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Abstract: The probabilistic damage tolerance analysis of aeroengine rotor disks is essential for
determining if the disk is safe. To calculate the probability of failure, the numerical integration
method is efficient if the integral formula of the probability density function is known. However,
obtaining an accurate integral formula for aeroengine disks is generally complicated due to their
complex failure mechanism. This article proposes a multivariable numerical integral method for
calculating the probability of failure. Three random variables (initial defect length a, life scatter factor
S, and stress scatter factor B) are considered. A compressor disk model is evaluated. The convergence,
efficiency, and accuracy of the proposed method are compared with the Monte Carlo simulation and
importance sampling method. The results show that the integral-based method is 100 times more
efficient under the same convergence and accuracy conditions.

Keywords: probabilistic damage tolerance analysis; airworthiness; multivariable; numerical
integration method; calculation efficiency

1. Introduction

In recent years, probabilistic damage tolerance analysis (PDTA) has proven its potential
in the life management [1] of aeroengine rotor disks in civil and military areas. This
probabilistic method considers random events in both the manufacturing and utilization
phases, such as undetectable material processing anomalies, random loads, crack growth
rate, inspection schedules, and the probability of detection, to enhance the safety of rotor
disks [2,3]. Compared with the conventional life management methodology (also called
the safe life method), PDTA promotes rotor integrity against anomalous material aspects
under the required manufacturing conditions. Therefore, such a methodology has been
requested by the airworthiness authorities of major aviation industry countries, such as the
Federal Aviation Administration [4], the European Union Aviation Safety Agency [5], and
the Civil Aviation Administration of China [6]. In addition, the need for the application
of PDTA to fatigue life prediction of gas turbine engine components is being increasingly
recognised by the U.S. Military [7].

Over the past two decades, under the direction of the Federal Aviation Adminis-
tration, the Southwest Research Institute, in conjunction with four major aircraft engine
manufacturers (General Electric, Honeywell, Pratt & Whitney, and Rolls-Royce), has de-
veloped and enhanced the PDTA program DARWIN to address inherent material anoma-
lies in titanium alloys and nickel-based superalloys [8], including manufacturing- and
maintenance-induced anomalies [9–13]. DARWIN is an approved tool for compliance with
Advisory Circular 33.70-1 [14,15] (titanium hard alpha) and Advisory Circular 33.70-2 [4]
(hole features).

The general procedure of PDTA for inherent material anomalies, as depicted in
Figure 1, is divided into three parts: the inputs, the outputs, and the analysis process [16].
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The inputs include the initial defect/crack size distribution, finite element stress, material
properties, etc. These inputs are obtained from industrial or experimental data accumulated
by aeroengine companies. Before the probability of failure (POF) calculation, the stress
analysis, zone definition, and crack growth analysis should be performed. Then, both zone
and disk POFs are calculated. The zone POF determines the most dangerous region for
further risk analyses. Once the disk POF exceeds the design target risk value, the disk
design needs to be improved.
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The process mentioned above has been proven to be a reasonable method and has 
been successfully accepted by airworthiness authorities. However, the probability calcu-
lation usually incurs a cost problem because of the large number of Monte Carlo simula-
tion (MCS) samples [17–19]. For this process, the time cost is determined by the efficiency 
of the fatigue crack growth calculation of each MCS sample and the MCS sample size. The 
high-efficient fatigue crack growth models [20–22] improve the calculation efficiency of 
MCS and other probabilistic calculation methods, e.g., the importance sampling and nu-
merical integration (NI) method. Nevertheless, the enormous MCS sample size is the crit-
ical reason for the calculation cost problem because the aeroengine rotor disk’s design 
target risk value is low, usually less than 10−7. Hence, developing a practical probability 
calculation algorithm to solve the MCS sample size problem is significant for improving 
the analysis efficiency and decreasing costs. The methods studied and proposed in recent 
decades can be summarised in the following sections. 

(1) Improved MCS method 
Improving MCS is a general method used to improve calculation efficiency. In PDTA, 

the disk is separated into zones for POF calculation. The calculation mechanism of zone 
condition failure probability is Pf = Nfail / Nzone, where Nzone is the number of MCS sam-
ples per zone. The size of Nzone is always 104–106 or greater to guarantee high accuracy. 
Therefore, the total number of samples Ntotal = Nzone × nzone is always enormous for a real 
disk case, where Ntotal depends on the number of samples per zone (Nzone) and the num-
ber of zones (nzone). Consequently, the computational efficiency problem is transformed 
to reduce Nzone and nzone. 

Methods dedicated to reducing Nzone include the importance sampling method [23] 
and the adaptive optimal sampling technique [24]. The two methods differ in their ap-
proaches to reducing the sample size. The importance sampling method generates only 
those samples that will result in a lifetime smaller than the target service life by defining 
the critical initial defect size d*. The MCS sample sizes are decreased without increasing 
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The process mentioned above has been proven to be a reasonable method and has been
successfully accepted by airworthiness authorities. However, the probability calculation
usually incurs a cost problem because of the large number of Monte Carlo simulation (MCS)
samples [17–19]. For this process, the time cost is determined by the efficiency of the fatigue
crack growth calculation of each MCS sample and the MCS sample size. The high-efficient
fatigue crack growth models [20–22] improve the calculation efficiency of MCS and other
probabilistic calculation methods, e.g., the importance sampling and numerical integration
(NI) method. Nevertheless, the enormous MCS sample size is the critical reason for the
calculation cost problem because the aeroengine rotor disk’s design target risk value is low,
usually less than 10−7. Hence, developing a practical probability calculation algorithm to
solve the MCS sample size problem is significant for improving the analysis efficiency and
decreasing costs. The methods studied and proposed in recent decades can be summarised
in the following sections.

