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Abstract: This paper considers the formulation of the adjoint problem in two dimensions when there
are shocks in the flow solution. For typical cost functions, the adjoint variables are continuous at
shocks, wherein they have to obey an internal boundary condition, but their derivatives may be
discontinuous. The derivation of the adjoint shock equations is reviewed and detailed predictions for
the behavior of the gradients of the adjoint variables at shocks are obtained as jump conditions for
the normal adjoint gradients in terms of the tangent gradients. Several numerical computations on a
very fine mesh are used to illustrate the behavior of numerical adjoint solutions at shocks.
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1. Introduction

This work deals with some technical details of inviscid adjoint equations in the pres-
ence of shocks. Understanding how inviscid adjoint solutions behave at shocks is relevant
for transonic and supersonic design and control applications [1], with potential applications
ranging from drag or sonic boom reduction to fluid-structure and flutter control, but also
for error analysis and correction [2]. To understand the adjoint approach for shocked flows,
three major points need to be addressed.

1. The correct formulation of the inviscid adjoint equations at shocks must be addressed,
which has to consider linearized perturbations to the shock location. This analysis
was carried out in [3,4] for the quasi-1D adjoint Euler equations and in [5,6] for the
2D adjoint Euler equations. In both cases, it was shown that, for typical cost functions,
the adjoint variables are continuous at shocks where they have to obey an adjoint
boundary condition. The correct formulation and approximation of adjoint equations
in flows with shocks has also been addressed in [7–9].

2. The accuracy of discretized adjoint approximations with shocks must also be consid-
ered. For numerical computation, the adjoint shock boundary condition is usually
not explicitly enforced, but the discretized adjoint equations (either continuous or
discrete) yield the correct solution as long as adequate levels of smoothing are applied,
in such a way that the shock is spread over an increasing number of grid points as the
mesh spacing is reduced [10–12]

3. The last point to address is the assessment of the impact of the shock equations on
practical applications such as aerodynamic design or error estimation, among others.
In numerical implementation, especially in 2D, such shock conditions and increased
smoothing are usually ignored under the assumption that they have little impact
on both the adjoint solution and the sensitivities. However, results in [6] show that
explicitly accounting for the adjoint shock condition can have a significant impact
on both the sensitivities and the optimization procedure. For adjoint-based error
correction with shocks, it was shown in [2] with 1D examples that the key to obtaining
meaningful results is the use of discrete solutions with a well-resolved viscous shock.
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The focus of the present work will be on point 1. While in quasi-1D the behavior of
the adjoint variables and their derivatives can be completely established from the shock
and adjoint equations [3,4,13], a similar analysis for the 2D case is not yet fully available.
It was argued in [5] that the adjoint variables, relative to an output function consisting of
the integral of a function of the pressure along the airfoil surface, are continuous across
shocks and that an adjoint boundary condition is required along the length of the shock.
It was also claimed that gradients of adjoint variables are discontinuous, but no proof
or conclusive numerical result was offered. A complete analysis of the 2D case involved
was presented in [6], which showed that, for typical costs functions (aerodynamic lift
and drag, for example), the adjoint variables are continuous across shocks and that the
adjoint variables obey a differential equation along the shock. The former statement is
cost-function dependent. For example, entropy variables are adjoint states relative to a cost
function measuring the net entropy flux across the domain boundaries (including the shock
surface) [14] and are discontinuous across shocks.

Concerning the behavior of the gradients of adjoint variables at shocks, no further
analysis was conducted in [6]. A first step in that direction was taken in [13], which
presented the jump conditions for the gradients of the adjoint variables at shocks. It was
not possible to derive closed-form results for all the derivatives, not even for normal shocks,
but it was claimed, based on preliminary analysis and numerical computations, that the
results were compatible with the derivatives of the adjoint variables along the shock normal
direction being continuous and mostly vanishing, at least for normal shocks. However,
normal shocks are difficult to realize in practice and none of the shocks presented in [13]
were normal, so the conclusions offered were somewhat misleading. In [15], a series of
detailed numerical experiments on very fine meshes confirmed that adjoint derivatives are
indeed generally discontinuous across generic (oblique) shocks.

Here, we would like to complement the results of [13,15] in two directions. First, after
reviewing the derivation of the adjoint shock equations in the 2D case, we will expand
the analysis of the jump conditions of the adjoint gradients to put it on firmer grounds.
Second, we will examine several numerical solutions containing oblique and normal shocks
to illustrate the differences between both cases in the light of the derived shock conditions.

2. Adjoint Equations for Shocked Flows

This section contains a review of some known technical details of 2D adjoint equations
in the presence of shocks originally derived in [6] (see also [13]). We consider steady
transonic inviscid flow past a body of surface S such that the flow contains a shock attached
to S with profile Σ extending from xb (shock foot) to xend (shock tip).

