and translation vectors is
the sum of the confidence-weighted squared measurement errors, as follows:

E(R, t) =
N

∑
i=1

ωi,j‖ui −
1
zi
(Ripi + ti)‖2 (5)

where ωi is the confidence of the detected 2D keypoints and N is the number of points
detected from the camera that is to be incorporated. We initialized the camera pose
parameters with direct linear transform (DLT) and iteratively minimized the re-projection
error with the Levenberg–Mardquart algorithm.
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3.3. SMPL-Based Postural Reconstruction

The SMPL model [39] is a skinned vertex-based model, which parametrizes a trian-
gulated mesh using pose and shape parameters. The shape parameters β are coefficients
of a low-dimensional shape space, learned from a training set of thousands of registered
3D human body scans. The pose parameters θ represent the joint angle in an axis-angle
representation of the relative rotation between body parts. The posed body modelM(β, θ)
is formulated as below, given the shape and pose parameters,

M(β, θ) = W(TP(β, θ), J(β), θ, Ω) (6)

3.3.1. Personalized SMPL Model

The SMPL model provides a convenient way to edit the human mesh model with
shape parameters controlling the anthropometric parameters of different person. However,
the astronauts are usually scanned before missions and the scanned model can be used
to personalize the SMPL model with fixed shape parameters for each person as shown
in Figure 3. In this paper, we used the FARM algorithm to reconstruct the personalized
SMPL model from a scanned unstructured human point cloud. Afterwards, the limb
lengths of the model were calculated and regarded as a reference to scale the estimated
translation vectors.

(a) Scanned human body model. (b) Reconstructed SMPL model.

Figure 3. Personalized SMPL model for 3D posture reconstruction.

3.3.2. Shape Parameters Refinement

We observed that the spin lengths gradually increase during long-term space missions
by around 5–10%, while the lengths of arms and legs were almost invariant due to the
structural property of the bones. Thus, we used the personalized SMPL model to scale the
triangulated human body keypoints with the bone length of the arms and legs. The shape
parameters of the personalized SMPL model were refined with the re-scaled 3D keypoints.

The length of the bones was first calculated from the triangulated keypoints with the
connecting relationship, and the cost function Ebone was minimized with multi-frame data
to refine the shape parameters β

Eβ = λboneEbone(β) + λpriorEprior(β) (7)
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Ebone(β) = ∑
i∈B
‖ f (Ji ·M(β), Ci)− Bi‖2 (8)

Eprior(β) = −log(N (β; 0, Σβ)) (9)

where Ji is denoted as the rows of the joint regressor, used to calculate the joint position
from the structured vertex of SMPL model, Ci as the connection relationship of the i-th
bone for calculation of the bone length from joint position, and Bi is the i-th bone length
from triangulated 3D keypoints.

3.3.3. Postural Reconstruction

The 10 shape parameters were fixed after shape parameters’ refinement, and the
postures of the performing human were reconstructed with the recovery of the pose
parameters of the SMPL model. In the final step, the energy function was constructed to
recover the pose parameters as follows:

Ejtr(θ) = λj2d

C

∑
v=1
‖Π(M(β, θ), Tv)− J2d

v ‖2 + λj3d‖M(β, θ)− J3d‖2 + λpriorR(θ) (10)

The first two energy terms are the data terms that fit the SMPL parameters to the
detected 2D joints’ location and the triangulated 3D joints. Π(p, T) is the projection of
the 3D point p with the projection matrix T. To prevent the parameters from falling into
wired postures during the non-linear optimization process, the regularization term R(θ)
was applied to force the pose parameters to satisfy the normal distribution of the pose
dictionary, as follows:

Eprior(θ) = min
i
(−log(giN (θ; µθ,i, Σθ,i))) (11)

4. Experimental Evaluation

We carried out numerous experiments on synthetic data and real scene data from
open datasets and ground verification test data to confirm the calibration-free postural
monitoring system. To assess the precision and accuracy of camera pose estimate and
human body reconstruction, the human3.6m datasets were used for quantitative evaluation
with the proposed method, focusing on three aspects:

1. Camera pose differences with available ground truth.
2. 2D reprojection error of the reconstructed joints.
3. 3D reconstruction error of the reconstructed joints.