(1) Improved MCS method
Improving MCS is a general method used to improve calculation efficiency. In PDTA,

the disk is separated into zones for POF calculation. The calculation mechanism of zone
condition failure probability is Pf= Nfail / Nzone, where Nzone is the number of MCS sam-
ples per zone. The size of Nzone is always 104–106 or greater to guarantee high accuracy.
Therefore, the total number of samples Ntotal= Nzone × nzone is always enormous for a real
disk case, where Ntotal depends on the number of samples per zone (Nzone) and the number
of zones (nzone). Consequently, the computational efficiency problem is transformed to
reduce Nzone and nzone.

Methods dedicated to reducing Nzone include the importance sampling method [23]
and the adaptive optimal sampling technique [24]. The two methods differ in their ap-
proaches to reducing the sample size. The importance sampling method generates only
those samples that will result in a lifetime smaller than the target service life by defining
the critical initial defect size d∗. The MCS sample sizes are decreased without increasing the
variance with this technique [25]. The adaptive optimal sampling technique is an algorithm
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that adaptively allocates samples to member failure modes based on initial estimates of the
individual member failure probabilities [24].

Another approach is to reduce the number of zones nzone by adopting the zone refine-
ment technique [25] and joint probability density functions [26]. In the zone refinement
technique, each zone’s risk contribution is reduced to less than a specific limit value via re-
fining the zones with a high-risk contribution [25]. The joint probability density function is
obtained from an adaptive refinement of the element mesh where elements are subdivided
based on their contribution to the component risk [26]. Additionally, the adaptive optimal
sampling technique can be combined with the zone refinement technique to reduce the
sample size [27].

(2) Numerical integration (NI) method
Unlike the methods used to reduce the number of MCS samples, the NI method

calculates the POF by integrating the joint probability density function. In the PDTA of
aircraft structures, the mixed techniques of MCS and probability integration algorithms can
balance the speed and accuracy of POF calculation [28]. However, the explicit formula of the
density function of POF at current N cycles is often complicated to solve, especially under
the rotor disk’s complex failure mechanism. In 2017, Yang introduced a fast NI algorithm
based on probability density evolution, which established a relationship between the initial
probability distribution (N = 0) and the actual distribution after N flight cycles. Hence, the
POF is determined directly through the initial anomaly distribution [29]. The results show
that the analysis cost is vastly decreased compared to the traditional MCS method.

However, the fast NI algorithm only takes the single random variable of the initial
crack size into consideration. This algorithm has not dealt with the multiple random
variables of practical PDTA. The analysis of multiple random variables is essential in
PDTA since the POF is closely related to the uncertainty of the initial crack size, load, and
material [30]. Assuming that these variables obey the corresponding probability statistical
distribution, the specific mathematical demonstration and the implementation algorithm of
the fast NI algorithm are unknown. Moreover, the previous research has not treated of NI
method’s convergence in much detail. Commonly, with the NI method’s integral step size
decreased, the calculation results converge, but the time cost increases. Therefore, it would
be valuable to investigate whether the NI method’s high accuracy and efficiency could be
maintained considering multiple random variables under the condition of convergence.

This study extends the fast NI method from single-variable to multivariable to meet
the requirements that originate in the actual PDTA. Considering the random initial defect
length a, stress scatter factor B, and life scatter factor S, the multiple integral and the
specific analysis process are established with multivariable based on the probability density
evolution theory. Furthermore, the convergence, accuracy, and efficiency are compared
among the proposed multivariable NI method, MCS, and importance sampling method
with the multivariable consideration using an actual compressor disk model. The time
costs of the NI method and MCS using different numbers of random variables are also
analysed. This research can provide an additional reference for general designers in
assessing disk POF.

This paper is divided into five sections. Section 2 describes the mechanism of prob-
ability density evolution theory and the multivariable NI method. An evaluation of the
centrifugal compressor disk model is presented in Section 3. Section 4 characterises the con-
vergence results and compares the different cases employed in the proposed method, MCS,
and importance sampling method. Finally, Section 5 summarises the principal conclusions.

2. Multivariable Numerical Integration Method of Probabilistic Damage
Tolerance Analysis

This section first describes the three random variables considered in the practical PDTA
process. Then, the mechanism of establishing the multivariable integration model is explained.
Finally, the realisation process of the multivariable NI method is presented in detail. Figure 2
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compares the proposed method in this work with the MCS process and the single-variable NI
method, which shows the probabilistic calculation method’s development.
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2.1. Multiple Random Variables Considered in the PDTA

In general, the PDTA considers five random variables, including the size and frequency
of the crack-inducing anomaly, the stress scatter factor, the life scatter factor, the time of
non-destructive inspection during the service life, and the POD for each non-destructive
inspection type [31,32]. However, the essential purpose of PDTA is to evaluate whether the
failure risk satisfies the disk’s designed target risk (DTR) condition. The non-destructive
inspection reduces the failure risk during the service life when the DTR is not satisfied or
continues reducing the failure risk. Additionally, the time of the non-destructive inspection
is a designed time rather than a statistical variable. Consequently, this paper considers the
design evaluation stage, three variables, a, B, and S, are investigated. In analysing these
three variables by the NI method, the key objective is to convert the integral probability
region to the initial variable space, and the variable space needs to satisfy the conservation
of the probability condition.

Therefore, in this study, the size and frequency of the crack-inducing anomaly, the
life scatter factor, and the stress scatter factor are taken as the random variables. These
variables are presented in detail in this section.

2.1.1. Initial Defect Size of the Material

In this article, the oversize initial material defect is considered to be the leading cause
of the aeroengine rotor disk fracture. The initial defects of the materials mentioned here
usually refer to inclusions that arise during the metal melting process, such as hard-α



Aerospace 2023, 10, 296 5 of 23

inclusions. The following part of this article shall not distinguish between cracks, defects,
anomalies, and inclusions.