We define the following cost function:

J(S) =
∫

S\xb

h(p)(
→
n S ·

→
d )dS, (1)

where p is the pressure and
→
n S is the unit normal vector to S (see Figure 1). When h(p) = p,

Equation (1) corresponds to the force exerted by the fluid on S measured along a direction
→
d . The flow is governed by nonlinear (steady) flow equations:

∇ ·
→
F (U) = 0

U = (ρ, ρu, ρv, ρE)T (2)

and shock equations (the Rankine–Hugoniot conditions), which for a steady shock can be
written as:

[
→
F ·→n Σ]Σ = 0⇔


[ρvn]Σ

[ρvn
2 + p]Σ
[vt]Σ
[H]Σ

=
=
=
=

0
0
0
0

. (3)
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As a result of the perturbation, the cost function changes as well, and the correspond-

ing linearized perturbation is constrained by the following linearized flow equation: 
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Figure 1. Scheme of shock location and conventions.

In Equations (2) and (3),
→
F = (ρ

→
v , ρ

→
v u + px̂, ρ

→
v v + pŷ, ρ

→
v H)

T
is the flux vector,

ρ,
→
v = ux̂ + vŷ, p, E, H are the fluid’s density, velocity, pressure, total energy and enthalpy,

respectively, [ ]Σ = ()|downstream − ()|upstream denotes the jump across the shock and vn =
→
v · →n Σ and vt =

→
v ·
→
t Σ are the velocity components in the local shock frame [16] (see

Figure 1). For normal shocks, vt = 0 on either side and thus the 3rd equation in Equation (3)
is trivially verified.

Let us now consider the problem of computing the sensitivity derivatives of J(S) given
by Equation (1) with respect to, say, changes in the shape of S. A deformation of S along the
local normal direction

→
x S →

→
x S + δS

→
n S gives rise to a fluid perturbation δU that affects

both the cost function and the shock. In the perturbed flow, the new shock shape can be
described in terms of a local normal deformation

→
x Σ →

→
x Σ + δ Σ

→
n Σ (Figure 2).
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Figure 2. Scheme of shock perturbation.

As a result of the perturbation, the cost function changes as well, and the corresponding
linearized perturbation is constrained by the following linearized flow equation:

∇ · (
→
F UδU) = 0, (4)

where
→
F U = ∂

→
F /∂U is the flux Jacobian, and the linearized Rankine–Hugoniot conditions:

[
→
F UδU]Σ ·

→
n Σ + [

→
F · δ→n Σ]Σ + [δ Σ∂nΣ

→
F ·→n Σ]Σ = 0. (5)

The adjoint approach for this problem uses two adjoint fields: a bulk adjoint ψ =

(ψ1, ψ2, ψ3, ψ4)
T (the Lagrange multiplier for the Euler Equation (2)) defined in Ω\Σ, where

Ω denotes the fluid domain, and the shock adjoint ψs, the Lagrange multiplier for the RH
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Conditions (3), which is defined along Σ. With the aid of the adjoint fields, the cost function
is reformulated as follows:

J(S) =
∫

S\xb

h(p)(
→
n S ·

→
d )ds−

∫
Ω\Σ

ψT∇ ·
→
F dΩ−

∫
Σ

ψT
s [
→
F ·→n Σ]ΣdΣ. (6)

Linearizing Equation (6) using Equations (4) and (5) yields [6]:

δJ(S) =
∫

S\xb
δS
→
d · ∇h(p)ds +

∫
S\xb

(
→
n S ·

→
d )∂ph(p)δpds +

(
(
→
n S ·
→
n Σ)δS−δΣ

(
→
n S ·
→
t Σ)

)
xb

[h(p)]xb
(
→
n S ·

→
d )

−
∫

Ω\Σ ψT∇ · (
→
F UδU)dΩ−

∫
Σ ψT

s [
→
F UδU]Σ ·

→
n ΣdΣ−

∫
Σ ψT

s [
→
F · δ→n Σ]ΣdΣ−

∫
Σ ψT

s [δ Σ∂nΣ

→
F ·→n Σ]ΣdΣ

(7)

where ∂nΣ =
→
n Σ · ∇ is the normal derivative along the shock [16], δ

→
n Σ = −∂tg(δΣ)

→
t Σ,

where ∂tg =
→
t Σ · ∇ is the tangent derivative along the shock, and [ ]xb

is the jump across
the shock at the shock foot. In Equation (7), the third term on the first line includes the

effect of a linearized displacement δxb = ((
→
n S ·

→
n Σ)δS− δΣ)/(

→
n S ·

→
t Σ) in the shock foot

location (see Figure 3 and the appendix of [6] for a detailed derivation of this term).
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Integrating by parts the domain term in Equation (7) yields:∫
Ω\Σ ψT∇ · (

