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Abstract: This study is focused on addressing the problem of delayed measurements and contam-
inated Gaussian distributions in navigation systems, which both have a tremendous deleterious
effect on the performance of the traditional Kalman filtering. We propose a non-linear, multiple-
step, randomly delayed, robust filter, referred to as the multiple-step, randomly delayed, dynamic-
covariance-scaling cubature Kalman filter (MRD-DCSCKF). First, Bernoulli random variables are
adopted to describe the measurement system in the presence of multiple-step random delays. Then,
the MRD-DCSCKF uses the framework of the multiple-step randomly delayed filter, based on a state-
augmentation approach, to address the problem of delayed measurements. Meanwhile, it depends
on a dynamic-covariance-scaling (DCS) robust kernel to reject the outliers in the measurements. Con-
sequently, the proposed filter can simultaneously address the problem of delayed measurements and
inherit the virtue of robustness of the DCS kernel function. The MRD-DCSCKF has been applied to
vision-based spacecraft-relative navigation simulations, where quaternions are adopted to represent
spacecraft’s attitude kinematics, and the attitude update is completed with quaternions and general-
ized Rodrigues parameters. Monte Carlo simulations have illustrated that MRD-DCSCKF is superior
to other well-known algorithms by providing high-accuracy position and attitude estimations in an
environment with different delay probabilities and/or different outlier-contamination probabilities.
Therefore, the proposed filter is robust to delayed measurements and can suppress outliers.

Keywords: spacecraft relative navigation; cubature Kalman filter; randomly delayed measurements;
robust; dynamic covariance scaling

1. Introduction

Formation flights, on-orbit servicing, asteroid exploration, rendezvous and docking,
active debris removal, and other space-based missions commonly require high-precision
position and attitude estimations [1]. Molli et al. has proposed a satellite navigation system
that combines inter-satellite links and a batch-sequential filter, and it reconstructs high-
quality orbits for the constellation nodes and provides high-level autonomous navigation
for Mars exploration [2]. Anna et al. has designed the space exploration rover with a
positioning and mapping system which is equipped with light detection and ranging
instruments, and it could achieve safe navigation in rough terrain and avoid obstacles [3].
Andolfo et al. has processed stereo images captured during the rover’s travel with 3D
visual odometry, where 2D image keypoints are identified to estimate the relative position
and attitude between every step. This method has the advantage of mitigating trajec-
tory inconsistencies from dead-reckoning techniques [4]. Junkins et al. has developed a
vision-based spacecraft-relative navigation system using a position sensing diode (PSD) [5].
The vision-based navigation (VISNAV) system has the virtues of light weight, small size,
and low power consumption [6]. It is usually adopted to determine the relative positions
and attitudes of spacecraft that are within several hundred meters from each other. Optical
sensors and beacons are essential components of the VISNAV system, and they enable
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optional vision or adaptive vision. An optical sensor consists of a wide-angle lens and a
position-sensing diode. A PSD possesses the merits of measuring the intensity and position
of a light-point simultaneously. In vision-based spacecraft-relative navigation systems,
light-emitting diodes (LEDs) are mounted as optical beacons on the chief spacecraft, and the
deputy spacecraft is equipped with PSD-based optical sensors. The energy emitted from
the optical beacons is then focused on the PSD through a wide-angle lens, so the optical
signal is transformed into an electrical signal through electronic processing to acquire the
image information of the target. In the more sophisticated VISNAV systems, the PSD can be
programmed to only recognize a specified light source [7]. In VISNAV systems, the relative
motion equations are built in the local–vertical–local–horizontal (LVLH) coordinate frame
to obtain the motion state of targets. Generally, the beacon position is defined and known
in the chief spacecraft body frame, and the position vector from the deputy spacecraft
with respect to chief spacecraft is defined within the LVLH coordinate frame. Typically,
the research in this field has assumed that the chief body is consistent within the LVLH
coordinate system as well. However, this assumption is not rigorous and is just a special
case. To eliminate the above assumptions, an efficient method is to estimate the attitudes of
the two spacecrafts with respect to the LVLH coordinate frame, and the relative attitudes
could then be obtained as well.

The spacecraft’s orientation relative to the reference coordinate frame can be deter-
mined through the estimation of its attitude [8]. Euler angles, rotation vectors, direction
cosine matrices, and quaternions are usually used to describe spacecraft attitude. Specif-
ically, quaternions are useful for describing spacecraft attitude kinematics due to their
non-singularity and the bi-linear kinematics equation [9]. To ensure that quaternions
meet the normalization constraint, we adopted quaternions for propagation and updat-
ing and introduced the generalized Rodrigues parameter (GRP) [10] to denote the local
attitude error. Jitter, vibration, and multiple disruptions can degrade the measurements’
quality [11]. Vision-based spacecraft-relative navigation systems are subjected to randomly
delayed measurements, and measurement noise is always disturbed by outliers. These
factors motivated us to develop a filter that could simultaneously handle randomly delayed
measurements and outliers.