Although the probability of hard-α inclusions occurring in the material is low, usually
10−6, this condition is challenging to detect utilising non-destructive inspection due to the
slight difference in density between the hard-α inclusions and the matrix. Moreover, if
such defects with high hardness are contained in the structure, cracks will quickly develop
under alternating load during use. These cracks may lead to a fracture of the structure,
potentially causing a severe accident.

At the end of the 20th century, the American Aerospace Industry Association and the
Rotor Integrity Subcommittee jointly developed a method to determine the initial defect
distribution based on a large number of practical industrial experiences [33]. The defect
distribution information is the occurrence frequency of an initial defect of a specific size
in a unit material mass (or volume). Figure 3 shows the defect size distribution curve,
representing the number of initial defects greater than a specific length per million pounds
of material. The curve is only a general description of the initial defects. For probabil-
ity calculations, the initial defect distribution data must be converted into a cumulative
distribution function to perform MCS or NI calculations.
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In general, the structural safety life includes the crack initiation life and crack stability
extension life. However, if undetected defective titanium alloys have been placed into
use after the forging process, inevitable initial cracks have already started around the
defects. Thus, to simplify the risk analysis process, the cracks’ initiation life is generally
assumed to be zero, and the initial crack length is considered the same as the initial defect
length. In addition, for the sake of conservative results of life evaluation, the defects are
assumed to be flaky circular cracks and treated in the infinite plate subjected to a uniform
stress perpendicular.

2.1.2. Life Scatter Factor

The fatigue crack growth model is generally described as a function of the growth rate,
stress intensity factor ∆K, and stress ratio R, as shown in the following:

da
dN

= ψ(∆K, R), (1)

where a is the size of the crack, N is the number of flight cycles experienced during engine
service, K is the stress intensity factor at the crack tip, which is solved by the finite element
method, Newman shape factor method [34], or weight function method [35], and the stress
ratio R = 0 considering the engine take-off and landing cycle.

The parameters in the fatigue crack growth model are obtained by curve fitting
the experimental data [36]. Due to the dispersion of the experimental data, the fitting
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results tend to be uncertain. To characterise the uncertainty of crack growth life, the life
scatter factor of S is classified as the uncertainty of the crack growth model and added to
Equation (2)

da
dN

= S · ψ(∆K, R), (2)

where S can be obtained from different crack growth models, such as the Paris law [37],
Walker law, Forman law, or NASGRO law. For example, when applying the Paris law, see
Equation (3)

da
dN

= S · C(∆K)n. (3)

2.1.3. Stress Scatter Factor

The stress scatter factor B represents the uncertainty of the alternating load that the
engine disk experiences. This uncertainty mainly affects the value of the stress intensity
factor K. For example, the Newman shape factor method for calculating the stress intensity
factor is shown in Equation (4)

K = Q · σ
√

πa, (4)

where Q is the crack’s shape factor, characterising the structure’s geometric modification. σ
is the structure’s equivalent stress.

The stress value of σ is usually calculated using commercial finite element software to
simulate the engine structure. The stress scatter factor B is introduced into the probability
calculation in Equation (4) to consider the stress’s uncertainty. Similarly, B follows a
particular probability distribution so that the stress value has a degree of dispersion.

K = Q · B · σ
√

πa. (5)

The scatter factors of B and S introduced above are generally considered to satisfy
log-normal distributions, whose probability density function is as follows. The mean and
variance can be obtained by evaluating the results of fitting multiple experimental data sets.

ρS(S) =
1√

2πσSS
e
− (lnS−µS)

2

2σS
2 , (6)

where σS and µS are the standard deviation and mean of the scatter factor S, respectively.
Adding scatter values to introduce uncertainty into the calculation equation enables

the risk assessment to be more relevant to the actual situation without disrupting the
framework of the original theoretical equations. Hence, it is convenient for designers to
evaluate the statistical distribution of the material density and fracture toughness by adding
dispersion factors. Furthermore, sensitivity analysis can be performed on the correspond-
ing stress scatter, through which the sensitivity of the engine disk to experimental data
uncertainty can be obtained, thereby guiding the design of related experiments.

2.2. Mechanism of the Establishment of Multiple Integration in Multivariable PDTA

The probability density evolution theory is the basis of this work. It transforms the
integral from the current N flight cycles into the initial (N = 0) flight cycles, which solves
the core point by integrating at N flight cycles. First, Section 2.2.1 introduces the application
of the theory of probability density evolution. Then, the mathematical demonstration of
establishing multiple integrations considering random variables is described.

2.2.1. Probability Conservation and Spatial Transformation in the Theory of Probability
Density Evolution

The principle of probability conservation is generally expressed through the evolution
of conservative stochastic systems [38]. Some investigations [39–41] have implied or
discussed the principle of conservation of probability in in-depth studies of the PDF
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solution of stochastic dynamical systems, i.e., to establish the relationship between the
state PDF and the ‘initial’ PDF of random factors, the total probability is considered to
be constant in the evolution process of the system [42]. These applications have proven
the rationality of probability spatial transformation (from N flight cycles to the initial
state) in this paper. A conservative stochastic system is one in which neither an existing
random factor disappears nor a new random factor appears in the evolution process. In
this problem, the stochastic dynamic system is involved in the crack growth system. The
classical crack growth equations expressed in the form of a dynamic differential equation
are as follows:

•
a = A(X, N), (7)

where X = (a0, B, S) is the state vector of the crack growth dynamic system, and only the
crack size evolves over time. A(·) is a deterministic operator related to the crack growth rate,
such as the Paris law shown in Equation (3). This dynamic system describes the temporal
evolution of crack size as a differential equation. Thus, the classical Liouville equation can
be expressed as follows:

∂ fX(x, N)

∂N
+

3

∑
1

∂[ fX(x, N)A(x, N)]

∂xj
= 0, (8)

where x is the realization of X. However, considerable effort is required to solve this
partial differential equation. Instead of solving Equation (8), a multivariable NI method
is proposed.