We also qualitatively compared the calibration result of the ground verification test
data with Zhang’s Chessboard calibration method and evaluated the postural reconstruc-
tion results with reprojected human body meshes for a visual comparison.

4.1. Extrinsic Parameter Calibration

In this section, we evaluated the self-calibration accuracy with the detected
human keypoints.

4.1.1. Human 3.6M Evaluation

The Human 3.6M dataset is a dataset for human pose estimation with annotated 3D
human poses. People performing 15 activities were captured with four RGB cameras and
the ground truth human keypoints data were obtained by the marker-based motion capture
system Vicon. In this experiment, the calibration result with a T-shaped wand in the capture
space was treated as the ground truth, and the images with different activities were input
for the self-calibration and postural reconstruction.

We evaluated our self-calibration on the 15 activities of S9 subjects, from which
15 sequences of 400 frames were sent into the self-calibration module, and each sequence
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was processed 100 times. To measure the errors in the poses estimated from the ground
truth, the rotation difference with Riemannian distance [40] and the translation difference
with root mean squared error (RMSE) in meters were calculated for each calibration result.
The mean and standard deviations of the rotation error and translation error are shown in
Figure 4. The calibration accuracy is clearly highly effected by the activity and the main
influencing factors are twofold. First, the human body moving in each scenario could cover
different space volumes with different types of actions. Second, the human keypoints’
detection accuracy is related to the postural complexity.
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Figure 4. The rotation error and translation error of the 15 activities.

Conventionally, the detected keypoints are only used as an initial calibration and a
subsequent optimization module with bundle adjustment, and different priors are imple-
mented to obtain a better solution. To validate the iterative refinement of the camera pose
estimation with the gradually improved 3D triangulation of the body joints, derived from
the additional keypoint information. The calibration error after each round of alternative
optimization is shown in Figure 5.

4.1.2. Ground Verification Test Data

To examine the actions required for in-orbit camera self-calibration, we also conducted
a ground verification test experiment with limited activities by constraining the foot on
imaginary foot restrictors. Our ground verification experiments were conducted with the
same camera configurations compared to the in-orbit environment, with four cameras
settled in a 3× 2 m scene. The ground truth of extrinsic parameters was obtained with
Zhang’s Chessboard stereo camera calibration methods. We conducted three experiments
with different actions and persons, as shown in the figure. In the experiments, three
human subjects are captured with four cameras located at the corner of the 3× 2 m scene.
Subjects conducting actions such as walking, squatting, and sitting are captured with four
synchronized cameras. The resolution of the camera is 640× 480 and the frequency of
the recording is 30 frames per second. During self-calibration and reconstruction, we use
the pinhole camera model to project the 3D point into image coordinates. In the three
ground verification test, the first 400 frames of the images are chosen to self-calibrate
the camera extrinsic parameter for equal comparison with the Human 3.6M test data.
The chessboard calibration was conducted with 30 chessboards, placed in different positions
and orientations, occupying the common viewpoints of each camera pair. The re-projection
error of the chessboard corners was 0.06–0.08 px for all camera pairs. The images captured
for chessboard calibration are shown in Figure 6, and the comparison results are shown in
Table 1. The first two columns show the rotation error and translation error of the proposed
iterative refining camera pose, and the re-projection error of the chessboard corners with
our calibration results are shown in the third column.
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Figure 5. The translation error and rotation error curves with iterations.

Figure 6. The images samples captured for chessboard calibration. More than 50 pairs of images are
captured to guarantee the accuracy of the calibration results.

Table 1. Self-calibration results compared with the chessboard calibration. The re-projection error is
computed by projecting the 3D position of the chessboard corners with the proposed calibration results.