The Kalman filter (KF) is the most commonly used estimation technique for the
assumption of linear systems and Gaussian noise [12]. However, many problems do not
satisfy the linearity assumption, and non-linear systems are more common in practical
engineering. Vision-based spacecraft-relative navigation uses the optical camera to obtain
measurements, which are modeled with non-linear equations. Among various non-linear
filters, the extended Kalman filter (EKF), as a broadly available method, linearizes non-
linear systems using the first-order Taylor series expansions. Unfortunately, this can
result in significant truncation errors, and the procedure of deriving the Jacobi matrix is
tedious [13]. A family of sigma-point filters and particle filters can avoid the loss of high-
order terms, and therefore, they exhibit better performances than the EKF. The sigma-point
filter approximates the probability density distributions (PDFs) of states through a group
of defined sigma points and propagates the mean and covariance of random variables
through non-linear processes. Julier has proposed the unscented Kalman filter (UKF)
based on an intuitive statistical information transformation [14]. Arasaratnam adopted the
spherical-radial cubature rule to calculate the means and covariances of state variables after
non-linear propagation and proposed the cubature Kalman filter (CKF) [15]. Jia proposed
the high-degree cubature Kalman filter (HCKF) based on the Genz’s code [16] and the
generalized Gauss–Laguerre quadrature (GGLQ) rule [17]. Arulampalam proposed the
particle filter (PF) using the sequential Monte Carlo method, which is a powerful state
estimation method for handling non-Gaussian noise with arbitrary non-linear models
and arbitrary noise distributions [18]. However, the weights of sigma points could be
negative in the unscented transformation (UT), so UKF does not behave stably in high-
dimensional systems. As compared to UKF and CKF, HCKF has a very high computational
burden. Particle filters suffer from particle degradation and a heavy computational burden.
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Considering both filtering stability and computational demands, CKF is the more suitable
choice for solving non-linear filtering problems in this work.

In practice, various unknown factors, such as environmental factors and equipment
failures, can disturb navigation systems, and when data are transmitted along unreli-
able communication channels, the phenomenon of delayed measurements cannot be ig-
nored [19]. The estimation accuracy is dramatically reduced when filters use delayed
measurements. Handling the challenges associated with randomly delayed measurements
and ensuring the accuracy of state estimation are crucial for spacecraft-relative navigation.
Wang derived a Gaussian approximation (GA) filter using Gaussian approximation of
the posterior predictive PDFs of states and delayed measurements [20]. Zhao adopted
Bernoulli random variables (BRV) to re-represent the likelihood PDF in exponential mul-
tiplicative form and approximated the state vector with variational Bayesian methods in
order to propose an improved one-step, randomly delayed KF [21]. Fei proposed a modi-
fied adaptive EKF (MAEKF) algorithm, which adopts adaptive estimation to alleviate the
effects of modeling uncertainty and error [22]. Hermoso used BRV to build measurement
information and proposed a randomly delayed EKF. However, these filters are all restricted
to one-step or two-step delay [23,24]. Esmzad proposed a multiple-step randomly delayed
CKF (MRD-CKF) that computes the likelihood function through marginalizing delay vari-
ables to mitigate the random delay and loss [25]. In the aforementioned research, however,
the impact of outliers on the navigation accuracy is not considered, and this also degrades
the filter significantly. Therefore, this paper extends the above-mentioned researches.

Outliers (contaminated Gaussian distribution) degrade the effectiveness of Gaussian
filters. Relevant robust filters have been developed to address this problem. The robust
Student’s t filter (STF) replaces the Gaussian probability distribution in the Gaussian
filtering framework with the t-distribution to obtain robustness [26]. Huang indicated
that the STF required information regarding the degrees-of-freedom and scale matrix of
the t-distribution, corresponding to measurement noise [27]. However, it is difficult to
determine the relevant parameters of the t-distribution in advance. Another approach is to
use generalized great likelihood estimations to revise the updating process of KF to obtain
robustness [28]. The performances of robust filters based on generalized great likelihood
estimations mainly depend on robust kernel functions, which restrict the anomalous
measurements [29]. The most widely used robust filter adopts a Huber kernel function that
combines minimum l1 and l2 norm estimation techniques [30]. Gaussian kernel function
is another robust kernel function, namely, the maximum correntropy criterion (MCC).
Since the weight function is smaller for the same residual, the MCC-based KF has more
robustness than the Huber-based KF [31].

In this paper, we develop a non-linear, multiple-step, randomly delayed, robust filter
and refer to as the multiple-step, randomly delayed, dynamic-covariance-scaling cubature
Kalman filter (MRD-DCSCKF). The time update of MRD-DCSCKF is derived from the
third-degree, the spherical-radial cubature rule, and the multiple-step, randomly delayed
system model. The proposed filter adopts a multiple-step, randomly delayed filtering
framework to weaken the impact of delayed measurements on the estimation accuracy
of the filter, and it suppresses outliers with a dynamic-covariance-scaling kernel, which
incorporates the advantages of the Huber kernel and Gaussian kernel.

The remaining part of the paper is organized as follows. In Section 2, some prelim-
inaries are briefly reviewed. Section 3 presents the DCS kernel. Section 4 presents the
derivation of MRD-DCSCKF. Section 5 introduces the vision-based spacecraft-relative navi-
gation model. The simulation is reported in Section 6. Finally, conclusions are drawn in
Section 7.

2. Preliminaries

The general discrete-time non-linear system is as follows:

xk = f (xk−1) + ςk−1 (1)



Aerospace 2023, 10, 289 4 of 29

zk = h(xk) + wk (2)

where xk is the n-dimensional state vector at time tk. The variable zk generated from the
sensor is the ideal measurement vector without delay; ςk−1 is the process noise, which
satisfies zero-mean Gaussian white noises (E

[
ςkςT

l
]
= Qkδkl ); and δ indicates the Kronecker

delta function. The variable wk is the measurement noise, and f (·) and h(·) denote the
state function and measurement function, respectively.