The preceding analysis shows that A is determined by the crack growth model in
Equation (3) and the calculation model of the stress intensity factor in Equation (5). This
dynamic equation establishes a one-to-one correspondence between the initial (N = 0)
critical crack size acritical, N=0 and the critical crack size acritical, N after N flight cycles, as
shown in Figure 4. Based on probability conservation theory, when performing probability
space transformations, the calculation system must satisfy a probabilistic conservation
condition, and the entire evolutionary process must be monotonic, which means A(X,
N) ≥ 0 should always be true. In this paper, both Equation (7) and the physical meaning of
the crack growth meet this requirement (the material cannot recover by itself once cracked).
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where x is the realization of X. However, considerable effort is required to solve this par-
tial differential equation. Instead of solving Equation (8), a multivariable NI method is 
proposed. 

The preceding analysis shows that A is determined by the crack growth model in 
Equation (3) and the calculation model of the stress intensity factor in Equation (5). This 
dynamic equation establishes a one-to-one correspondence between the initial (N = 0) crit-
ical crack size acritical, N=0 and the critical crack size acritical, N after N flight cycles, as shown 
in Figure 4. Based on probability conservation theory, when performing probability space 
transformations, the calculation system must satisfy a probabilistic conservation condi-
tion, and the entire evolutionary process must be monotonic, which means A(X, N) ≥ 0 
should always be true. In this paper, both Equation (7) and the physical meaning of the 
crack growth meet this requirement (the material cannot recover by itself once cracked). 
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2.2.2. The Establishment of Multiple Integration in Multivariable PDTA

With the multiple random variables considered in the practical PDTA characterized
in Section 2.1, disk failure is defined as a situation in which the crack size is larger than
a critical size related to the load and material probability after N flight cycles. Hence, in
terms of numerical calculations, the integral of the failure region [acritical, N , +∞] is:

Pf(N) = P(a > acritical,N) =
∫ +∞

acritical,N

fa,N(a)da, (9)
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where acritical, N , is the critical crack size leading to disk fracture, and fa, N is the probability
density of crack size after N cycles. However, in most cases, the crack size probability
density fa, N after N cycles cannot be easily obtained. Consequently, probability density
evolution theory is introduced. When stochastic systems maintain the conservation of
probability and the entire process satisfies the monotonicity condition during evolution,
the integral region can be transformed into the initial (N = 0) probability distribution
space. Therefore, if the initial variables are mutually independent, the integral calculation
is performed as follows:∫ +∞

ac,N

fa,N(a)da =
y

Ωf,N=0
f (a0, B, S)dSdBda0 =

y

Ωf,N=0
fa0 fB fSda0dBdS, (10)

where a0, B, S are the variables considered in the PDTA, fa0 , f B, f S are the probability
densities of variables a0, B, S in the initial (N = 0) flight cycle, and Ωf, N=0 is the failure
region to be integrated at the initial (N = 0) flight cycle. The definition of the failure region
Ωf, N=0 ultimately provides the POF since the distribution of each initial variable is clear.

Furthermore, the generalised conditional expectation method proposed by Ayyub
was proven reasonable and efficient for multivariable structural reliability assessment in
1992 [43]. Nevertheless, the solution of the control variable’s distribution function is not
given in this research and is generally difficult to obtain. However, if the probability density
evolution theory is introduced and the control variable varies from the defect size after
N cycles to the initial (N = 0) defect size, the distribution function of the control variable
can be directly obtained from the statistics of the initial defect size. Therefore, the crack
size is chosen as the random control variable, and B and S become the conditional random
variable set in Equation (10).

Moreover, the stochastic dynamic system involved in PDTA is a monotonic crack
growth system, which means that all cracks exceeding the critical size of acritical, N=0
in the initial cycle (N = 0) are longer than the critical size of acritical, N after N cycles
when all other variables are constant. Hence, the failure region of Ωf, N=0 is limited to{

a|a > a critical, N=0, N = 0
}

, and the POF is eventually a form of conditional expectation.
Equivalently, Equation (10) is rewritten as follows:∫ +∞

acritical,N

fa,N(a)da =
∫ +∞

B=0

∫ +∞

S=0
P(a > acritical,N=0(B, S))× fB × fSdBdS, (11)

where acritical, N=0 is the initial (N = 0) critical crack size associated with each value of the
conditional variables {B, S} and is determined by inversely solving for the crack growth
from the critical crack size acritical, N after N cycles.

∫ +∞

a
critical,N

fa,N(a)da ≈
c1

∑
i=1

c2

∑
j=1

P(a > a
critical,N=0

(Bi, Sj)) fB(Bi) fS(Sj)∆B∆S. (12)

As shown in Equation (12), the general trapezoidal quadrature formula [44] is applied
to solve the multiple integrals in Equation (11). The trapezoidal method is a standard
method of performing definite multiple integral calculations. The integration region is
divided into equal segments, and ∆B and ∆S are recorded as the sizes of the equally spaced
intervals of the random variables B and S. Additionally, c1 and c2 are the numbers of
divided intervals for each variable, and Bi and Sj are the points in each interval.