Actions Rotation Error (deg) Translation Error (%) Re-Projection Error (px)

No. 1 0.8234 1.2453 1.34

No. 2 0.7422 0.8264 0.98

No. 3 0.9231 1.534 1.65
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4.2. Postural Reconstruction

In this section, we carried out SMPL-based shape refinement and postural reconstruc-
tion and evaluated the reconstruction accuracy by focusing on two aspects, namely the
re-projection error of the recovered human joints and the 3D joint error when the ground
truth joint positions are available. First, the quantitative validation on the Human 3.6M
dataset was analyzed with the provided ground-truth 3D keypoints. We reported the
results for subjects S9. We used all four views and the ground-truth camera parameters.
Table 2 compares our approach with other state-of-the-art multi-view methods. The meth-
ods proposed by Trumble et al. [41] and Pavlakos et al. [42] only optimize the joint location,
and the rest consider the shape and pose combined. As most of the multi-view methods
regard the extrinsic camera parameters as known parameters, we compared the postural
reconstruction process with the ground-truth camera extrinsic parameters as Our1 and
the estimated camera pose with proposed self-calibration procedure as Our2. The MPJPE
of our method was 41.52 mm and 42.75, respectively, which demonstrates that our ap-
proach is effective in recovering the camera pose and reconstructing the shape and pose of
moving persons.

Table 2. Quantitative comparison on Human 3.6M (subject 9). “Shape” indicates if the method
estimates the shape parameters. “PA” indicates if Procrustes analysis was applied before computing
the MPJPE (mm). Calibration indicates if the ground-truth camera’s extrinsic parameters were used
to integrate multi-view data. Ours1 is the postural reconstruction result with ground-truth extrinsic
parameters. Ours2 shows the results with proposed self-calibration parameters.

Methods Shape PA Calibration MPJPE

Trumble et al. [41] No No Yes 62.50

Pavlakos et al. [42] No Yes Yes 56.89

Huang et al. [43] Yes Yes Yes 47.09

Ours1 Yes Yes Yes 41.52

Ours2 Yes Yes No 42.75

In order to quantify the time consumption of the proposed method, we analyze each
module of the workflow. The experiment is conducted on the computer with an i9-9900K
processor and Nvidia 2080ti. The 2D pose detection using OpenPose costs around 25 ms
for each frame with the resolution of 640× 480. Afterwards, the detected 2D keypoints of
400 frames are sent to the self-calibration module. In this experiment, we iterate the human
pose and camera pose with 5 iterations, and the total time is around 30 s. Finally, the human
postural of each frame can be reconstructed with the optimization-based method and the
run-time of each frame is around 120 ms.

For convenient qualitative evaluation of the ground verification test data, we imple-
mented the self-calibration module and the postural reconstruction module on three dif-
ferent action sets. Figure 7 shows examples of the detection results of the OpenPose with
Body25 definition. The reconstructed SMPL models were re-projected and rendered on the
corresponding images, as shown in Figure 8. The reconstructed SMPL models are shown
in Figure 9. More rendered re-projected data are shown in Figure 10.
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(a) Cam 1. (b) Cam 2. (c) Cam 3. (d) Cam 4.

Figure 7. The OpenPose detection results of four camera views with body25 definitions.

(a) Cam 1. (b) Cam 2. (c) Cam 3. (d) Cam 4.

Figure 8. The SMPL parameters’ fitting results with projected vertex on the original images.

Figure 9. The reconstructed 3D posture.
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Figure 10. Qualitative results of the ground verification test data.

5. Discussion

We presented a calibration-free multi-view system for convenient in-orbit astronaut
performance capture. We introduced several improvements to our proposed approach.
First, we used an alternating iterative optimization instead of the two-step methods contain-
ing an initial calibration and bundle adjustment. We achieved better calibration results with
different actions, which is meaningful due to the limited space and variety in actions due to
microgravity. However, the proposed calibration process was restricted to only one person
performing actions in the center of the scene for the effective selection of the detected 2D
keypoints. Second, scanned models on ground are used to provide a scale factor to recover
the actual distances between each camera according to limb length, which is considered
invariant with the long-term weightlessness impact. The shape parameters were then
refined with the detected 2D keypoints. The posture of the astronaut when performing
different actions was then reconstructed with the shape parameters’ fixed optimization.
An evaluation of benchmarks and ground verification test data demonstrated the effective-
ness and efficiency of our approach. Usually, two or more astronauts work together in the
space-limited stations. Thus, we plan to add a person re-ID module to identify the different
astronaut working and explore the temporal continuity property of the action series to
remove the limitations of the self-calibration process. With the reconstructed posture data,
the astronaut ergonomics for space flight in the microgravity environment can be assessed
in future work.
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