→
F UδU)dΩ = −

∫
Ω\Σ∇ψT ·

→
F UδUdΩ +

∫
S\xb

ψT(
→
F U ·

→
n S)δUds +

∫
S∞ ψT(

→
F U ·

→
n S∞)δUds∞

+
∫

Σ [ψT(
→
F U ·

→
n Σ)δU]ΣdΣ = −

∫
Ω\Σ∇ψT ·

→
F UδUdΩ +

∫
S\xb

(
→
ϕ ·→n S)δpds

+
∫

S\xb
ρδ
→
v ·→n S(ψ1 +

→
ϕ ·→v + ψ4H)ds +

∫
S∞ ψT(

→
F U ·

→
n S∞)δUds∞ +

∫
Σ [ψT(

→
F U ·

→
n Σ)δU]ΣdΣ

(8)

where the identity ψT(
→
F U ·

→
n S)δU = (

→
ϕ · →n S)δp + ρδ

→
v · →n S(ψ1 +

→
ϕ · →v + ψ4H), with

→
ϕ = (ψ2, ψ3), has been used to rewrite the wall integral, and S∞ denotes the far-field
boundary. Inserting Equation (8) into Equation (7) and rearranging yields:

δJ(S) =
∫

S\xb
δS
→
d · ∇h(p)ds +

(
(
→
n S ·
→
n Σ)δS−δΣ

(
→
n S ·
→
t Σ)

)
xb

[h(p)]xb
(
→
n S ·

→
d )

+
∫

S\xb
ρ(δS∂nS

→
v ·→n S +

→
v · δ→n S)(ψ1 +

→
ϕ ·→v + ψ4H)ds

+
∫

Σ ψT
s [
→
F ·
→
t Σ]Σ∂tgδΣdΣ−

∫
Σ ψT

s [δ Σ∂nΣ

→
F ·→n Σ]ΣdΣ

+
∫

Ω\Σ∇ψT ·
→
F UδUdΩ +

∫
S\xb

(
(
→
n S ·

→
d )∂ph(p)− (

→
ϕ ·→n S)

)
δpds

−
∫

S∞ ψT(
→
F U ·

→
n S∞)δUds∞ −

∫
Σ [(ψT + ψT

s )(
→
F U ·

→
n Σ)δU]ΣdΣ

, (9)
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where the linearized wall boundary condition δ(
→
v ·→n S) = δ

→
v ·→n S + δS∂nS

→
v ·→n S +

→
v ·

δ
→
n S = 0 has been used to rewrite the third term in Equation (9). The final step is to integrate

by parts
∫

Σ ψT
s [
→
F ·
→
t Σ]Σ∂tgδΣdΣ along Σ:

∫
Σ ψT

s [
→
F ·
→
t Σ]Σ∂tgδΣdΣ = ψT

s [
→
F ·
→
t Σ]ΣδΣ

∣∣∣∣
xend

− ψT
s [
→
F ·
→
t Σ]ΣδΣ

∣∣∣∣
xb

−
∫

Σ ∂tgψT
s [
→
F ·
→
t Σ]ΣδΣdΣ

−
∫

Σ ψT
s [∂tg

→
F ·
→
t Σ]ΣδΣdΣ−

∫
Σ ψT

s [
→
F · ∂tg

→
t Σ]ΣδΣdΣ

(10)

Now, [
→
F ·
→
t Σ]xend

= 0, [
→
F · ∂tg

→
t Σ]Σ = κΣ[

→
F ·→n Σ]Σ = 0 (κΣ is the local curvature

of the shock profile) and ∂tg
→
F ·
→
t Σ = ∇ ·

→
F − ∂nΣ

→
F · →n Σ along Σ. Hence, we can write

Equation (10) as follows:

∫
Σ ψT

s [
→
F ·
→
t Σ]Σ∂tgδΣdΣ = −ψT

s [
→
F ·
→
t Σ]ΣδΣ

∣∣∣∣
xb

−
∫

Σ ∂tgψT
s [
→
F ·
→
t Σ]ΣδΣdΣ

−
∫

Σ ψT
s [∇ ·

→
F ]ΣδΣdΣ +

∫
Σ ψT

s [∂nΣ

→
F ·→n Σ]ΣδΣdΣ =

−ψT
s [
→
F ·
→
t Σ]ΣδΣ

∣∣∣∣
xb

−
∫

Σ ∂tgψT
s [
→
F ·
→
t Σ]ΣδΣdΣ +

∫
Σ ψT

s [∂nΣ

→
F ·→n Σ]ΣδΣdΣ

, (11)

where we have used that [∇ ·
→
F ]Σ = 0 since∇ ·

→
F = 0 on both sides of the shock. Gathering

Equations (9) and (11) and rearranging yields:

δJ(S) =
∫

S\xb
δS
→
d · ∇h(p)ds +

(
(
→
n S ·
→
n Σ)δS

(
→
n S ·
→
t Σ)

)
xb

[h(p)]xb
(
→
n S ·

→
d )

+
∫

S\xb
ρ(δS∂nS

→
v ·→n S +

→
v · δ→n S)(ψ1 +

→
ϕ ·→v + ψ4H)ds

−
(

δΣ
(
→
n S ·
→
t Σ)