This integral process is time-consuming if the number of variables in Equation (12) is
large or if the step size is small. Indeed, multiple variables and a small step size lead to
substantial crack growth computations that deserve analysis. Furthermore, the accuracy
and efficiency of the NI method are affected by the step size. For example, if the integration
step size is large, the accuracy becomes low. Nevertheless, the small integral step leads
to an increase in the calculation cost accordingly. Hence, for the NI method’s efficiency
analysis, the first step is to find a step size that results in convergence, similar to finding
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mesh-independent solutions in finite elements. Therefore, the NI method’s mechanism for
augmenting the computational efficiency can be summarised in three parts: the number of
variables, the efficiency of each crack growth computation, and the integration step size.
Note that the crack growth calculation is included in different probabilistic calculation
methods; thus, this model is not the focus of this paper.

The model of multiple integrals of the stochastic dynamical system is established by
applying the probability density evolution theory, the generalized conditional expectation
method, and the general trapezoidal quadrature formula.

2.3. The Multivariable NI Method of PDTA

This section presents the details of the analytical calculations in the risk assessment
process in Figure 2. First, the zone and disk’s POF calculation models use critical analysis to
achieve a complete risk assessment. Then, based on the input variables introduced above,
the NI method’s implementation mechanism is emphasized.

2.3.1. Zone and Disk POF Calculation Model

The zone-based technique [45] is applied to address the uncertainty of crack location.
This technique discretizes a disk into individual zones that generally have a constant stress
and temperature state. The disk’s failure risk is the probability union of all zones’ POF.
As the occurrence rate of hard-α is low, such that the probability of multiple defects in the
unified zone is negligible [46], the disk’s POF Pf, disk is approximated by the sum of the
zone’s POF:

Pf,disk ≈
M

∑
zone=1

αzone × Pf,zone,cond, (13)

where αzone is the occurrence probability of hard-α inclusions related to each zone’s quality,
Pf, zone, cond is the fracture probability under the condition of defect occurrence, and M is
the number of zones.

The probabilistic failure risk assessment method introduces the engine structural
failure probability concept and conducts risk analysis through probability statistics. The
zone POF Pf, zone, cond is the conditional probability of fatigue fracturing due to the growth
of cracks. In addition, according to probabilistic fracture mechanics theory, the critical
condition for crack instability growth requires that the stress intensity factor K at the crack
tip be larger than the material fracture toughness Kc. Thus, the probability of a structural
fatigue fracture can be expressed as the probability of K > Kc in the following equation:

Pf,zone.cond = P(K > Kc). (14)

However, the stress intensity factor K cannot be measured from the base material
experiment. Therefore, the probability distribution of K should be converted into the
probability distribution of crack length. As a result, a one-to-one correspondence exists
between the stress intensity factor K and the crack length. Thus, Equation (13) is equivalent
to Equation (14).

Pf,zone,cond = P(a > acritical,N). (15)

This result implies that the fracture failure probability of the structure is the probability
that the crack length is greater than the critical crack size of acritical, N after N flight cycles.
By applying the probability integration algorithm, Equation (15) can be expressed as the
following equation:

Pf,zone,cond =
∫ +∞

a
critical,N

fa,N(a)da, (16)

where fa, N is the probability density function of the crack length after N flight cycles, and
acritical, N is the critical crack size at fracture.
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Therefore, the structure’s failure probability can be determined by integration if fa, N
and acritical, N are known. The failure probability under different numbers of flight cycles N
forms the failure probability curve.

2.3.2. The Implementation Algorithm of the Multivariable NI Method

According to Equation (16), if acritical, N is found, the corresponding failure probability
Pf, zone, cond can be determined. Using different fracture mechanics laws, the relationship
between acritical, N=0 and acritical, N can be obtained by the crack growth curve shown in
Figure 4. For an initial crack size a0, the integral solution of Equation (7) is GN, and then
the crack size a(N) after N flight cycles is

a(N) = GN(a0, N, B, S). (17)

Then, conversely, if the critical crack size at fracture failure is acritical, N , the correspond-
ing critical initial crack length acritical, N=0 is:

acritical,N=0 = G−1
N (acritical,N , N, B, S). (18)

If the shape factor Q in Equation (5) is approximated as a constant, then the Paris
crack growth differential equation of Equation (3) has an analytical solution, as shown in
Equation (19). Furthermore, the general form of the function GN is the crack growth curve,
as illustrated in Figure 4, by using the NASGRO law, the Forman model, or experimental
data. Hence, the initial crack size acritical, N=0 can be obtained by interpolating the crack
growth curve.

acritical,N=0 = [(acritical,N)
1− n

2 − S · C(1− n
2
)(Q · B · σ

√
π)

n · N]
2

2−n . (19)

In general, finding an analytical expression of the function GN is difficult. However,
this function is characterised by the physical laws of crack growth. Thus, the discrete data
on crack growth obtained through experimental methods or finite element modelling can
reflect the corresponding relationship with GN, represented in the form of a plot, as shown
in Figure 4.

Therein, the critical crack size acritical, N=0 obtained by Equation (5) according to the
material fracture toughness Kc is shown as follows:

acritical,N =
K2

c

π(Q · B · σ)2 , (20)

where B is the stress scatter factor, which describes the dispersion of the disk load σ.
An analysis of the physical meaning should precede the use of Equation (11) for

probabilistic integration calculations. According to probability density evolution theory,
Equation (11) describes the random variable’s spatial transformation relationship in dif-
ferent evolutionary stages. In reality, because this expression requires that A(X, N) ≥ 0
in Equation (7) is always satisfied, the crack growth process is monotonic. This condition
means that in the initial distribution, all of the cracks that are longer than the length of
acritical, N=0 must remain longer than acritical, N if the parameters B, S, and N are the same.
This probability satisfies the conservation relationship.