2.1. Measurements with Multiple-Step Random Delays

The measurements obtained from Equation (2) need to proceed to the data processor
(filter). However, the phenomenon of measurements transmission along unreliable com-
munication channels, due to the occurrence of equipment failures, bandwidth limitations,
environmental disturbances [32], etc., could not be ignored, as these delays result in the
ideal measurements zk generated by the sensors and the actual measurements yk received
by the filter becoming asynchronous. Figure 1 represents a schematic diagram of the system
with multiple-step randomly delayed measurements, where the filter performs state esti-
mation (SE) at point A and the associated measurements should reach the buffer before A.
Due to the unreliability of the data transmission channel, there is one-step or multiple-step
delay in the measurements received from sensor 1, where the solid line indicates that the
measurements are synchronized and the dashed line indicates that the measurements are
delayed. In the case of the d-step delay, the filter receives the actual measurements yk,
which could be zk−i(0 ≤ i ≤ d) . Therefore, the actual measurements yk can be described
as follows:

yk = (1− τ1)zk + τ1(1− τ2)zk−1 + τ1τ2(1− τ3)zk−2+

· · ·+
(

d−1
∏

s=1
τs

)
(1− τd)zk−d+1 + [1− (1− τ1)−

τ1(1− τ2)− · · · −
(

d−1
∏

s=1
τs

)
(1− τd)]zk−d

=
d
∑

s=0
τ(s,j)zk−s

(3)

where τ0 = 1 and τi ∈ [0, 1] are independent Bernoulli random variables, which satisfy
the following:

p(τi = 1) = E(τi) = pi
p(τi = 0) = 1− pi

E
[
(τi − pi)

2
]
= (1− pi)pi

(4)

where pi is the expectation of τi = 1. τ(s,j) is then the following:

τ(s,j) =


(

s
∏
j=0

τj

)
(1− τs+1), 0 ≤ s ≤ d− 1

d
∏
j=0

τj, s = d
(5)

The probability of delayed measurements for s(0 ≤ s ≤ d) step [33] is the following:

p(s,j) =

(
s

∏
j=0

pj

)
(1− ps+1), s = 0, 1, 2, · · · , d− 1

p(d,j) =
d

∏
j=0

pj

(6)
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Figure 1. Schematic diagram of the system with multiple-step, randomly delayed measurements.

2.2. Non-Gaussian Noise in Measurements

A Gaussian distribution is often adopted to describe the distribution of sensor noise.
However, the sensor noise does not satisfy the Gaussian assumption in practice. Further-
more, the sensors used in vision-based spacecraft-relative navigation are often perturbed
by outliers, so they generally regarded as giving contaminated Gaussian distributions [30],
and the probability density function (PDF) is expressed as follows:

p(v) = (1− ε)
1√

2πσ1
exp

(
− (v/σ1)

2

2

)
+ ε

1√
2πσ2

exp

(
− (v/σ2)

2

2

)
(7)

where ε ∈ [0, 1] is the perturbing parameter that denotes contamination probability. σ1 and
σ2 are standard deviations of the individual Gaussian distributions, which are satisfied with
‖σ2‖ > ‖σ1‖ . Figure 2 presents an example that compares the Gaussian distribution and
the contaminated Gaussian distribution with ε = 0.05 , σ1 = 1 and σ2 = 7.5σ1 . Obviously,
the contaminated Gaussian distribution exhibits more clutter.
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Figure 2. The measurement noise of the two distributions.

3. Brief Review of DCS Kernel

The DCS approach originates from the area of visual simultaneous localization and
mapping (SLAM), and its core is a robust function, namely, the dynamic-covariance-scaling
kernel. The DCS kernel enables L2 estimation to be optimal under Gaussian environment,
and can completely eliminate the effect of relatively large residuals on the estimation
results under non-Gaussian environment. Therefore, the DCS kernel is more robust than
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the Huber kernel and can reduce the loss of measurement information under Gaussian
noise, as compared to the Gaussian kernel [34].

Two highly efficient approaches, switchable constraint (SC) and dynamic covariance
scaling (DCS), have been been rapidly developed in SLAM to handle outliers in images.
Agarwal [35] has derived the specific form of the cost function of SC, as follows:

ρ(ξ) = s2ξ2 + η(1− s)2 (8)

where s is the switchable variable, η > 0 is the kernel width, and ξ is the residual error.
When the function ρ(·) is continuous and bounded, the derivative of Equation (8)

concerning s should satisfy the following conditions:

∂ρ(ξ)

∂s
= 2sξ2 − 2η(1− s) = 0 (9)

s =
η

η + ξ2 (10)

By bringing Equation (10) into Equation (8), the specific form of the cost function of
SC could be derived, as follows:

ρ(ξ) =

(
η

η + ξ2

)2
ξ2 + η

(
1− η

η + ξ2

)2
=

ηξ2

η + ξ2 (11)

The limit value of ρ(·) at ±∞ is determined by the following:

lim
ξ→±∞

ρ(ξ) = lim
ξ→±∞

η

η
/

ξ2 + 1
= η (12)

According to Equation (12), η is the upper bound of ρ(·). We could determine the
range of s.

s ∈
[

0,
2η

η + ξ2

]
(13)

Sünderhauf [36] suggested that the range of values for s is [0,1], and when this was
combined with Equation (13), it resulted in the following:

s = min
(

1,
2η

η + ξ2

)
(14)

Agarwal [35] suggested that s2 could be used as a form of weight function for M-
estimation, and then the DCS weight function could be calculated, as follows:

ψD(ξ) = s2 = min

(
1,

4η2

(η + ξ2)2

)
=

{
1, for ξ2 < η

4η2

(η+ξ2)
2 , for ξ2 ≥ η

(15)

By integrating Equation (15), the cost function of DCS is as follows:

ρD(ξ) =
∫

ξψD(ξ)dξ =


ξ2

2 , for ξ2 < η
η(3ξ2−η)
2(ξ2+η)

, for ξ2 ≥ η
(16)

The cost function and the weight function of a DCS kernel are shown in Figure 3.
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Figure 3. Cost and weight functions of a DCS kernel.