)
xb

[h(p)]xb
(
→
n S ·

→
d )− ψT

s [
→
F ·
→
t Σ]ΣδΣ

∣∣∣∣
xb

−
∫

Σ ∂tgψT
s [
→
F ·
→
t Σ]ΣδΣdΣ

+
∫

Ω\Σ∇ψT ·
→
F UδUdΩ +

∫
S\xb

(
(
→
n S ·

→
d )∂ph(p)− (

→
ϕ ·→n S)

)
δpds

−
∫

S∞ ψT(
→
F U ·

→
n S∞)δUds∞ −

∫
Σ [(ψT + ψT

s )(
→
F U ·

→
n Σ)δU]ΣdΣ

. (12)

The whole point of the adjoint approach is to define the adjoint variables in such a
way that δJ(S) can be computed independently of δU and δΣ. This can be achieved if the
bulk adjoint state obeys the adjoint equation:

→
F U

T · ∇ψ = 0 (13)

in Ω\Σ, with the following wall and far-field boundary conditions:

→
ϕ ·→n S = ∂ph(p)(

→
n S ·

→
d ) on S\xb

ψT(
→
F U ·

→
n S∞)δU = 0 on S∞

. (14)

Along the shock, the adjoint variables obey the following equations:

[(ψT + ψT
s )(
→
F U ·

→
n Σ)δU]Σ = 0 on ∑

∂tgψT
s [
→
F ·
→
t Σ]Σ = 0 on ∑

[h(p)]xb
(
→
n S ·
→
d )

(
→
n S ·
→
t Σ)

+ ψT
s [
→
F ·
→
t Σ]Σ = 0 at xb

, (15)

In Equation (15), det(
→
F U ·

→
n Σ) is proportional to 1−Mn

2, where Mn is the normal
Mach number. Shocks only exist for upstream normal Mach numbers strictly greater
than one, Mn > 1. (Correspondingly, Mn < 1 downstream of the shock.) Therefore,
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det(
→
F U ·

→
n Σ) is generically non-zero on either side of a shock, so the only way the first

equation in (15) can hold for arbitrary values of δU that are also independent on either side
of the shock is if:

ψ|Σup = −ψs = ψ|Σdown . (16)

Hence, ψ is continuous across the shock and, in consequence, so is the tangent deriva-
tive ∂tgψ. The second equation in (15) then becomes an ordinary differential equation for
the bulk adjoint ψ along the shock:

∂tgψT [
→
F ·
→
t Σ]Σ = [ρ]Σvt(∂tgψ1 + H∂tgψ4) + ([p]Σ + [ρ]Σvt

2)
→
t Σ · ∂tg

→
ϕ = 0, (17)

where
→
t Σ · ∂tg

→
ϕ = tx

Σ ∂tgψ2 + ty
Σ ∂tgψ3. Finally, the last equation in (15) gives an initial

condition for Equation (17) at the shock foot xb:

ψT(xb)[
→
F ·
→
t Σ]xb

= [ρ]Σvt(ψ1 + Hψ4) + ([p]Σ + [ρ]Σvt
2)
→
t Σ ·

→
ϕ =

[h(p)]xb
(
→
n S ·

→
d )

(
→
n S ·

→
t Σ)xb

. (18)

Detached shocks
For sufficiently high incoming Mach number, the flow past blunt bodies contains

detached (bow) shocks ahead of the body. The shock is normal directly in front of the body
and extends around it as a curved oblique shock. At a sufficient distance from the body,
the shock reduces to a Mach wave at points xa and xb. In this case, the adjoint problem is
essentially unchanged. Along the bow shock, the adjoint state is continuous and obeys the
differential Equation (17), but the matching Condition (18) is now missing, being replaced

by a boundary condition δΣψT [
→
F ·
→
t Σ]Σ

∣∣∣∣xb

xa

= 0 that is trivially satisfied.

Extension to 3D
The extension to three dimensions poses no significant complications. In the shocked

case, the shock is now a surface which, for the sake of the analysis, will be taken to be a
single sheet attached to the wing surface along a curve σS and with an additional boundary
curve σo along which the shock merges with the remaining smooth flow.

It can be shown that the adjoint state is still continuous across the shock, where it
obeys the following shock equations:

∇Σ
tgψT · [

→
F ]Σ = 0 (19)

on the shock surface, and

ψT [
→
F · n̂σS ]σS

=
[h(p)]σS

(
→
n S ·

→
d )∣∣∣→n Σ ×

→
n S

∣∣∣
σS

(20)

along the shock foot σS. Here, [ ]σS
is the jump across the shock at the shock foot, ∇Σ

tg is
the tangent gradient (the covariant derivative on the shock surface), and n̂σS is the normal
vector to the shock boundary curve σS but otherwise tangent to the shock surface.