Because the material initial defect information is known. The probability of the initial
defect size exceeding acritical, N=0 is:

P(a0 > acritical,N=0) = (1 − CDF(acritical,N=0)), (21)



Aerospace 2023, 10, 296 11 of 23

where CDF(a critical, N=0) is the cumulative distribution function of the initial crack size.
This function can be calculated from the exceedance probability data for the initial crack
length shown in Figure 3 (denoted as exc(a0)), as follows:

CDF(acritical,N=0) =
exc(acritical,N=0)− exc(a0,min)

exc(a0,max)− exc(a0,min)
, (22)

After the theoretical analysis, the zone’s failure probability is obtained after the double
numerical integration calculation. The main steps in this process are as follows. First,
the critical crack length acritical, N is determined at the time of fracture according to the
material fracture toughness Kc, stress σ, and stress scatter factor B by Equation (9). Next,
the corresponding initial critical crack length acritical, N=0 is obtained from the crack growth
equation, i.e., Equation (8). Then, the conditional failure probability of the zone Pf, zone, cond
is determined through Equation (6). Finally, the disk failure probability is computed
utilizing Equation (3).

The significant advantage of this multivariable numerical integration method lies in the
fact that it directly converts the probabilities of random variables in different evolutionary
processes into spatial transformations, thereby significantly reducing unnecessary calculations.

3. Computational Model and Inputs

In this study, a centrifugal compressor disk model is applied to compare the conver-
gence, accuracy, and efficiency of the PDTA process with different calculation methods.
First, under the same boundary and life expectancy conditions, the failure probability of the
disk is evaluated by the NI and MCS methods. Then, convergence, precision, and efficiency
are compared and discussed. Additionally, to further clarify the NI method’s advantages,
the importance sampling method [23] is considered.

This study presents the benefit of the NI method based on computational efficiency.
The thermoelastic analysis process is not detailed in this paper because the stress and
temperature of the disks obtained through prequel thermoelastic analysis are inputs for the
PDTA. This section introduces the computational model and essential PDTA inputs.

3.1. Computational Model

An actual centrifugal compressor disk model [47] is used, as presented in Figure 5.
Once the disk’s stress and temperature during a flight cycle are obtained based on a 3D
model, the PDTA is performed in the radial–axial cross-section. The aeroengine disk’s
representative safety analysis process starts with aircraft and engine requirements, flight
profile selection, and performance analysis. Load analysis in a flight cycle is then performed,
followed by life and failure risk analysis. In the failure analysis, the defect is assumed to be
a lamellar circular tension-type crack subjected to circumferential stress loading.
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The boundary conditions in the steady state applied in the load analysis are shown
in Table 1. The element type of the solid region is composed of tetrahedra elements of
Solid45. The solid region’s finite element model consists of more than 2,140,291 units and
428,699 nodes to meet PDTA analysis requirements, requiring adequate nodes on the radial–
axial section, as shown in Figure 5. That is, the mesh was refined after the grid-independent
solution analysis. After the load analysis by finite element calculation, the node stress in
the radial–axial section is interpolated into a new quadrilateral mesh for PDTA analysis.
The new quadrilateral mesh is shown in Figure 6. Detailed information on finite element
analysis can be found in Ref. [47]. The material parameters of Ti6Al4V are listed in Table 2.
These data are taken from Ref. [47], including generic Ti6Al4V Paris fit data [15].

Table 1. Boundary conditions in the steady state.

Boundary Conditions Value

Disk rotation speed 35,000 rev/min
Mass Flow 6.825 × 10−5 kg/s

Inlet temperature 288.15 K
Outlet temperature 445.83 K

Outlet pressure 383 KPa
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Table 2. The material parameters of Ti6Al4V.

Parameters Value

Density 4450 kg/m3

Young’s modulus 120,000 MPa
Poisson’s ratio 0.361

da/dN 9.25 × 10−13(∆K) 3.87 m/cycle
K threshold 0.0 MPa

√
m

Fracture toughness 64.5 MPa
√

m
Yield strength 834 MPa

3.2. Inputs for the PDTA

Based on the integrated process of a typical PDTA with multiple variables considered,
the inputs of the POF calculation other than material properties include the stress distri-
bution and zone definition, defect material anomaly distribution (determining the initial
defect size of the material), design service life, life scatter factor, and stress scatter factor.
The analysis occurs as follows.

(1) Stress distribution and zone definition
The disk is divided into zones based on the stress distribution of the meridional

surface, as shown in Figure 7. The stress in the figure shows the circumferential stress
distribution. A zone is considered to be a grouping of materials such that all subregions in
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the zone have a generally uniform stress state, the same properties of fatigue crack growth,
inspection schedules, probability of detection curves, and anomaly distribution [47]. The
life of a zone is approximately constant for a given initial crack size. In other words, the
risk computed for any subregion of the zone’s material will be the same [47]. According to
the principle of stress similarity, finite elements are grouped into a specific stress interval
zone. That is, the circumferential stress is extracted for zone definition. The finite elements
are then differentiated into different zones by classifying the element stress into different
stress intervals. These stress intervals are divided into equal intervals from the disk’s
minimum stress to the maximum stress. As shown in Figure 7b, stress intervals of 34.5 MPa
are practical and adequate for the initial zone definition suggested by Advisory Circular
33.14-1 [14]. Analytical convergence requires further zone refinement [25], which will
increase the number of zones and result in a subsequent increase in computing. Therefore,
34.5 MPa is considered the stress interval in this paper [14]. Surface and corner zones are
defined to consider anomalies/cracks located in near-surface regions that generally grow
faster than embedded cracks under the same load conditions. Hence, three types of zones
are considered in this study: zones containing embedded cracks, zones containing surface
cracks, and zones containing corner cracks.
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(2) Defect material anomaly distribution (determining the initial defect size of material)
The “Post 1995 Triple Melt/Cold Hearth + VAR Hard Alpha Inclusion Distribu-

tion” [14] data shown in Figure 3 contain information on the initial anomaly size dis-
tribution. For the NI method, the distribution data (per million pounds) can be used
directly on a volumetric basis (per cubic meter) by multiplying the material’s density. Note
that the uncertainty of the initial defect size discussed in Section 2.2 is contained in this
anomaly distribution, which is one of the variables considered in this paper.