4. Multiple-Step, Randomly Delayed, Robust Cubature Kalman Filter
4.1. State-Augmentation

According to Equations (2) and (3), the actual measurement yk received by the filter
is a mixture of {zk−s}d

s=0 . The derivation of yk needs the state vectors xk, xk−1, . . . , xk−d ,
which are then joined together. The augmented state vector is as follows:

Xk =


xk
xk−1
...
xk−d


na×1

(17)

where Xk denotes the na = (d + 1)n-dimensional augmented state.
The augmentation system is expressed by the following:

Xk = F(Xk−1) + Cςk−1 (18)

yk = zk−s = h(DsXk) + wk−1, s = 0, 1, . . . , d (19)

where F(Xk−1) , C , and DsXk are then computed by the following:

F(Xk−1) =
[

f T(xk−1), xT
k−1, . . . , xT

k−d

]T
(20)

C = [In×n, 0, . . . , 0]T (21)

DsXk = xk−s, s = 0, 1, 2, . . . , d (22)

4.2. Prediction

Based on Equation (17), the state estimation and error covariance are expressed by
the following:

X̂k−1/k−1 =


x̂k−1/k−1

...
x̂k−d/k−1
x̂k−d−1/k−1

 (23)
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Pk−1/k−1 =


Pxx

k−1,k−1/k−1 · · · Pxx
k−1,k−d/k−1 Pxx

k−1,k−d−1/k−1
...

. . .
...

...
Pxx

k−d,k−1/k−1 · · · Pxx
k−d,k−d/k−1 Pxx

k−d,k−d−1/k−1
Pxx

k−d−1,k−1/k−1 · · · Pxx
k−d−1,k−d/k−1 Pxx

k−d−1,k−d−1/k−1

 (24)

The predicted state X̂k/k−1 and corresponding covariance Pk/k−1 are determined by
the following:

X̂k/k−1 =


x̂k/k−1
x̂k−1/k−1

...
x̂k−d/k−1

 (25)

Pk/k−1 =


Pxx

k,k/k−1 Pxx
k,k−1/k−1 · · · Pxx

k,k−d/k−1
Pxx

k−1,k/k−1 Pxx
k−1,k−1/k−1 · · · Pxx

k−1,k−d/k−1
...

...
. . .

...
Pxx

k−d,k/k−1 Pxx
k−d,k−1/k−1 · · · Pxx

k−d,k−d/k−1

 (26)

According to Appendix A.1, the cubature points are generated according to X̂k−1/k−1
and Pk−1/k−1 as follows:

χi,k−1|k−1= Trans
[

X̂k−1/k−1, Pk−1/k−1

]
(27)

The predicted state and corresponding covariance matrix are expressed as Equa-
tions (28)–(31).

x̂k|k−1 =
2na

∑
i=1

wi f
(

χi,k−1|k−1

)
(28)

Pxx
k,k/k−1 =

2na

∑
i=1

wi

(
f
(

χi,k−1|k−1

)
− x̂k|k−1

)(
f
(

χi,k−1|k−1

)
− x̂k|k−1

)T
+ Qk−1 (29)

Pxx
k,k−s/k−1 =

2na

∑
i=1

wi

(
f
(

χi,k−1|k−1

)
− x̂k|k−1

)(
χi,k−s|k−1 − x̂k−s|k−1

)T
, s = 1, 2, · · · , d (30)

Pxx
k−s,k/k−1 =

(
Pxx

k,k−s/k−1

)T
, s = 1, 2, · · · , d (31)

4.3. Update

The cubature points generated with X̂k/k−1 and Pk/k−1 is calculated as follows:

χi,k|k−1= Trans
[

X̂k/k−1, Pk/k−1

]
(32)

We calculate the measurement prediction ŷs
k/k−1 , covariance Pyy,s

k/k−1 , and cross-

covariance PXy,s
k/k−1 at the s-th (0 ≤ s ≤ d) step delay as shown in Equations (33)–(35).

ŷs
k/k−1 =

2na

∑
i=1

wih
(

Dsχi,k|k−1

)
(33)

Pyy,s
k/k−1 =

2na

∑
i=1

wi

(
h
(

Dsχi,k|k−1

)
− ŷs

k/k−1

)(
h
(

Dsχi,k|k−1

)
− ŷs

k/k−1

)T
(34)
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PXy,s
k/k−1 =

2na

∑
i=1

wi

(
χi,k|k−1 − X̂k|k−1

)(
h
(

Dsχi,k|k−1

)
− ŷs

k/k−1

)T
(35)

The sub-update results of the multiple-step randomly delayed cubature Kalman filter
at the s-th step are provided in Appendix A.2. In this study, the generalized maximum like-
lihood approach is adopted to complete the sub-update of MRD-DCSCKF for the purpose
of suppressing outliers. The robust update calculation process is denoted by the func-
tion

[
M, _z

]
= Robust_update

[
yk, h(·), Pk/k−1, Pxy, x̂k|k−1, R

]
, according to Appendix A.3.

The corresponding quantities generated at the s-th (0 ≤ s ≤ d) step delay is expressed
as follows: [

Ms
k , _z

s
k

]
= Robust_update

[
yk, h(·), Pk/k−1, PXy,s

k/k−1, X̂k|k−1, Rk−s

]
(36)

It is well known that the robustness of M-estimation in a non-Gaussian noise envi-
ronment mainly depends on the robust kernel function, and this paper adopts the DCS
robust kernel function introduced in Section 3. The residuals and weight matrix at s-th
(0 ≤ s ≤ d) step delay are as follows:

ξs
k = Ms

k X̂s
k −

_z
s
k (37)

Ψs
D = diag

[
ψD

(
ξl,s

k

)]
(38)

where ξl,s
k is the l-th element of residuals ξs

k . In addition, ψD(·) is the DCS weight function
expressed in Equation (15), and Ψ is the weight matrix, which denotes the proportion of
residuals accounted for. The initial value of the iteration of X̂s

k could be chosen based on
Appendix A.2. After j iterations of Equations (37)–(38), we could obtain sub-update results
at the s-th step delay.