3. Jump Conditions for the Adjoint Gradient across a Shock

The values of the adjoint variables and their derivatives at a shock are constrained
by the shock Equations (17) and (18), as well as the adjoint equations on either side of the
shock, which we write in shock-oriented coordinates [16] as:

(A±t )
T

∂tgψ + (A±n )
T

∂nψ± = 0, (21)
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where A±t =
→
F
±
U ·
→
t Σ and A±n =

→
F
±
U ·
→
n Σ and the superscripts ± are used to distinguish

upstream and downstream quantities. Taking differences across the shock yields:

[At
T∂tgψ + An

T∂nψ]Σ = 0. (22)

These equations, along with (17), were analyzed and tested on a numerical solution
in [13], but the meshes employed were relatively coarse. A much more thorough numerical
assessment on very fine meshes was carried out later on in [15]. The following equations:

[vn∂nψ1]Σ − H[vn∂nψ4]Σ = 0
(γ− 1)[nx

Σ∂nψ2 + ny
Σ∂nψ3]Σ + γ[vn∂nψ4]Σ = 0

[vn(−ny
Σ∂nψ2 + nx

Σ∂nψ3 + vt∂nψ4)]Σ + [vn]Σ[n
x
Σ∂tgψ2 + ny

Σ∂tgψ3]Σ = 0
[∂nψ1]Σ + [(u + vnnx

Σ)∂nψ2 + (v + vnny
Σ)∂nψ3 + (H + v2

n)∂nψ4]Σ + [vn]Σvt∂tgψ4 = 0

(23)

that follow from Equation (22) by elementary manipulations, were shown to be obeyed to a
high degree of accuracy. Here, we would like to take a step forward and try to constrain as
much as possible the values of the jumps of the adjoint derivatives across the shock. The
resulting equations are exact, and numerical testing should be seen more as a test on the
extent to which numerical solutions obey them than as a test of the equations themselves.

It was argued above that the determinant det(A±n ) 6= 0 at generic points of 2D shocks,
so Equation (21) can be used to solve for the normal adjoint derivatives in terms of the
tangent adjoint derivatives:

∂nψ± = −(A±n )
−T

(A±t )
T

∂tgψ±. (24)

Taking differences across the shock in Equation (24) gives equations for the jumps
[∂nψ]Σ of the normal derivatives that, using the RH conditions and the adjoint shock
Equation (17), can be written as follows:

[∂nψ]Σ = −[(An)
−T(At)

T ]Σ∂tgψ =

− [v−1
n ]Σ

(γ−1)H+vt2


vt
(
vt

2∂tgψ1 − (γ− 1)H2∂tgψ4
)(

H(γ− 1)− vt
2)(∂tgψ1 + H∂tgψ4

)
tx
Σ(

H(γ− 1)− vt
2)(∂tgψ1 + H∂tgψ4

)
ty
Σ

vt
(
vt

2∂tgψ4 − (γ− 1)∂tgψ1
)

 . (25)

Similarly, multiplying Equation (24) by vn and taking differences across the shock
yields:

[vn∂nψ1]Σ = 0 = [vn∂nψ4]Σ. (26)

The manipulations required to tackle Equations (24)–(26) are carried out with the
aid of a symbolic manipulation software. From Equation (25), it is possible to obtain two
additional properties for the jumps:

[nx
Σ∂nψ2 + ny

Σ∂nψ3]Σ = 0
[∂nψ1]Σ + H[∂nψ4]Σ + vt[tx

Σ∂nψ2 + ty
Σ∂nψ3]Σ = 0

. (27)

Notice that, according to Equation (25), the jumps in the normal adjoint derivatives
are generally not zero, but they are zero if the adjoint solution is constant along the shock.
This is in agreement with the fact that, for example, there is no discontinuity of the adjoint
variables or their gradients across the fish-tail shocks in supersonic cases, since the adjoint
variables are constant (actually zero) on either side of the shock (see Section 4.1).

Finally, for cost functions that depend only on pressure (lift and drag, for example),
we have ψ1 = Hψ4 [5] and, thus, using Equation (17) we get:

H−1∂tgψ1 = ∂tgψ4 = − ([p]Σ + [ρ]Σvt
2)

2[ρ]ΣvtH

(→
t Σ · ∂tg

→
ϕ
)

(28)
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(where it has been assumed here that the flow is homenthalpic) and:

[∂nψ]Σ =

(
vt

2 − H(γ− 1)
)
[v−1

n ]Σ
γ + 1


1

− 2
vt

tx
Σ

− 2
vt

ty
Σ

1
H

(→t Σ · ∂tg
→
ϕ
)

. (29)

It is clear from Equation (29) that the adjoint derivatives are discontinuous iff
→
t Σ ·

∂tg
→
ϕ = 0.

Normal shocks
When vt = 0, we have a normal shock. Examples of normal shocks in 2D include the

tip of a bow shock, as well as the detached shock in front of a sufficiently wide wedge.
Normal shocks are also present in most supersonic inlets. On the other hand, the shock
forming over an airfoil in transonic flow is generally not normal. If flow separation after
the shock is not considered, such shocks are then normal at their feet, but staying normal
to some distance above the surface (a so-called normal shock with normal extension [17])
is only possible for one very specific upstream wall Mach number, which is equal to
M∗ ≈ 1.662 for γ = 1.4.