(3) Life scatter factor and stress scatter factor
The life scatter factor S reflects the dispersion of the crack growth rate. In this paper, S

follows a log-normal distribution with a median value equal to 1 and 20% COV (coefficient
of variation). The stress scatter factor B describes the uncertainty of the disk stress. B
follows a log-normal distribution with a median value equal to 1 and 20% COV.

(4) Design service life
The design service is the input of PDTA. Based on a particular engine design, the

design service life is 20,000 flight cycles in this case.

3.3. Considered Cases for Converge Result

The convergence, accuracy, and efficiency of the different methods are now compared.
The NI method and MCS are first applied for comparison. The importance sampling
method is also considered to emphasise the advantage of the NI method.

For the NI method, the analysis process is given in Section 2.3. However, it should
be noted that the computational efficiency and precision of the NI method are affected by
the integration step size. That is, only the converged integral results under a sufficiently
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small integration step size are comparable. Thus, seven cases with different step sizes
of 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, and 0.5 were chosen to obtain the convergence accuracy.
Another relevant point concerns the integral region in Equation (11). To meet the precision
requirement, [1.5σ, 12.5σ] was selected as the integration region in the seven NI method
cases, where σ is the standard deviation. The integration ranges are not static for the
scatter factors of different statistical distributions. In this paper, the integral region is
large enough because the error between the joint probability density integration and 1 is
below 10−6. For other problems, considering different variables with different statistical
distributions, the integration region can be determined by calculating the integral area
of the joint probability density of the scatter factors in the limited integral region. For
the MCS, the number of samples is a crucial factor influencing the calculation efficiency.
Hence, 15 cases were explored within the range of 105 to 5 × 107 sample size to analyse the
results’ convergence. Additionally, the importance sampling method similar to the method
introduced in reference [23] is used to compare it with the NI method, indicating that only
those samples that fail are generated, and eight cases were considered.

For the abovementioned methods, the same simplified Paris law and Newman method
were used to achieve a uniform calculation cost of fatigue crack growth [34,37]. All of the
cases considered were investigated on a single central processing unit (CPU) in the same
computer to compare the algorithm performance for each method (the NI method, MCS,
and importance sampling method). The CPU version is an Intel(R) Core (TM) i7-8700 CPU
with a 3.20 GHz processor. A Windows® platform software package self-developed with
the Microsoft Foundation Classes (MFC) library was used for the evaluation and analysis.
Furthermore, calculation time was selected as the indicator of computational cost, given that
time cost is the most intuitive way to evaluate and understand the efficiency of methods.

4. Results and Discussion
4.1. Convergence Results with Different Methods

As stated previously, to compare the convergence, accuracy and efficiency of different
methods, the convergence of the results should be discussed first. The results of the different
calculation cases are as follows.

(1) Cases with the NI method for different step sizes
The POFs (events/cycle) at 20,000 flight cycles are used as an indicator to estimate

the convergence. From Figure 8, the results converge as the integral step size decreases.
However, the NI method’s calculation time cost increases with decreasing step size, as
shown in Figure 9. That is, the integration step size affects both the integration accuracy and
the calculation time cost. If the integration step size is large, then the accuracy becomes low.
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Nevertheless, the small integral step can increase the calculation cost, as shown in
Figure 8. Similar to finding the grid-independent solution in finite element analysis, the
first step of applying the NI method is to find a step size that results in convergence, which
is a step size of less than 0.05. Moreover, although stress factor B and life scatter factor S
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have different units, the integral converges as the step size is less than 0.05, as illustrated in
Figure 8. One of the NI method’s advantages is that the result converges rapidly with a
decreasing step size. The calculation results are fitted with an exponential curve, and the
results of the NI method converge when the step size is less than 0.05. Hence, to compare
the NI method’s calculation efficiency with that of the MCS and importance sampling
methods, the POF curve (step size of 0.05) with the lowest time cost in the convergent cases
is presented in Figure 10.
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(2) Cases with MCS for different sample sizes
Similarly, to determine the number of samples needed for MCS convergence, fifteen

cases with sample sizes from 104 to 5× 107 were investigated. According to the exponential
fitting curve shown in Figure 11, the results converge to a stable value as the number
of samples exceeds 5 × 106. Before this threshold, the error caused by the small sample
size led to a fluctuation in the results around the convergence value, which is one of the
inevitable shortcomings of MCS. The designed target risk is a design parameter generally
small for an actual engine disk, for example, 10−9 events per flight cycle for component-
level design target risk value [14]. Thus, the requirement for the number of MCS samples
reaches millions. Large quantities of sample calculations result in high computational costs,
as shown in Figure 12. This study considers MCS results with a sample size larger than
5 × 106 convergent. The POF curve obtained by MCS with a 5 × 106 sample size, as shown
in Figure 13, has the lowest time cost among those in all convergence cases.