X̂(j+1),s
k/k =

(
(Ms

k)
T

Ψ
j,s
D Ms

k

)−1
(Ms

k)
T

Ψ
j,s
D

_z
s
k (39)

P(j+1),s
k|k =

(
(Ms

k)
T

Ψ
j,s
D Ms

k

)−1
(40)

The state estimate and corresponding covariance with sub-update results can be
computed as:

X̂k/k =
d

∑
s=0

µs
kX̂s

k/k (41)

Pk/k =
d

∑
s=0

µs
kPs

k/k (42)

where µs
k is the weight of the sub-update results, according to Equation (43), which is

computed based on delay probabilities ps , measurement prediction ŷs
k/k−1 , and covariance

Pyy,s
k/k−1 [25].

µs
k =

psN
(

yk; ŷs
k/k−1, Pyy,s

k/k−1 + Rk−s

)
d
∑

i=0

[
pi N

(
yk; ŷi

k/k−1, Pyy,i
k/k−1 + Rk−i

)] (43)

In delayed system, the data received by the filter may be the measurements without
delay (s = 0) or delayed measurements (1 ≤ s ≤ d) . The state-augmentation approach can
effectively use the previous states of the system, namely, the state information, such as
(s = 0,1...d), is sufficiently exploited in MRD-DCSCKF. Through calculating the weights
of sub-updates to obtain the posterior PDF of the Gaussian mixture, the MRD-DCSCKF
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algorithm can obtain accurate information in the augmented states and improve the state
estimation accuracy. Finally, to better illustrate the computational procedures of MRD-
DCSCKF, the primary calculations of the proposed filter are outlined in Figure 4, where the
non-occurrence delay (s = 0) and the occurrence delay (1 ≤ s ≤ d) are drawn separately
to distinguish them from each other.

Figure 4. Flowchart of the MRD-DCSCKF.
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5. Spacecraft-Relative Navigation Model
5.1. Reference Frames

To describe the spacecraft’s relative motion and sensor measurement model, three
related coordinate frames are defined in this section, as shown in Figure 5.

1. Earth-centered inertial (ECI) frame (OI − XIYI ZI ): The origin OI is located at the
center of Earth, the XI-axis points to the vernal equinox, the ZI-axis points to the
North Pole, and the YI-axis forms a right-handed system with the XI-axis and the
ZI-axis.

2. Local–vertical–local–horizontal (LVLH) frame (OL − XLYLZL ): The origin OL is
located at the mass center of the chief spacecraft, the XL -axis points from the center
of Earth to the center of the chief spacecraft, the ZL -axis points in the same direction
as the orbital angular velocity, and the YL-axis forms a right-handed system with the
XL -axis and the ZL -axis.

3. Spacecraft body coordinate frame (Ob − XbYbZb ): The chief body and deputy body
are denoted as Oc − XcYcZc and Od − XdYdZd, respectively. The Ob − XbYbZb is
fixed to the spacecraft and its origin Ob is located at the mass center of the spacecraft.
The three axes of Ob − XbYbZb, a right-handed system, coincide with the inertial axes
of spacecraft. When Oc − XcYcZc is coincident with OL − XLYLZL , the Xc-axis points
outward radially along the orbit (yaw axis), the Yc-axis points toward the direction of
flight (roll axis), and the Zc-axis forms a right-handed system with the Xc-axis and
the Yc-axis (pitch axis).

Figure 5. Definition of related coordinate frames.

5.2. Relative Dynamics

The chief and deputy spacecraft move along in Earth-centered orbits, as shown in
Figure 5. The relative position vector of the deputy spacecraft with respect to the chief space-
craft is ρ = rd − rc = [x, y, z]T in the LVLH frame based on the chief spacecraft. The non-
linear dynamics of the relative motion between them are described with Tschauner–Hempel
(T-H) equations [37]. Then, the relative dynamics are calculated using the following equations:

ẍ = 2ν̇ẏ + ν̈y + ν̇2x− µ(rc + x)[
(rc + x)2 + y2 + z2

]3/2 +
µ

r2
c

(44)
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ÿ = −2ν̇ẋ− ν̈x + ν̇2y− µy[
(rc + x)2 + y2 + z2

]3/2 (45)

z̈ = − µz[
(rc + x)2 + y2 + z2

]3/2 (46)

where µ is the gravitational parameter of Earth, v denotes the true anomaly, and rc is the
orbit’s radius. They are described by ν̈ = −2ṙc ν̇

rc
and r̈c = rcν̇2 − µ

r2
c

, respectively.

5.3. Relative Attitude Kinematics

Since the attitude kinematics described by quaternions have a linear form, it is more
convenient to calculate the spacecraft attitude with quaternions [38]. The quaternion is
defined by the following:

q ≡
[

$
q4

]
(47)

with
$ ≡ [q1, q2, q3]

T = esin(ϑ/2) (48)

q4 = cos(ϑ/2) (49)

where e and ϑ denote the unit Euler axis and the rotation angle, respectively. Quaternions
satisfy qTq = ‖q‖2 = 1 . The relationship between quaternions and the attitude matrix is
as follows:

A(q) = ΞT(q)ψ(q) (50)

with

Ξ(q) ≡
[

q4 I3×3 + [$×]
− $T

]
(51)

ψ(q) ≡
[

q4 I3×3 − [$×]
− $T

]
(52)

where [$×] is the cross-product matrix, provided by the following:

[$×] ≡

 0 − q3 q2
q3 0 − q1
−q2 q1 0

 (53)

Successive rotations could be converted into quaternion multiplication, as follows:

A(q)A
(
q′
)
= A

(
q⊗ q′

)
(54)

with
q⊗ q′ = [ψ(q) q]q′ =

[
Ξ
(
q′
)

q′
]
q (55)