For a normal shock, the shock Equation (17) reduces to:

∂tgψT [
→
F ·
→
t Σ]Σ = [p]Σ(t

x
Σ ∂tgψ2 + ty

Σ ∂tgψ3) = 0 (30)

and, thus:
tx
Σ ∂tgψ2 + ty

Σ ∂tgψ3 = 0, (31)

while the Condition (18) yields (recall that in this case
→
n S = −

→
t Σ according to our conven-

tions in Figure 1):

ψT(xb)[
→
F ·
→
t Σ]xb

= [p]Σ(
→
t Σ ·

→
ϕ) = − [p]Σ(

→
n S ·

→
ϕ) = −[h(p)]xb

(
→
n S ·

→
d ), (32)

which, for h(p) = p, is simply the adjoint wall b.c.
→
n S ·

→
ϕ =

→
n S ·

→
d .

As for the remaining conditions on the normal derivatives, we get from Equation (25)
(setting vt = 0) the following jump conditions:

[ ∂nψ1]Σ = 0
[∂nψ2]Σ = − [vn

−1]Σ(∂tgψ1 + H ∂tgψ4)tx
Σ

[∂nψ3]Σ = − [vn
−1]Σ( ∂tgψ1 + H∂tgψ4)t

y
Σ

[∂nψ4]Σ = 0

. (33)

We can actually derive stronger conditions for the normal derivatives themselves by
going back to the adjoint Equation (21), setting vt = 0, and solving for the normal adjoint
derivatives in terms of the tangent adjoint derivatives also using Equation (31), which
yields:

∂nψ± =


0

−∂tgψ3 − tx
Σ(∂tgψ1 + H ∂tgψ4)/v±n

∂tgψ2 − ty
Σ(∂tgψ1 + H ∂tgψ4)/v±n

0

, (34)

from which we get:
∂nψ±1 = 0
nx

Σ∂nψ±2 + ny
Σ∂nψ±3 = 0

∂nψ±4 = 0
. (35)
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4. Numerical Tests

We will now present several test cases in order to illustrate the behavior of typical
numerical adjoint solutions at shocks. We do not attempt to investigate the conditions
under which the numerical solutions converge to the analytic solution, nor do we attempt
to compare different numerical schemes as regards the behavior of the computed adjoint
solutions, but rather we would like to show how a typical, finite-volume adjoint solver
behaves at shocks without enforcing any shock condition.

We will be using the unstructured, open source SU2 code [18] for numerical testing.
The computations are carried out on a very fine unstructured mesh obtained from the basic
triangular Euler mesh (Figure 4), available at the SU2 Tutorial Collection [19], with five
rounds of uniform refinement. At each round, every edge is bisected and the resulting
nodes are joined to form new triangles. In order to preserve the surface of the airfoil, a
Bézier-spline surface reconstruction on the basis of the previous mesh has been performed
at each stage. The final mesh has 6400 nodes on the airfoil profile and 5.2 × 106 nodes and
10.4 × 106 triangular elements throughout the flowfield. The near-wall distance is around
10−5 chord lengths, which should be more than adequate to resolve the Euler flow and
adjoint fields. Notice that this compares well to the current state of the art on these types of
mesh-converged Euler computations [15,20]. The flow and drag-based adjoint solutions
are computed with the SU2 direct and continuous adjoint solvers using a central scheme
with JST artificial dissipation.
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4.1. Supersonic Flow

Our first test case is supersonic flow past a NACA0012 airfoil. Flow conditions are
M = 1.5 and angle of attack α = 0◦, which result in a detached bow shock ahead of the
leading edge and two inclined fish-tail shocks emanating from the sharp trailing edge
(Figure 5).
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Plots of the adjoint variables are shown in Figure 6. Here, and in what follows,
the adjoint variables are non-dimensional. Dimensions can be restored by multiply-
ing the variables by the appropriate powers of ρ∞ and

∣∣∣→v ∞

∣∣∣, viz. ψ1 = ψ1/
(

ρ∞

∣∣∣→v ∞

∣∣∣),

ψ2,3 = ψ2,3/
(

ρ∞

∣∣∣→v ∞

∣∣∣2), and ψ4 = ψ4/
(

ρ∞

∣∣∣→v ∞

∣∣∣3) (bars denote non-dimensional vari-

ables). Notice that the adjoint solution is constant (actually zero) downstream of the two
supersonic characteristics that emanate from the trailing edge. In consequence, the adjoint
solution is constant (and its gradient, continuous) across the fish-tail shocks.
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The solution is continuous across the bow shock as well, but a zoom of the adjoint
solution near the shock (Figure 7) shows that the adjoint derivatives are actually discontin-
uous (notice the abrupt change of direction of the adjoint contour lines of the y-momentum
adjoint variable ψ3).

Aerospace 2023, 10, x FOR PEER REVIEW 11 of 19 
 

 

Notice that the adjoint solution is constant (actually zero) downstream of the two super-

sonic characteristics that emanate from the trailing edge. In consequence, the adjoint so-

lution is constant (and its gradient, continuous) across the fish-tail shocks.  