(3) Cases with the importance sampling method for different sample sizes
The importance sampling method reduces the number of MCS samples by sampling

only in the areas likely to experience failure [23]. In other words, the importance sampling
method is an improved MCS approach, and its efficiency is affected by the number of
samples, as is the conventional MCS. Herein, eight cases with different sample sizes from
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1.8 × 105 to 1.8 × 107 were investigated to obtain a convergence result. Figure 14 shows
that sample sizes larger than 1.6 × 106 result in convergence. The time costs of different
cases are shown in Figure 15. The POF curve with the lowest cost of convergence based on
time is shown in Figure 16.
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4.2. Comparison of Computational Costs and Precision with Different Methods

(1) Comparison of the computational costs of different methods
The NI method’s computational cost is compared with that of MCS, and the importance

sampling method provides a clear understanding of the NI method. Based on the analysis
above, convergence conditions are used for comparison; notably, the NI method has a
0.05 step size, MCS has a 5 × 106 sample size, and the importance sampling method has a
1.6 × 106 sample size. Figure 17 indicates that the NI method has an advantage over MCS
and the importance sampling method in the calculation efficiency of the PDTA process. In
addition, the NI method’s time cost is hundreds of times lower than that of MCS and the
importance sampling method.
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(2) Comparison of the computational precision of different methods
Theoretically, the NI method and MCS are entirely equivalent concerning the POF

results. In other words, the result of the NI method is a numerical solution, and the MCS
result converges to that of the NI method if the sample size is sufficiently large. However,
there is a difference between the NI method and the MCS method, as shown in Figure 18,
especially for a small number of flight cycles. This difference is related to the numerical
algorithms and can be improved in subsequent studies; however, there is no notable impact
on this paper’s conclusions. Although the corresponding precision is slightly better than
the NI method, the efficiency is lower for the importance sampling method. The POF
results at 20,000 flight cycles are shown in Table 3. A maximum relative error of 0.2% exists
between the NI method and the importance sampling method.
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Table 3. POFs at 20,000 flight cycles for different methods.

Calculation Method POF at 20,000 Flight Cycles

NI method (step size of 0.05) 4.0867 × 10−11

MCS (sample size of 5 × 106) 4.0936 × 10−11

Importance sampling method (sample size of 1.5 × 106) 4.0777 × 10−11

4.3. Discussion

Some conclusions can be summarised based on a comparison of the convergence,
accuracy, and time costs of the NI method, MCS, and importance sampling method. Similar
to the conclusion in the study of the fast NI algorithm [29], there is no significant difference
between the results of the methods mentioned. It is emphasised that, for the typical
PDTA process, the NI method’s calculation efficiency is superior to that of MCS and the
importance sampling method under limited variable conditions.

Although the calculation cost is affected by the integration step size, convergence
quickly occurs with the NI method’s reduction in the step size. MCS and the importance
sampling method may be more efficient than the NI method when the number of variables
is sufficiently large. The number of samples significantly impacts the two methods’ time
cost, especially when the POF result is low, for instance, 10−11 in this study. The demand
for a large sample size leads to a high computational cost, which is the essential restriction
of sampling calculations. Under finite variable conditions and several iterative optimisation
analyses, the NI method makes additional scenes a characteristic requirement of PDTA in
the design stage.

The NI method is a general efficiency probability calculation method regarding other
components or applications. The crack growth model is the core of the probability damage
tolerance assessment. Accordingly, the NI method’s critical step is to determine the initial
crack size by reversely solving the crack growth equation. In addition, the NI method is
applicable for other variables considered in the form of a scatter factor, such as material
fracture toughness. Hence, the NI method is a general PDTA method.

Furthermore, to provide a clear understanding of the NI method’s efficiency with the
increase in variable dimension, we conducted an additional study regarding the influence
of variable dimension on POFs. It can be seen from Figure 19 that the time cost of the NI
method is increased exponentially with an enlarged number of variables. In contrast, the
time cost of MCS is not affected by the number of variables. Nevertheless, the number of
variables in the practical PDTA is limited. Hence, the NI method proposed in this paper
performs better than MCS in POF calculations.
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Therefore, it is conceivable that the mechanism of the NI method is appropriate for
most typical PDTA processes and contributes to improving the calculation efficiency.

5. Conclusions

This paper proposes a multivariable NI method based on probability density evolution
to solve the computational efficiency problem of MCS and the improved MCS method
in failure risk assessment considering multiple variables. A centrifugal compressor disk
model is applied, and the corresponding results are compared with those of MCS and the
importance sampling method to analyse the convergence, precision, and efficiency of this
method. As a result, the following conclusions are obtained.

The probability density evolution algorithm can be applied for risk assessment under
multivariate conditions. By establishing the relationship model between the initial proba-
bility distribution (N = 0) and the actual distribution after N flight cycles, this algorithm
solves the limitation of MCS for large numbers of samples.

The method’s precision was verified by the cases performed in this paper. The NI
method’s results convergence quickly occurs with the reduction in the step size. Compared
with the MCS results, the proposed algorithm has a calculation efficiency that is 100 times
better under the same input conditions and calculation precision.

The multivariable NI method provides a new algorithm for risk assessment POF
calculation. Further studies considering non-destructive inspection in POF risk assessment
are recommended.

Under the trend of continuous expansion of the civil aviation fleet, despite the fact
that the accident rate is not high, the volume of civil aviation accidents should not increase
in absolute terms. This requires that the safety of future aircraft and aeroengine must
be continuously improved. Therefore, developing rotor probabilistic damage tolerance
assessment of the aeroengine has essential value.

The challenges and future direction of probabilistic damage tolerance assessment
are as follows. First, to accurately describe the stochastic nature of the harsh operating
environment of the rotor disk and the temperature stress field it brings. Second, to solve
the problem of the inhomogeneity of the material as well as the residual stresses due to
the dispersion of rotor disc material composition and manufacturing process. Finally,
to closely couple the PDTA with the operation and maintenance process to realise the
quantitative calculation of the failure risk of the whole life process and lay the foundation
for the real-time risk digital twin technology of the single engine.
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