The quaternion kinematics equation could be written as the following:

q̇ =
1
2

Ξ(q)ω =
1
2

Ω(ω)q (56)

where ω = [ω1, ω2, ω3]
T indicates the angular rate vector and

Ω(ω) ≡
[
−[ω×] ω

−ωT 0

]
(57)
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The error of quaternion is defined as δq =
[
δ$T , δq4

]T . To ensure that the quaternion-
based results follow the unit constraint, generalized Rodrigues parameters (GRPs) [10] are
introduced to represent the pose error, which is defined as follows:

δp ≡ f
δ$

(a + δq4)
(58)

where ‖δp‖ is equal to the error-angle for small errors, f is a scale factor that is commonly
taken as f = 2(a + 1) , and a is a parameter from 0 to 1. The inverse transformation from
δp to δq is determined as follows:

δq4 =
−a‖δp‖2 + f

√
f 2 + (1− a2 )‖δp‖2

f 2 + ‖δp‖2 (59)

δ$ = f−1(a + δq4)δp (60)

5.4. Measurement Model

Several optical beacons of known number and position are mounted on the chief
spacecraft. The deputy spacecraft is equipped with PSD, and this paper does not assume
that chief body (Oc−XcYcZc ) and its LVLH frame (OL−XLYLZL ) are consistent. When the
chief spacecraft and deputy spacecraft are close to each other, e.g., distances ranging from
several meters to several hundred meters [39], the details of each part of chief spacecraft
could be displayed on the pixel plane [40]. Based on the measurements from the cameras, it
is possible to estimate the relative position and velocity between them and also to estimate
their relative attitude. The VISNAV system is illustrated in Figure 6, where PSD is denoted
with a cube, and this paper assumes that the coordinate system of PSD overlaps with
deputy body Od − XdYdZd . The i-th measurement line of sight (LOS) vector is defined by
the following:

b̃i = A
(

qd/L

)
ri + wi (61)

with

ri =
X ′ i − ρ

‖X ′ i − ρ‖ =
[X′ i − x, Y′ i − y, Z′ i − z]T√

(X′ i − x)2 + (Y′ i − y)2 + (Z′ i − z)2
(62)

where b̃i is the measurement of the i-th beacon in Od − XdYdZd . (x, y, z) indicates the
position of deputy spacecraft in OL − XLYLZL . A

(
qd/L

)
denotes the rotation matrix from

OL − XLYLZL to Od − XdYdZd . In addition, X ′i = [A(qc/L)]
TXi is the coordinate of beacon

in OL − XLYLZL , and Xi ≡ (Xi, Yi, Zi) is the i-th beacon’s known position in Oc − XcYcZc .
Therefore, with N optical beacons providing N lines of sight, the optical camera

measurement equation is written as follows:

zk =


b̃1
b̃2
...

b̃N


k

=


A
(

qd/L

)
r1

A
(

qd/L

)
r2

...
A
(

qd/L

)
rN


k

+


w1
w2
...

wN


k

(63)
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Figure 6. Vision-based navigation system.

5.5. Gyro Measurement Model

The classical model of the angular rate of the gyro output [41] is expressed by the following:{
ω̃ = ω + β + ηv
β̇ = ηu

(64)

where ω̃ is the actual angular rate, and ω is the true inertial angular rate. The variable β is
the gyro drift, and ηv and ηu are Gaussian white-noise, which satisfy{

E
{

ηv(t)ηT
v (τ)

}
= σ2

v δ(t− τ)I3×3
E
{

ηu(t)ηT
u (τ)

}
= σ2

uδ(t− τ)I3×3
(65)

where σv and σu indicate the angle random walk and angular rate random walk, respectively.
The discrete recursive form of Equation (64) is defined as follows: ω̃k+1 = ωk+1 +

1
2 (βk+1 + βk) +

(
σ2

v
∆t +

1
12 σ2

u∆t
)1/2

Nv

βk+1 = βk + σu∆t1/2Nu

(66)

where ∆t is the discrete sampling period. The variables Nv and Nu are the zero-mean
Gaussian white-noise.

6. Numerical Simulations

To demonstrate the superiority of MRD-DCSCKF for handling multiple-step, randomly
delayed measurements and suppressing outliers, we designed simulations to compare
the properties of the proposed filter with CKF [15], the one-step randomly delayed CKF
(ORD-CKF) [20], and the multiple-step randomly delayed CKF (MRD-CKF) [25].

6.1. Experimental Scenario Settings

The installation positions of the optical beacons under the chief spacecraft body
coordinate frame are shown in Table 1. Table 2 lists the initial orbital elements of the chief
spacecraft. Table 3 summarizes the relevant parameters of the simulation. This paper
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assumes that the chief spacecraft gyro drift is relatively small, or it has been corrected by
autonomous navigation. Therefore, chief spacecraft gyro drift βc0 = 0 is adopted. The
nominal trajectory of the chief spacecraft is depicted in Figure 7.

Table 1. Installation positions of beacons.

Beacon No. x (m) y (m) z (m)

1 0.5 0.5 0.0
2 −0.5 0.5 0.0
3 0.5 −0.5 0.0
4 −0.5 −0.5 0.0
5 0.2 0.5 0.1
6 0.1 0.2 −0.1

Table 2. Initial orbital elements of the chief spacecraft.

Orbital Elements Corresponding Value

Semi-major axis a 26,555.137 km
Eccentricity e 0.7395

Orbit inclination i 63.465◦

Argument of perigee ω 274.163◦

Right ascension of the ascending node Ω 115.024◦

True anomaly ν 23.612◦

Table 3. Simulation parameters.