The solution is continuous across the bow shock as well, but a zoom of the adjoint 

solution near the shock (Figure 7) shows that the adjoint derivatives are actually discon-

tinuous (notice the abrupt change of direction of the adjoint contour lines of the y-mo-

mentum adjoint variable  3 ).  

  
(a) (b) 

 

Figure 6. Flow past a NACA0012 airfoil at M = 1.5 and α = 0°. Contour lines for the adjoint x−mo-

mentum variable ψ2 (a) and y−momentum variable ψ3 (b). The bow and fish-tail shocks are indicated 

for reference. 

 

Figure 7. Flow past a NACA0012 airfoil at M = 1.5 and α = 0◦. Contour plot for the adjoint
y−momentum variable ψ3 near the bow shock. The bow shock and the cutting line are indicated
for reference.

We now examine the behavior of the adjoint derivatives along a line crossing the bow
shock as indicated in Figures 5 and 7. The line is perpendicular to the shock, which is
oblique at this location. The tip of the bow shock is a normal shock, which could be used
to test the adjoint properties across such shocks, but the adjoint solution is contaminated
by the presence of the adjoint singularity along the incoming streamline stagnation (the
supersonic adjoint solution shows singularities along all three characteristics impinging
the tip of the bow shock).

Figure 8 shows that the adjoint variables are clearly continuous across the shock, but
their gradients are not. A clear kink in the y-momentum adjoint variable ψ3 is visible at
the location of the shock. The discontinuity in the normal adjoint gradients is most clearly
seen in Figure 9, which plots the adjoint normal derivatives along the line (left panel). The
largest jump is found for ψ3, and the relative sizes of the jumps are in agreement with
Equation (29). Figure 9 also checks on the right panel some of the properties of the jumps
of the adjoint gradients presented in Equations (26) and (27), as well as the adjoint shock
Equation (17). Bear in mind that what is being plotted is actually the following:

vn∂nψ1
vn∂nψ4

→
n Σ · ∂n

→
φ = nx

Σ∂nψ2 + ny
Σ∂nψ3

ρvt(∂tgψ1 + H∂tgψ4) + (p + ρvt
2)
→
t Σ · ∂tg

→
ϕ

. (36)

The plotted functions (36) are continuous across the shock, which indicates that the
corresponding jumps are zero as required by Equations (17), (26) and (27).
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Figure 8. Flow past a NACA0012 airfoil at M = 1.5 and α = 0◦. Adjoint variables along the cutting
line indicated in Figure 7. Mach number and tangential velocity are also shown for reference.
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Figure 9. Flow past a NACA0012 airfoil at M = 1.5 and α = 0◦. Adjoint normal derivatives and shock
relations across the bow shock.

4.2. Transonic Flow

The second test case corresponds to transonic flow past a NACA0012 airfoil with flow
conditions M = 0.8, α = 1.25◦. Under these conditions, the flow has a fairly strong shock on
the upper side at x/c ≈ 0.64 and a weaker shock on the lower side (Figure 10).

Contour plots of the adjoint variables are shown in Figures 11 and 12. Notice that the
adjoint solution is singular along the incoming stagnation streamline [5,21], the wall [21],
and also along a delta-like structure formed by the supersonic characteristic emanating
from the shock foot and its reflection off the sonic line [22], but it is continuous across the
shock and the sonic line. A zoom of the adjoint solution near the upper shock (Figure 12)
shows that the adjoint derivatives are actually discontinuous (notice the abrupt change of
direction of the adjoint contour lines of the y-momentum adjoint variable ψ3).

We now examine the behavior of the adjoint derivatives along a line crossing the
upper shock at right angles as indicated in Figures 10 and 12. As explained above, this
shock is not normal (the tangent velocity, though small, is definitely not zero, as can be
seen in Figure 13). Figure 13 shows that the adjoint variables are clearly continuous across
the shock, but their gradients are not (see the kink in the y-momentum adjoint variable
ψ3 at the location of the shock). The discontinuity in the normal adjoint gradients is most
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clearly seen in Figure 14, which plots the adjoint normal derivatives along the line (left
panel). The largest jump is found for ψ3, while the jumps in the other normal derivatives
cannot be appreciated at this level of resolution (and could very well be nearly zero; for
ψ2 this is reasonable since, from Equation (29), [∂nψ2]Σ ∝ tx

Σ = 0, while for ψ1 and ψ4, it
could be related to the fact that H∂nψ4 ∼ ∂nψ1 ∼ vt∂nψ3/2 and vt is relatively small). The
right panel of Figure 14 checks the properties of the jumps of the adjoint gradients given in
Equations (17), (26) and (27). The plotted functions are continuous across the shock, which
indicates that the corresponding jumps are zero.
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Figure 10. Mach contours and cutting line for flow past a NACA0012 airfoil at M = 0.8 and α = 1.25◦.
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Figure 13. Adjoint variables along the cutting line indicated in Figure 12. Mach number and tangential
velocity are also shown for reference.
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Figure 14. Flow past a NACA0012 airfoil at M = 0.8 and α = 1.25◦. Adjoint normal derivatives and
shock relations across the shock.