Parameter Corresponding Value

Number of Monte Carlo simulations 100
Discrete sampling period 0.1 s

The update interval of camera 0.2 s
Simulation time 600 s

Perturbing parameter 0.05
Tuning parameters of kernel 5

Number of delay steps 3
Delay probability 0.1

Delay probability for each step p0 = 0.9, p1 = 0.09, p2 = 0.009, p3 = 0.001
Initial relative position ρ0 = [0,−27.444, 0]T (m)
Initial relative velocity v0 =

[
0,−6.340× 10−3, 0

]T
(m/s)

Initial attitude quaternion of chief spacecraft qc/L = [0.0086, 0.0086, 0.0086, 0.9999]T

Initial relative attitude quaternion qd/c = [0.0433, 0.0142, 0.0256, 0.9986]T

Initial generalized Rodrigues parameters δp0 = [0, 0, 0]T

Chief spacecraft angular velocity ωc,0 = [0.0013, 0.0013, 0.0013]T (rad/s)
Deputy spacecraft angular velocity ωd,0 = [0.0020, 0.0020, 0.0020]T (rad/s)

Gyro drift βd0 = [1, 1, 1]T
(◦/h

)
Angle random walk σu =

√
10× 10−8(rad

/
s1/2)

Angular rate random walk σv =
√

10× 10−10(rad
/

s3/2)
Power spectral density of perturbation acceleration qv =

√
10× 10−6

((
m
/

s2)2
/

Hz
)

Process noise covariance matrix Qk = diag
[
σ2

u I3×3, σ2
v I3×3, 03×3, q2

v I3×3
]

Initial state covariance matrix P0 = diag
[
(1◦)2 I3×3,

(
1◦
/

h
)2 I3×3, (1m)2 I3×3, (1m/s)2 I3×3

]
Covariance matrix of measurement noise Rk = (1.8′′)2 I12×12

Covariance matrix of contaminated measurement noise Rcon = 7.5Rk
Initial state vector true value x0 =

[
δpT

0 , βT
d0, ρT

0 , vT
0
]T

Initial state vector estimate x̂0 = x0 +
√

P0 · N12×1
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Figure 7. The nominal trajectory of the chief spacecraft.

6.2. Simulation Results and Analyses

Monte Carlo simulations were conducted to evaluate the effectiveness of several filters
for estimation. Then, the root-mean-square error (RMSE) and the average RMSE (ARMSE)
of the state estimations were calculated, as follows:

RMSEk(i) =

√√√√ 1
M

M

∑
m=1

(
x̂m

k (i)− xm
k (i)

)2 (67)

ARMSE(i) =
1

kn − k0

kn

∑
k=k0

RMSEk(i) (68)

where M denotes the number of Monte Carlo simulations. k is the k-th instant, and x̂m
k and

xm
k are the estimation and the true value, respectively.

Figures 8–11 compare the performances of the CKF, ORD-CKF, MRD-CKF, and MRD-
DCSCKF. The simulation results show that CKF had the worst estimation. The performance
of ORD-CKF was between CKF and MRD-CKF because ORD-CKF could only handle one-
step randomly delayed measurements. The performance of MRD-CKF was significantly
better than CKF and ORD-CKF because it could handle multiple-step randomly delayed
measurements. There is no doubt that MRD-DCSCKF had the best performance among
all filters. MRD-DCSCKF adopts the multiple-step randomly delayed filtering framework
in combination with the DCS kernel function, which enables its ability to address both
delayed measurements and outliers.
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Figure 8. RMSEs of the position with CKF, ORD-CKF, MRD-CKF, and MRD-DCSCKF.
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Figure 11. RMSEs of the gyro drift with CKF, ORD-CKF, MRD-CKF, and MRD-DCSCKF.

Figures 12–15 present the tracking errors of MRD-DCSCKF. As can be seen, the error
curves converge quickly to the 3σ bounds, which are indicated by the dashed line. This
demonstrates that the convergence property of MRD-DCSCKF is sufficient.
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Figure 12. Position error.

0 100 200 300 400 500 600
-5

0

5

v
x
 (

m
/s

)

10
-3

v
x

3

0 100 200 300 400 500 600
-5

0

5

v
y
 (

m
/s

)

10
-3

v
y

3

0 100 200 300 400 500 600

Time (s)

-5

0

5

v
z
 (

m
/s

)

10
-3

v
z

3

Figure 13. Velocity error.
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Figure 15. Gyro drift error.

Simulations to investigate the effects of delay probability on the MRD-DCSCKF were
conducted, and Figures 16–19 show the ARMSEs from 450 to 600 s with delay probabilities
of 0 ≤ p ≤ 0.2 . It is clear that MRD-DCSCKF achieved the highest estimation accuracy
among the four filters.
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Figure 16. ARMSEs of position under different delay probabilities.
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Figure 17. ARMSEs of velocity under different delay probabilities.



Aerospace 2023, 10, 289 22 of 29

0 0.05 0.1 0.15 0.2

Delay probability

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

A
R

M
S

E
 o

f 
A

tt
it

u
d
e 

(°
)

CKF

ORD-CKF

MRD-CKF

MRD-DCSCKF

Figure 18. ARMSEs of attitude under different delay probabilities.
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Figure 19. ARMSEs of gyro drift under different delay probabilities.

Figures 20–23 show the ARMSEs from 450 to 600 s with perturbing parameters of
0 ≤ ε ≤ 0.2. As shown, the estimation accuracy of all the filters gradually decreases
with increasing perturbing parameters. However, the MRD-DCSCKF exhibits superior
robustness and performance of all the filters, even under these conditions.
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Figure 20. ARMSEs of position under different perturbing parameters.
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Figure 21. ARMSEs of velocity under different perturbing parameters.
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Figure 22. ARMSEs of attitude under different perturbing parameters.
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Figure 23. ARMSEs of gyro drift under different perturbing parameters.

7. Conclusions

This paper proposes a novel multiple-step randomly delayed, robust filter, referred
to as the multiple-step, randomly delayed, dynamic-covariance-scaling cubature Kalman
filter (MRD-DCSCKF), to effectively handle randomly delayed measurements and outliers.
The MRD-DCSCKF uses a state-augmentation approach to break the limitations of the
delayed steps and reformulates the state update equations of Kalman filter based on the
delayed measurements modeled according to a set of Bernoulli random variables. Mean-
while, the proposed filter relies on dynamic-covariance-scaling, robust kernel to suppress
measurement-outliers. The application of MRD-DCSCKF to vision-based spacecraft-relative
navigation is investigated, where the relative dynamics are described with the T-H equa-
tions, and quaternions and generalized Rodrigues parameters are introduced to estimate
spacecraft relative attitudes. The simulation results illustrate that the MRD-DCSCKF is able
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to precisely estimate the status of the spacecraft with high precision, even with randomly
delayed measurements and outliers, as compared to other algorithms.
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The following abbreviations are used in this manuscript:

VISNAV Vision-based navigation
DCS Dynamic covariance scaling
BRV Bernoulli random variable
PSD Position sensing diode
LED Light-emitting diode
SLAM Simultaneous localization and mapping
ECI Earth-centered inertial
LVLH Local–vertical–local–horizontal
GRP Generalized Rodrigues parameter
MCC Maximum correntropy criterion
SE State estimation
GA Gaussian approximation
PDF Probability density distribution
KF Kalman filter
PF Particle filter
EKF Extended Kalman filter
UKF Unscented Kalman filter
UT Unscented transformation
CKF Cubature Kalman filter
GGLQ Generalized Gauss–Laguerre quadrature
HCKF High-degree cubature Kalman filter
MAEKF Modified adaptive extended Kalman filter
STF Student’s t filter
ORD-CKF One-step randomly delayed cubature Kalman filter
MRD-CKF Multiple-step randomly delayed cubature Kalman filter
MRD-DCSCKF Multiple-step randomly delayed dynamic-covariance-scaling cubature Kalman filter

Appendix A

Appendix A.1

According to the third-order the spherical-radial cubature rule [42], the evaluation of
the CKF sampling points with n-dimensional state vector x and covariance P is computed,
as follows.

χi= Trans[x, P] = x + Sςi, i = 1, 2, · · · , 2n (A1)



Aerospace 2023, 10, 289 26 of 29

where S is the square root of P
(
P = S · ST) . ςi is an element in the 2n cubature points,

and its weight is ωi =
1

2n . In addition, { ςi} is as follows

√
n




1
0
...
0

, . . . ,


0
0
...
1

,


−1

0
...
0

, . . . ,


0
0
...
−1


 (A2)

Appendix A.2

The sub-update of the multiple-step randomly delayed cubature Kalman filter [25] at
the s-th step is calculated as below

Ks
k = PXy,s

k/k−1

(
Pyy,s

k/k−1 + Rk−s

)−1
(A3)

X̂s
k/k = X̂k/k−1 + Ks

k

(
yk − ŷs

k/k−1

)
, s = 0, 1, 2, . . . , d (A4)

Ps
k/k = Pk/k−1 − Ks

k

(
PXy,s

k/k−1

)T
, s = 0, 1, 2, . . . , d (A5)

Appendix A.3

The combination of CKF and the M-estimator results in a robust CKF, which adopts
different robust kernel functions to suppress outliers [30,43]. The state updates of robust
CKF are the same as CKF, and its measurement updates through constructing a linear
regression model with the prior estimation of the filter and the measurement model.
Finally, it completes the robust update process by iteration. This section briefly reviews the
measurement updates of the linear regression robust CKF.

The measurement equation is approximated as follows:

yk ≈ h
(

x̂k|k−1

)
+ Hk

(
xk − x̂k|k−1

)
+ wk (A6)

The state prediction error δk is denoted as following:

δk = xk − x̂k|k−1 (A7)

Then, the regression problem takes the form[
yk − h

(
x̂k|k−1

)
+ Hk x̂k|k−1

x̂k|k−1

]
=

[
Hk
I

]
xk +

[
wk
−δk

]
(A8)

where Hk =

[(
Pk|k−1

)−1
(Pxy)

]T
is the measurement matrix.

Some quantities are given as

Sk =

[
Rk 0
0 Pk|k−1

]
(A9)

_zk = S−1/2
k

[
yk − h

(
x̂k|k−1

)
+ Hk x̂k|k−1

x̂k|k−1

]
(A10)

Mk = S−1/2
k

[
Hk
I

]
(A11)
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ξk = S−1/2
k

[
wk
−δk

]
(A12)

Then Equation (A8) is transformed to

_zk = Mkxk + ξk (A13)

where ξk is residual error with ξk = Mkxk −
_zk .

Minimize the following cost function to solve above-mentioned regression problem:

J(xk) =
m+n

∑
i=1

ρ(ξk) (A14)

where ρ(·) is the cost function. m denotes the dimension of measurement yk.
The solution of Equation (A14) satisfies

m+n

∑
k=1

ϕ(ξk)
∂ξk
∂xk

= 0 (A15)

where ϕ(ξk) = ρ′(ξk) . ψ(·) is the weight function defined as ψ(ξk) = ϕ(ξk)
ξk

, and the
corresponding weight matrix is Ψ = diag[ψ(ξ i)] . ξ i,k is the i-th component of ξk . Equa-
tion (A15) could be written in matrix form, as follows:

MT
k Ψ(Mkxk −

_zk) = 0 (A16)

The solution of Equation (A16) can be obtained after j times iteration, as follows:

x(j+1)
k =

(
MT

k Ψ(j)Mk

)−1
MT

k Ψ(j)_zk (A17)

The state estimation covariance could be computed by the following:

Pk|k =
(

MT
k Ψ(j)Mk

)−1
(A18)

In this paper, the calculation process of Equation (A8)-Equation (A16) is summarized
as follows: [

M, _z
]
= Robust_update

[
yk, h(·), Pk/k−1, Pxy, x̂k|k−1, R

]
(A19)
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