4.3. Normal Shock with Normal Extension

For the angle of attack used in the previous case, the upstream wall Mach number
M1 < M∗1 and, thus, the resulting shock is only normal at its foot. We will now consider a
special incidence angle αM∗1

for which M1 = M∗1 , which should result in a normal shock to
some distance above the surface. The value of αM∗1

is not known a priori and was obtained
in [17] through an iterative process by varying the angle of attack while holding M∞
constant. The final value was, however, not disclosed, so after some numerical experiments,
we have found that α ≈ 5.794◦ results in M1 ≈ M∗1 as illustrated in Figure 15.
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Figure 15. (a) Mach contours and cutting line and (b) surface Mach distribution for flow past a
NACA0012 airfoil at M = 0.8 and α = 5.794◦.

At y = 1 (in airfoil chord-length units), the shock is still normal, with a fairly low value
of vt/

∣∣∣→v ∞

∣∣∣ ≈ 10−3 (Figure 16). The adjoint variables are still continuous at the shock, but a
clear discontinuity in the gradient of ψ3 can be observed in Figure 16 and confirmed by the
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plot of the normal derivatives in Figure 17. In the present case,
→
t Σ = (0, 1),

→
n Σ = (−1, 0),

and ∂tgψT = (0.29,−0.37, 8× 10−5, 0.07), which yields, from Equation (34), the prediction:

∂nψ± =


0
0

∂tgψ2 − (∂tgψ1 + H ∂tgψ4)/v±n
0

. (37)

We see in Figure 17 that Equation (37) is reasonably obeyed by the numerical solution,
as is the other shock relation in Equation (35), nx

Σ∂nψ±2 + ny
Σ∂nψ±3 = −∂nψ±2 = 0, and the

shock Equation (31), tx
Σ ∂tgψ2 + ty

Σ ∂tgψ3 = ∂tgψ3 = 0.
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Figure 16. Adjoint variables along the cutting line indicated in Figure 15. Mach number and tangential
velocity are also shown for reference.
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Figure 17. Flow past a NACA0012 airfoil at M = 0.8 and α = 5.794◦. Adjoint normal derivatives across
the shock.

5. Conclusions

In 2D, the adjoint variables of typical cost functions are continuous at shocks and obey
a differential equation along the length of the shock. In this work, we have focused on
determining the behavior of the gradients of the adjoint variables across shocks. It had
been anticipated in [5], by studying the behavior of Green’s functions of the linearized
Euler equations, that there is a discontinuity in the gradient of the adjoint variables at the
location of the shock, which was clearly visible in the numerical results of [15].

In order to analyze the behavior of the adjoint gradients at the shock, it proves
convenient to use a frame of reference locally aligned with the shock curve, relative to
which it is possible to decompose the adjoint gradients on either side of the shock into
(locally) normal and tangent components. Since the adjoint variables are continuous at the
shock, the tangent adjoint gradients are continuous as well, but the normal components
need not be. Combining the shock equation and the adjoint equations, which hold on
either side of the shock, it is possible to obtain detailed predictions for the behavior of the
gradients of the adjoint variables across the shock. These equations relate the discontinuity
(jump) of the normal component of the adjoint gradients to their tangent component, but
do not completely fix the value of the jumps. In fact, the equations allow continuous normal
gradients provided that the tangent gradients vanish, as occurs, for example, across the
fish-tail shocks in supersonic flows. In 2D, the equations imply that, for normal shocks,
three linear combinations of normal adjoint gradients are identically zero at the shock,
while a fourth combination has a jump proportional to the discontinuity in the inverse
normal component of the velocity [v−1

n ]Σ.
Several numerical tests have been carried out to get a flavor of how numerical adjoint

solutions behave at shocks. The computed solutions are continuous at the shock and
present discontinuities in the gradient of the adjoint variables at the location of the shock.
The solutions follow the shock relations to a reasonable degree, in agreement with the
results presented in [15].

A separate question that we have not addressed here is that of the consistency of the
adjoint solution for shocked flows in the limit of infinite grid resolution. In numerical
computations, the internal boundary condition (the differential equation along the shock)
is not explicitly enforced, which means that there could be errors in the numerical adjoint
solution like the ones reported in [10] in 1D cases. The numerical results presented in this
work and in [15] do not seem to support this concern, but a detailed grid convergence
study would need to be performed to verify this assertion. Results in 1D indicate that
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for numerical adjoint results to converge to the analytical solution as the mesh is refined,
there must be consistency between the flow and adjoint calculations regarding the level of
numerical smoothing (i.e., that one actually uses the same scheme with the same dissipation
levels in both cases) and, more critically, that the level of dissipation increases with mesh
refinement in such a way that the number of points across the shock increases while at the
same time the overall width of the shock decreases. This is relatively simple to achieve in
1D, but the extension to 2D needs to be addressed with care. We hope to come back to these
issues in the future.
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